1
|
Almasi E, Heidarianpour A, Keshvari M. The interactive effects of different exercises and hawthorn consumption on the pain threshold of TMT-induced Alzheimer male rats. J Physiol Sci 2024; 74:36. [PMID: 39014320 PMCID: PMC11251243 DOI: 10.1186/s12576-024-00925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
Exercise increases the pain threshold in healthy people. However, the pain threshold modulation effect of exercise and hawthorn is unclear because of its potential benefits in people with persistent pain, including those with Alzheimer's disease. Accordingly, after the induction of Alzheimer's disease by trimethyl chloride, male rats with Alzheimer's disease were subjected to a 12-week training regimen consisting of resistance training, swimming endurance exercises, and combined exercises. In addition, hawthorn extract was orally administered to the rats. Then, their pain threshold was evaluated using three Tail-flick, Hot-plate, and Formalin tests. Our results showed that Alzheimer's decreased the pain threshold in all three behavioral tests. Combined exercise with hawthorn consumption had the most statistically significant effect on Alzheimer's male rats' pain threshold in all three experiments. A combination of swimming endurance and resistance exercises with hawthorn consumption may modulate hyperalgesia in Alzheimer's rats. Future studies need to determine the effects of these factors on the treatment and/or management of painful conditions.
Collapse
Affiliation(s)
- Ensiyeh Almasi
- Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| |
Collapse
|
2
|
Beheshti F, Vakilian A, Navari M, Zare Moghaddam M, Dinpanah H, Ahmadi-Soleimani SM. Effects of Ocimum basilicum L. Extract on Hippocampal Oxidative Stress, Inflammation, and BDNF Expression in Amnesic Aged Rats. Exp Aging Res 2024; 50:443-458. [PMID: 37154241 DOI: 10.1080/0361073x.2023.2210240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The present study was conducted to investigate the effects of Ocimum basilicum L. (OB) extract on learning and memory impairment in aged rats. Male rats were divided into the following experimental groups: Group 1 (control): including 2 months old rats, Group 2 (aged) including 2 years old rats, Groups 3-5 (aged-OB): including 2 years old rats received 50, 100, and 150 mg/kg OB for 8 weeks by oral gavage. Aging increased the delay to find the platform but, however, decreased the time spent in the target quadrant when tested by Morris water maze (MWM). Aging also reduced the latency to enter the dark chamber in the passive avoidance (PA) test compared to the control group. Moreover, interleukin-6 (IL-6) and malondialdehyde (MDA) levels were raised in the hippocampus and cortex of aged rats. In contrast, thiol levels and enzymatic activity of superoxide dismutase (SOD) and catalase (CAT) significantly reduced. In addition, aging significantly reduced BDNF expression. Finally, OB administration reversed the mentioned effects. The current research showed that OB administration improves learning/memory impairment induced by aging. It also found that this plant extract protects the brain tissues from oxidative damage and neuroinflammation.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arefeh Vakilian
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare Moghaddam
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Dinpanah
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
3
|
Nazari-Serenjeh M, Baluchnejadmojarad T, Hatami-Morassa M, Fahanik-Babaei J, Mehrabi S, Tashakori-Miyanroudi M, Ramazi S, Mohamadi-Zarch SM, Nourabadi D, Roghani M. Kolaviron neuroprotective effect against okadaic acid-provoked cognitive impairment. Heliyon 2024; 10:e25564. [PMID: 38356522 PMCID: PMC10864987 DOI: 10.1016/j.heliyon.2024.e25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.
Collapse
Affiliation(s)
- Morteza Nazari-Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Hatami-Morassa
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Nourabadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Yadav I, Kumar R, Fatima Z, Rema V. Ocimum sanctum [Tulsi] as a Potential Immunomodulator for the Treatment of Ischemic Injury in the Brain. Curr Mol Med 2024; 24:60-73. [PMID: 36515030 DOI: 10.2174/1566524023666221212155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Stroke causes brain damage and is one of the main reasons for death. Most survivors of stroke face long-term physical disabilities and cognitive dysfunctions. In addition, they also have persistent emotional and behavioral changes. The two main treatments that are effective are reperfusion with recombinant tissue plasminogen activator and recanalization of penumbra using mechanical thrombectomy. However, these treatments are suitable only for a few patients due to limitations such as susceptibility to hemorrhage and the requirement for administering tissue plasminogen activators within the short therapeutic window during the early hours following a stroke. The paucity of interventions and treatments could be because of the multiple pathological mechanisms induced in the brain by stroke. The ongoing immune response following stroke has been attributed to the worsening brain injury. Hence, novel compounds with immunomodulatory properties that could improve the outcome of stroke patients are required. Natural compounds and medicinal herbs with anti-inflammatory activities and having minimal or no adverse systemic effect could be beneficial in treating stroke. Ocimum sanctum is a medicinal herb that can be considered an effective therapeutic option for ischemic brain injury. Ocimum sanctum, commonly known as holy basil or "Tulsi," is mentioned as the "Elixir of Life" for its healing powers. Since antiquity, Tulsi has been used in the Ayurvedic and Siddha medical systems to treat several diseases. It possesses immuno-modulatory activity, which can alter cellular and humoral immune responses. Tulsi can be considered a potential option as an immuno-modulator for treating various diseases, including brain stroke. In this review, we will focus on the immunomodulatory properties of Tulsi, specifically its effect on both innate and adaptive immunity, as well as its antioxidant and antiinflammatory properties, which could potentially be effective in treating ongoing immune reactions following ischemic brain injury.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Ravi Kumar
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechno logy, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Velayudhan Rema
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| |
Collapse
|
5
|
Kamel FO, Karim S, Bafail DAO, Aldawsari HM, Kotta S, Ilyas UK. Hepatoprotective effects of bioactive compounds from traditional herb Tulsi ( Ocimum sanctum Linn) against galactosamine-induced hepatotoxicity in rats. Front Pharmacol 2023; 14:1213052. [PMID: 37860117 PMCID: PMC10582332 DOI: 10.3389/fphar.2023.1213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Ocimum sanctum L. (Tulsi; Family: libiaceae), also known as "The Queen of herbs" or "Holy Basil," is an omnipresent, multipurpose plant that has been used in folk medicine of many countries as a remedy against several pathological conditions, including anticancer, antidiabetic, cardio-protective, antispasmodic, diaphoretic, and adaptogenic actions. This study aims to assess O. sanctum L.'s hepatoprotective potential against galactosamine-induced toxicity, as well as investigate bioactive compounds in each extract and identify serum metabolites. The extraction of O. sanctum L as per Ayurveda was simultaneously standardized and quantified for biochemical markers: rutin, ellagic acid, kaempferol, caffeic acid, quercetin, and epicatechin by HPTLC. Hepatotoxicity was induced albino adult rats by intra-peritoneal injection of galactosamine (400 mg/kg). The quantified hydroalcoholic and alcoholic extract of O. sanctum L (100 and 200 mg/kg body weight/day) were compared for evaluation of hepatoprotective potential, which were assessed in terms of reduction in histological damage, change in serum enzymes such as AST, ALT, ALP and increase TBARS. Twenty chemical constituents of serum metabolites of O. sanctum were identified and characterized based on matching recorded mass spectra by GC-MS with those obtained from the library-Wiley/NIST. We evaluated the hepatoprotective activity of various fractions of hydroalcoholic extracts based on the polarity and investigated the activity at each phase (hexane, chloroform, and ethyl acetate) in vitro to determine how they affected the toxicity of CCL4 (40 mM) toward Chang liver cells. The ethyl acetate fraction of the selected plants had a higher hepatoprotective activity than the other fractions, so it was used in vacuum liquid chromatography (VLC). The ethyl acetate fraction contains high amounts of rutin (0.34% w/w), ellagic acid (2.32% w/w), kaempferol (0.017% w/w), caffeic acid (0.005% w/w), quercetin (0.038% w/w), and epicatechin (0.057% w/w) which are responsible for hepatoprotection. In comparison to standard silymarin, isolated bioactive molecules displayed the most significant hepatoprotective activity in Chang liver cells treated to CCl4 toxicity. The significant high hepatoprotection provided by standard silymarin ranged from 77.6% at 100 μg/ml to 83.95% at 200 μg/ml, purified ellagic acid ranged from 70% at 100 μg/ml to 81.33% at 200 μg/ml, purified rutin ranged from 63.4% at 100 μg/ml to 76.34% at 200 μg/ml purified quercetin ranged from 54.33% at 100 μg/ml to 60.64% at 200 μg/ml, purified epicatechin ranged from 53.22% at 100 μg/ml to 65.6% at 200 μg/ml, and purified kaempferol ranged from 52.17% at 100 μg/ml to 60.34% at 200 μg/ml. These findings suggest that the bioactive compounds in O. sanctum L. have significant protective effects against galactosamine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatemah O. Kamel
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Duaa Abdullah Omer Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - U. K. Ilyas
- Department of Pharmacognosy and Phytochemistry, Moulana College of Pharmacy, Perinthalmanna, Kerala, India
| |
Collapse
|
6
|
Ranawat P, Kaur N, Koul A. Modulation of cigarette smoke induced alterations by aqueous Ocimum sanctum leaf extract in pulmonary tissue of rodents. Sci Rep 2023; 13:15806. [PMID: 37737272 PMCID: PMC10517011 DOI: 10.1038/s41598-022-26152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/09/2022] [Indexed: 09/23/2023] Open
Abstract
Smoking has been associated with an increased risk of asthma, lung cancer, cardiovascular diseases, chronic bronchitis, and a massive amount of oxidative stress. The present study was undertaken to determine the modulatory effects of Holi Basil/Tulsi, (Ocimum sanctum) leaf extract on cigarette smoke-induced pulmonary damage in mice. Cigarette smoke (CS) inhalation increased the levels of pulmonary lipid peroxidation, and reactive oxygen species and decreased the levels of glutathione. Histoarchitectural alterations and enhanced tissue lactate dehydrogenase (LDH) activity in pulmonary tissue was distinctly indicative of damage. Enhanced mucin production was also observed through mucicarmine and Alcian Blue-Periodic Acid Schiff (PAS) staining. Increased expression of MUC5AC was also observed. Alterations in the lung were also evident through FTIR studies. Administration of Ocimum sanctum leaf extract (80 mg/kg b.w) to CS exposed mice ameliorated these alterations to a greater extent. These findings are suggestive of the fact that Ocimum sanctum leaf extract effectively modulated CS-induced deleterious effects on pulmonary tissue.
Collapse
Affiliation(s)
- Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Navdeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
7
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
8
|
In Vitro Neuroprotective Effect of the Bovine Umbilical Vein Endothelial Cell Conditioned Medium Mediated by Downregulation of IL-1β, Caspase-3, and Caspase-9 Expression. Vet Sci 2022; 9:vetsci9020048. [PMID: 35202301 PMCID: PMC8878894 DOI: 10.3390/vetsci9020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and conditioned medium (CM) derived from human umbilical blood cord stem cells (HUBSC) are now being extensively utilized. Human umbilical vein endothelial cells (HUVECs) have the same ability as HUBSC as an option for autologous therapy. In addition, cell therapy using HUVECs may produce protective signals for cerebral vessels and promote neuronal survival after hypoxic–ischemic damage. HUVECs have the same anatomical and physiological structure as bovine umbilical vein endothelial cells (BUVECs). In this study, we aim to determine the ability of BUVEC-CM to reduce inflammation and apoptosis on in vitro neurodegeneration models (PC12 and SH-SY5Y cell lines). BUVEC-CM obtained from the third and fourth passages were analyzed using liquid chromatography–mass spectrometry (LC-MS) and high-resolution mass spectrometry (HR-MS), while the other part was used as a treatment for in vitro model neurodegeneration. The PC12 and SH-SY5Y cell lines were cultured and grouped into seven different treatments, including untreated cells. As the treatment group, cells were given TMT 10 µM in the presence of different doses of CM (25%, 50%, 75%, and 100%); as a control comparison of recent therapy, donepezil was used. In addition, cells with the administration of TMT 10 µM were run as a positive control. Cell viability assay (CCK-8) and enzyme-linked immunosorbent assay (ELISA) were performed to identify the viability and expression of interleukin-1β (IL-1β), caspase-3, and caspase-9 for both PC12 and SH-SY5Y cells. The results showed that BUVEC-CM could significantly reduce IL-1β expression and downregulate caspase-3 and caspase-9, as well as when compared to the donepezil group. Taken together, these results indicate that BUVEC-CM can be used as a potential candidate for neuroprotective agents by reducing the activity of IL-1β and the expression of caspase-9 and caspase-3 in PC12 and SH-SY5Y cells induced by TMT. However, further research still needs to be conducted.
Collapse
|
9
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kustiati U, Dewi Ratih TS, Dwi Aris Agung N, Kusindarta DL, Wihadmadyatami H. In silico molecular docking and in vitro analysis of ethanolic extract Ocimum sanctum Linn.: Inhibitory and apoptotic effects against non-small cell lung cancer. Vet World 2021; 14:3175-3187. [PMID: 35153410 PMCID: PMC8829409 DOI: 10.14202/vetworld.2021.3175-3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
Background and Aim: Lung cancer, especially non-small cell lung cancer (NSCLC), has been identified as the leading cause of cancer deaths worldwide. The mortality rate from lung cancer has been estimated to be 18.4%. Until now, conventional treatments have not yielded optimal results, thus necessitating an investigation into the use of traditional herbal plants as potential candidates for its treatment. This study aimed to determine the inhibitory and apoptotic activity of the ethanolic extract from Ocimum sanctum Linn. (EEOS) by in silico molecular docking and through in vitro studies using NSCLC cells (A549 cell line). Materials and Methods: Dried simplicia of Ocimum sanctum was converted into EEOS using the maceration method. Spectrophotometry was then employed to analyze the EEOS compound. The known main active compounds were further analyzed for inhibitory and apoptotic effects on gene signaling using in silico molecular docking involving the downloading of active compounds from PubChem and target proteins from the Protein Data Bank; the active compounds and proteins were then prepared using the Discovery Studio software v. 19.0.0 and the PyRX 0.8 program, interacted with the HEX 8.0.0 program, and visualized with the Discovery Studio Visualizer v. 19.0. Finally, an in vitro analysis was performed using an antiproliferative-cytotoxic test (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay in the NSCLC A549 cell line). Results: The analysis revealed that the active compounds in the ethanolic extract were dominated by quercetin (flavonoids) (47.23% b/b) and eugenol (phenolic) (12.14% b/b). These active compounds interacted with the active sites (residual amino acids) of the αvβ3 integrin, a5b1 integrin, caspase-3, caspase-9, and vascular endothelial growth factor. Hydrogen bonds and Pi-cation and Pi-alkyl interactions were involved in the relationships between the active compounds and the active sites and thus may reveal an antioxidant property of the extract. Furthermore, in vitro analysis showed the inhibitory and antiproliferative effects of the EEOS against non-small cell cancer (A549). Conclusion: Taken together, our data showed the ability of EEOS as an inhibitor and apoptotic agent for lung cancer; however, further research is needed to determine the exact mechanism of EEOS as an herbal medication.
Collapse
Affiliation(s)
- Ulayatul Kustiati
- Post Graduate Student of Sain Veteriner, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - T. S. Dewi Ratih
- Department of Biology, Faculty of Mathematics and Natural Sciences, and Research center of Smart Molecule of Natural Genetics Resources, Brawijaya University, Indonesia
| | - N. Dwi Aris Agung
- Department of Pharmacology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|