1
|
Meyer T, Wellge B, Barzen G, Klemmer Chandia S, Knebel F, Hahn K, Elgeti T, Fischer T, Braun J, Tzschätzsch H, Sack I. Cardiac Elastography With External Vibration for Quantification of Diastolic Myocardial Stiffness. J Am Soc Echocardiogr 2024:S0894-7317(24)00624-2. [PMID: 39647641 DOI: 10.1016/j.echo.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES Heart failure is an increasing global health problem. Approximately 50% of patients with heart failure have heart failure with preserved ejection fraction (HFpEF) and concomitant diastolic dysfunction (DD), in part caused by increased myocardial stiffness not detectable by standard echocardiography. While elastography can map tissue stiffness, cardiac applications are currently limited, especially in patients with a higher body mass index. Therefore, we developed cardiac time-harmonic elastography (THE) to detect abnormal diastolic myocardial stiffness associated with DD. MATERIAL AND METHODS Cardiac THE was developed using standard medical ultrasound and continuous external vibration for regionally resolved mapping of diastolic shear wave speed as a proxy for myocardial stiffness. The method was prospectively applied to 54 healthy controls (26 women), 10 patients with moderate left ventricular hypertrophy (mLVH; 5 women), and 45 patients with wild-type transthyretin amyloidosis (wTTR; 4 women), 20 of whom were treated with tafamidis. Ten healthy participants were reinvestigated after 2 to 6 months to analyze test-retest reproducibility by intraclass correlation coefficients. RESULTS Myocardial shear wave speed was measured with good reproducibility (intraclass correlation coefficient = 0.82) and showed higher values in wTTR (3.0 ± 0.7 m/sec) than in mLVH (2.1 ± 0.6 m/sec) and healthy controls (1.8 ± 0.3 m/sec, all P < .05). Area under the curve values were 0.991 and 0.737 for discriminating wTTR and mLVH from healthy controls, respectively. Shear wave speed was reduced in patients after tafamidis treatment (2.6 ± 0.6 m/sec, P = .04), suggesting the potential value of THE for therapy monitoring. Shear wave speed was quantified in the septum, posterior wall, and an automatically masked region (here stated for the septal region). CONCLUSIONS Cardiac THE detects abnormal myocardial stiffness in patients with DD with high penetration depth, independent of body mass index and region selection. Based on standard ultrasound components, cardiac THE is cost-effective and has the potential to become a point-of-care method for stiffness-sensitive echocardiography.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Brunhilde Wellge
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gina Barzen
- Amyloidosis Center Charité Berlin (ACCB), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Fabian Knebel
- Amyloidosis Center Charité Berlin (ACCB), Charité-Universitätsmedizin Berlin, Berlin, Germany; Cardiology Unit, Department of Internal Medicine, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Katrin Hahn
- Amyloidosis Center Charité Berlin (ACCB), Charité-Universitätsmedizin Berlin, Berlin, Germany; BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Elgeti
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute for Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Institute for Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Matsuda J, Takano H, Imori Y, Ishihara K, Sangen H, Kubota Y, Nakata J, Miyachi H, Hosokawa Y, Tara S, Tokita Y, Yamamoto T, Kitamura M, Takayama M, Asai K. Long-term clinical outcomes after alcohol septal ablation for hypertrophic obstructive cardiomyopathy in Japan: a retrospective study. Heart Vessels 2024:10.1007/s00380-024-02489-0. [PMID: 39580779 DOI: 10.1007/s00380-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Hypertrophic cardiomyopathy is characterized by significant left ventricular wall thickening, often leading to obstructive symptoms. Alcohol septal ablation (ASA) has emerged as an effective treatment for patients with hypertrophic obstructive cardiomyopathy (HOCM) who remain symptomatic despite maximal medical therapy. However, the detailed long-term effects of ASA in Japanese patients with HOCM remain unclear. Therefore, this study aimed to investigate the long-term effects of ASA for HOCM by evaluating changes in symptoms, pressure gradient, hemodynamics, prognosis, and predictive factors for cardiovascular events over time. In this retrospective study, we examined 239 highly symptomatic patients (age, 64 ± 13 years; median follow-up, 6.9 years) treated with ASA for drug-refractory HOCM between 1998 and 2021. Patients were assessed using transthoracic echocardiography, magnetic resonance imaging, and cardiac catheterization. Follow-up evaluations included clinical assessments, electrocardiography, and echocardiography. Data analysis included descriptive statistics, Kaplan-Meier analysis, and multivariate regression. ASA reduced the left ventricular outflow tract gradient from 90.5 ± 52.8 to 14.4 ± 17.1 mmHg (P < 0.01) and New York Heart Association (NYHA) class from 3 [2.5-3] to 1 [1-2] at 10 years after ASA (P < 0.01). The 30-day mortality rate following ASA was 1%. Overall, 31 patients (13%) died during the follow-up period. The survival rates at 1, 5, 10, and 15 years after ASA were 97.4%, 89.9%, 83.7%, and 77.6%, respectively. Multivariable analysis revealed NYHA functional class before ASA (odds ratio [OR], 3.09; 95% confidence interval [CI], 1.40-6.82; P = 0.005), beta-blocker use (OR, 0.25; 95% CI, 0.07-0.91; P = 0.036), and class Ia agent use (OR, 0.31; 95% CI, 0.13-0.75; P = 0.009) as independent predictors of all-cause mortality. This study demonstrated low periprocedural and long-term mortality rates following ASA in patients with HOCM, suggesting that ASA provides durable symptomatic relief and reduces left ventricular outflow tract obstruction in selected highly symptomatic patients with HOCM.
Collapse
Affiliation(s)
- Junya Matsuda
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Hitoshi Takano
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Yoichi Imori
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Kakeru Ishihara
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | - Hideto Sangen
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Jun Nakata
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | - Hideki Miyachi
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | - Yusuke Hosokawa
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Yukichi Tokita
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Takeshi Yamamoto
- Division of Cardiovascular Intensive Care, Nippon Medical School, Tokyo, Japan
| | | | | | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|
3
|
Fernandes F, Simões MV, Correia EDB, Marcondes-Braga FG, Coelho-Filho OR, Mesquita CT, Mathias Junior W, Antunes MDO, Arteaga-Fernández E, Rochitte CE, Ramires FJA, Alves SMM, Montera MW, Lopes RD, Oliveira Junior MTD, Scolari FL, Avila WS, Canesin MF, Bocchi EA, Bacal F, Moura LZ, Saad EB, Scanavacca MI, Valdigem BP, Cano MN, Abizaid AAC, Ribeiro HB, Lemos Neto PA, Ribeiro GCDA, Jatene FB, Dias RR, Beck-da-Silva L, Rohde LEP, Bittencourt MI, Pereira ADC, Krieger JE, Villacorta Junior H, Martins WDA, Figueiredo Neto JAD, Cardoso JN, Pastore CA, Jatene IB, Tanaka ACS, Hotta VT, Romano MMD, Albuquerque DCD, Mourilhe-Rocha R, Hajjar LA, Brito Junior FSD, Caramelli B, Calderaro D, Farsky PS, Colafranceschi AS, Pinto IMF, Vieira MLC, Danzmann LC, Barberato SH, Mady C, Martinelli Filho M, Torbey AFM, Schwartzmann PV, Macedo AVS, Ferreira SMA, Schmidt A, Melo MDTD, Lima Filho MO, Sposito AC, Brito FDS, Biolo A, Madrini Junior V, Rizk SI, Mesquita ET. Guidelines on the Diagnosis and Treatment of Hypertrophic Cardiomyopathy - 2024. Arq Bras Cardiol 2024; 121:e202400415. [PMID: 39082572 DOI: 10.36660/abc.20240415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Affiliation(s)
- Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus V Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | - Fabiana Goulart Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Wilson Mathias Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Murillo de Oliveira Antunes
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
| | - Edmundo Arteaga-Fernández
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Felix José Alvarez Ramires
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Silvia Marinho Martins Alves
- Universidade São Francisco (USF), São Paulo, SP - Brasil; Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | | | | | - Mucio Tavares de Oliveira Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Walkiria Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fernando Bacal
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
- Beth Israel Deaconess Medical Center / Harvard Medical School, Boston - USA
| | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Alexandre Antonio Cunha Abizaid
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Henrique Barbosa Ribeiro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Fabio Biscegli Jatene
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Luis Beck-da-Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Alexandre da Costa Pereira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - José Eduardo Krieger
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Juliano Novaes Cardoso
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Faculdade Santa Marcelina, São Paulo, SP - Brasil
| | - Carlos Alberto Pastore
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Ana Cristina Sayuri Tanaka
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Viviane Tiemi Hotta
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fleury Medicina e Saúde, São Paulo, SP - Brasil
| | | | - Denilson Campos de Albuquerque
- Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ - Brasil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ - Brasil
| | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Bruno Caramelli
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Daniela Calderaro
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | | | - Silvio Henrique Barberato
- CardioEco Centro de Diagnóstico Cardiovascular e Ecocardiografia, Curitiba, PR - Brasil
- Quanta Diagnósticos, Curitiba, PR - Brasil
| | - Charles Mady
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Pedro Vellosa Schwartzmann
- Hospital Unimed Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Centro Avançado de Pesquisa, Ensino e Diagnóstico (CAPED), Ribeirão Preto, SP - Brasil
| | | | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Fundação Zerbini, São Paulo, SP - Brasil
| | - Andre Schmidt
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, SP - Brasil
| | | | | | - Andrei C Sposito
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | - Flávio de Souza Brito
- Hospital Vera Cruz, Campinas, SP - Brasil
- Hospital das Clínicas da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), São Paulo, SP - Brasil
- Centro de Pesquisa Clínica - Indacor, São Paulo, SP - Brasil
| | - Andreia Biolo
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS - Brasil
| | - Vagner Madrini Junior
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - Stephanie Itala Rizk
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | |
Collapse
|
4
|
Ajmone Marsan N, Graziani F, Meucci MC, Wu HW, Lillo R, Bax JJ, Burzotta F, Massetti M, Jukema JW, Crea F. Valvular heart disease and cardiomyopathy: reappraisal of their interplay. Nat Rev Cardiol 2024; 21:37-50. [PMID: 37563454 DOI: 10.1038/s41569-023-00911-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Cardiomyopathies and valvular heart diseases are typically considered distinct diagnostic categories with dedicated guidelines for their management. However, the interplay between these conditions is increasingly being recognized and they frequently coexist, as in the paradigmatic examples of dilated cardiomyopathy and hypertrophic cardiomyopathy, which are often complicated by the occurrence of mitral regurgitation. Moreover, cardiomyopathies and valvular heart diseases can have a shared aetiology because several genetic or acquired diseases can affect both the cardiac valves and the myocardium. In addition, the association between cardiomyopathies and valvular heart diseases has important prognostic and therapeutic implications. Therefore, a better understanding of their shared pathophysiological mechanisms, as well as of the prevalence and predisposing factors to their association, might lead to a different approach in the risk stratification and management of these diseases. In this Review, we discuss the different scenarios in which valvular heart diseases and cardiomyopathies coexist, highlighting the need for an improved classification and clustering of these diseases with potential repercussions in the clinical management and, particularly, personalized therapeutic approaches.
Collapse
Affiliation(s)
- Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Francesca Graziani
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Meucci
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Hoi W Wu
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosa Lillo
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Francesco Burzotta
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Filippo Crea
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
5
|
Conway J, Min S, Villa C, Weintraub RG, Nakano S, Godown J, Tatangelo M, Armstrong K, Richmond M, Kaufman B, Lal AK, Balaji S, Power A, Baez Hernandez N, Gardin L, Kantor PF, Parent JJ, Aziz PF, Jefferies JL, Dragulescu A, Jeewa A, Benson L, Russell MW, Whitehill R, Rossano J, Howard T, Mital S. The Prevalence and Association of Exercise Test Abnormalities With Sudden Cardiac Death and Transplant-Free Survival in Childhood Hypertrophic Cardiomyopathy. Circulation 2023; 147:718-727. [PMID: 36335467 PMCID: PMC9977414 DOI: 10.1161/circulationaha.122.062699] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) can be associated with an abnormal exercise response. In adults with HCM, abnormal results on exercise stress testing are predictive of heart failure outcomes. Our goal was to determine whether an abnormal exercise response is associated with adverse outcomes in pediatric patients with HCM. METHODS In an international cohort study including 20 centers, phenotype-positive patients with primary HCM who were <18 years of age at diagnosis were included. Abnormal exercise response was defined as a blunted blood pressure response and new or worsened ST- or T-wave segment changes or complex ventricular ectopy. Sudden cardiac death (SCD) events were defined as a composite of SCD and aborted sudden cardiac arrest. Using Kaplan-Meier survival, competing outcomes, and Cox regression analyses, we analyzed the association of abnormal exercise test results with transplant and SCD event-free survival. RESULTS Of 724 eligible patients, 630 underwent at least 1 exercise test. There were no major differences in clinical characteristics between those with or without an exercise test. The median age at exercise testing was 13.8 years (interquartile range, 4.7 years); 78% were male and 39% were receiving beta-blockers. A total of 175 (28%) had abnormal test results. Patients with abnormal test results had more severe septal hypertrophy, higher left atrial diameter z scores, higher resting left ventricular outflow tract gradient, and higher frequency of myectomy compared with participants with normal test results (P<0.05). Compared with normal test results, abnormal test results were independently associated with lower 5-year transplant-free survival (97% versus 88%, respectively; P=0.005). Patients with exercise-induced ischemia were most likely to experience all-cause death or transplant (hazard ratio, 4.86 [95% CI, 1.69-13.99]), followed by those with an abnormal blood pressure response (hazard ratio, 3.19 [95% CI, 1.32-7.71]). Exercise-induced ischemia was also independently associated with lower SCD event-free survival (hazard ratio, 3.32 [95% CI, 1.27-8.70]). Exercise-induced ectopy was not associated with survival. CONCLUSIONS Exercise abnormalities are common in childhood HCM. An abnormal exercise test result was independently associated with lower transplant-free survival, especially in those with an ischemic or abnormal blood pressure response with exercise. Exercise-induced ischemia was also independently associated with SCD events. These findings argue for routine exercise testing in childhood HCM as part of ongoing risk assessment.
Collapse
Affiliation(s)
- Jennifer Conway
- Department of Pediatrics, Stollery Children’s Hospital, Edmonton, Canada (J.C.)
| | - Sandar Min
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada (S. Min, S. Mital)
| | - Chet Villa
- Department of Pediatrics, Cincinnati Children’s Hospital, OH (C.V.)
| | - Robert G. Weintraub
- Department of Cardiology, The Royal Children’s Hospital, Melbourne, Australia (R.G.W.)
| | - Stephanie Nakano
- Department of Pediatrics, Children’s Hospital Colorado, Aurora (S.N.)
| | - Justin Godown
- Department of Pediatrics, Monroe Carrell Jr Children’s Hospital at Vanderbilt, Nashville, TN (J.G.)
| | - Mark Tatangelo
- Ted Rogers Computational Program, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada (M.T.)
| | - Kathryn Armstrong
- Department of Pediatrics, BC Children’s Hospital, Vancouver, British Columbia, Canada (K.A.)
| | - Marc Richmond
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Centre, New York, NY (M.R.)
| | - Beth Kaufman
- Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Palo Alto, CA (B.K.)
| | - Ashwin K. Lal
- Department of Pediatrics, Primary Children’s Hospital, University of Utah, Salt Lake City (A.K.L.)
| | - Seshadri Balaji
- Department of Pediatrics, Oregon Health and Science University, Portland (S.B.)
| | - Alyssa Power
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (A.P., N.B.H.)
| | - Nathanya Baez Hernandez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX (A.P., N.B.H.)
| | - Letizia Gardin
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Canada (L.G.)
| | - Paul F. Kantor
- Department of Pediatrics, Children’s Hospital of Los Angeles, CA (P.F.K.)
| | - John J. Parent
- Department of Pediatrics, Riley Children’s Hospital, Indianapolis, IN (J.J.P.)
| | - Peter F. Aziz
- Department of Pediatrics, Cleveland Clinic Children’s Hospital, OH (P.F.A.)
| | - John L. Jefferies
- Department of Pediatrics, University of Tennessee Health Sciences Centre, Memphis (J.L.J.)
| | - Andreea Dragulescu
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada (A.D., A.J., L.B., S. Mital)
| | - Aamir Jeewa
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada (A.D., A.J., L.B., S. Mital)
| | - Lee Benson
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada (A.D., A.J., L.B., S. Mital)
| | - Mark W. Russell
- Department of Pediatrics, University of Michigan Health System, Ann Arbor (M.W.R.)
| | - Robert Whitehill
- Department of Pediatrics, Children’s Healthcare of Atlanta, GA (R.W.)
| | - Joseph Rossano
- Department of Pediatrics, Children’s Hospital of Philadelphia, PA (J.R.)
| | - Taylor Howard
- Department of Pediatrics, Texas Children’s Hospital, Houston (T.H.)
| | - Seema Mital
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada (S. Min, S. Mital).,Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada (A.D., A.J., L.B., S. Mital).,Ted Rogers Centre for Heart Research, Toronto, Canada (S. Mital)
| |
Collapse
|