1
|
Dobričić V, Marodi M, Marković B, Tomašič T, Durcik M, Zidar N, Mašič LP, Ilaš J, Kikelj D, Čudina O. Estimation of passive gastrointestinal absorption of new dual DNA gyrase and topoisomerase IV inhibitors using PAMPA and biopartitioning micellar chromatography and quantitative structure-retention relationship analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1240:124158. [PMID: 38776787 DOI: 10.1016/j.jchromb.2024.124158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.
Collapse
Affiliation(s)
- Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Marko Marodi
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Stępnik K, Kukula-Koch W, Płaziński W. Molecular and Pharmacokinetic Aspects of the Acetylcholinesterase-Inhibitory Potential of the Oleanane-Type Triterpenes and Their Glycosides. Biomolecules 2023; 13:1357. [PMID: 37759757 PMCID: PMC10526139 DOI: 10.3390/biom13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The acetylcholinesterase-inhibitory potential of the oleanane-type triterpenes and their glycosides from thebark of Terminalia arjuna (Combreatceae), i.e.,arjunic acid, arjunolic acid, arjungenin, arjunglucoside I, sericic acid and arjunetin, is presented. The studies are based on in silico pharmacokinetic and biomimetic studies, acetylcholinesterase (AChE)-inhibitory activity tests and molecular-docking research. Based on the calculated pharmacokinetic parameters, arjunetin and arjunglucoside I are indicated as able to cross the blood-brain barrier. The compounds of interest exhibit a marked acetylcholinesterase inhibitory potential, which was tested in the TLC bioautography test. The longest time to reach brain equilibrium is observed for both the arjunic and arjunolic acids and the shortest one for arjunetin. All of the compounds exhibit a high and relatively similar magnitude of binding energies, varying from ca. -15 to -13 kcal/mol. The superposition of the most favorable positions of all ligands interacting with AChE is analyzed. The correlation between the experimentally determined IC50 values and the steric parameters of the molecules is investigated. The inhibition of the enzyme by the analyzed compounds shows their potential to be used as cognition-enhancing agents. For the most potent compound (arjunglucoside I; ARG), the kinetics of AChE inhibition were tested. The Michaelis-Menten constant (Km) for the hydrolysis of the acetylthiocholine iodide substrate was calculated to be 0.011 mM.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
3
|
Combined Micellar Liquid Chromatography Technique and QSARs Modeling in Predicting the Blood-Brain Barrier Permeation of Heterocyclic Drug-like Compounds. Int J Mol Sci 2022; 23:ijms232415887. [PMID: 36555527 PMCID: PMC9786067 DOI: 10.3390/ijms232415887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The quantitative structure-activity relationship (QSAR) methodology was used to predict the blood-brain permeability (log BB) for 65 synthetic heterocyclic compounds tested as promising drug candidates. The compounds were characterized by different descriptors: lipophilicity, parachor, polarizability, molecular weight, number of hydrogen bond acceptors, number of rotatable bonds, and polar surface area. Lipophilic properties of the compounds were evaluated experimentally by micellar liquid chromatography (MLC). In the experiments, sodium dodecyl sulfate (SDS) as the effluent component and the ODS-2 column were used. Using multiple linear regression and leave-one-out cross-validation, we derived the statistically significant and highly predictive quantitative structure-activity relationship models. Thus, this study provides valuable information on the expected properties of the substances that can be used as a support tool in the design of new therapeutic agents.
Collapse
|
4
|
Predicting pharmacokinetic properties of potential anti-cancer agents using micellar thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Janicka M, Śliwińska A. Quantitative Retention (Structure)–Activity Relationships in Predicting the Pharmaceutical and Toxic Properties of Potential Pesticides. Molecules 2022; 27:molecules27113599. [PMID: 35684533 PMCID: PMC9182382 DOI: 10.3390/molecules27113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The micellar liquid chromatography technique and quantitative retention (structure)–activity relationships method were used to predict properties of carbamic and phenoxyacetic acids derivatives, newly synthesized in our laboratory and considered as potential pesticides. Important properties of the test substances characterizing their potential significance as pesticides as well as threats to humans were considered: the volume of distribution, the unbonded fractions, the blood–brain distribution, the rate of skin and cell permeation, the dermal absorption, the binding to human serum albumin, partitioning between water and plants’ cuticles, and the lethal dose. Pharmacokinetic and toxicity parameters were predicted as functions of the solutes’ lipophilicities and the number of hydrogen bond donors, the number of hydrogen bond acceptors, and the number of rotatable bonds. The equations that were derived were evaluated statistically and cross-validated. Important features of the molecular structure influencing the properties of the tested substances were indicated. The QSAR models that were developed had high predictive ability and high reliability in modeling the properties of the molecules that were tested. The investigations highlighted the applicability of combined chromatographic technique and QS(R)ARs in modeling the important properties of potential pesticides and reducing unethical animal testing.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
- Correspondence:
| | - Anna Śliwińska
- Doctoral School of Quantitative and Natural Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
6
|
Carrasco-Correa EJ, Ruiz-Allica J, Rodríguez-Fernández JF, Miró M. Human artificial membranes in (bio)analytical science: Potential for in vitro prediction of intestinal absorption-A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Dhavale RP, Choudhari PB, Bhatia MS. Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines. Curr Comput Aided Drug Des 2021; 17:187-200. [PMID: 32003700 DOI: 10.2174/1573409916666200131114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/08/2019] [Accepted: 12/26/2019] [Indexed: 11/22/2022]
Abstract
AIM To generate and validate predictive models for blood-brain permeation (BBB) of CNS molecules using the QSPR approach. BACKGROUND Prediction of molecules crossing BBB remains a challenge in drug delivery. Predictive models are designed for the evaluation of a set of preclinical drugs which may serve as alternatives for determining BBB permeation by experimentation. OBJECTIVE The objective of the present study was to generate QSPR models for the permeation of CNS molecules across BBB and its validation using existing in-house leads. METHODS The present study envisaged the determination of the set of molecular descriptors which are considered significant correlative factors for BBB permeation property. Quantitative Structure- Property Relationship (QSPR) approach was followed to describe the correlation between identified descriptors for 45 molecules and highest, moderate and least BBB permeation data. The molecular descriptors were selected based on drug-likeness, hydrophilicity, hydrophobicity, polar surface area, etc. of molecules that served the highest correlation with BBB permeation. The experimental data in terms of log BB were collected from available literature, subjected to 2D-QSPR model generation using a regression analysis method like Multiple Linear Regression (MLR). RESULTS The best QSPR model was Model 3, which exhibited regression coefficient as R2= 0.89, F = 36; Q2= 0.7805 and properties such as polar surface area, hydrophobic hydrophilic distance, electronegativity, etc., which were considered key parameters in the determination of the BBB permeability. The developed QSPR models were validated with in-house 1,5-benzodiazepines molecules and correlation studies were conducted between experimental and predicted BBB permeability. CONCLUSION The QSPR model 3 showed predictive results that were in good agreements with experimental results for blood-brain permeation. Thus, this model was found to be satisfactory in achieving a good correlation between selected descriptors and BBB permeation for benzodiazepines and tricyclic compounds.
Collapse
Affiliation(s)
- Rakesh P Dhavale
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| | - Manish S Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| |
Collapse
|
8
|
Janicka M, Mycka A, Sztanke M, Sztanke K. Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials. Int J Mol Sci 2021; 22:ijms22084257. [PMID: 33923942 PMCID: PMC8072580 DOI: 10.3390/ijms22084257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
The Quantitative Structure-Activity Relationship (QSAR) methodology was used to predict biological properties, i.e., the blood–brain distribution (log BB), fraction unbounded in the brain (fu,brain), water-skin permeation (log Kp), binding to human plasma proteins (log Ka,HSA), and intestinal permeability (Caco-2), for three classes of fused azaisocytosine-containing congeners that were considered and tested as promising drug candidates. The compounds were characterized by lipophilic, structural, and electronic descriptors, i.e., chromatographic retention, topological polar surface area, polarizability, and molecular weight. Different reversed-phase liquid chromatography techniques were used to determine the chromatographic lipophilicity of the compounds that were tested, i.e., micellar liquid chromatography (MLC) with the ODS-2 column and polyoxyethylene lauryl ether (Brij 35) as the effluent component, an immobilized artificial membrane (IAM) chromatography with phosphatidylcholine column (IAM.PC.DD2) and chromatography with end-capped octadecylsilyl (ODS) column using aqueous solutions of acetonitrile as the mobile phases. Using multiple linear regression, we derived the statistically significant quantitative structure-activity relationships. All these QSAR equations were validated and were found to be very good. The investigations highlight the significance and possibilities of liquid chromatographic techniques with three different reversed-phase materials and QSARs methods in predicting the pharmacokinetic properties of our important organic compounds and reducing unethical animal testing.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Anna Mycka
- Doctoral School of Quantitative and Natural Sciences, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
- Correspondence: (M.S.); (K.S.); Tel.: +48-814486195 (M.S. & K.S.)
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
- Correspondence: (M.S.); (K.S.); Tel.: +48-814486195 (M.S. & K.S.)
| |
Collapse
|
9
|
Jenepha Mary SJ, Pradhan S, James C. Molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT-IR, FT-Raman), drug likeness and molecular docking of the novel anti COVID-2 molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide (Dimer) - quantum chemical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119388. [PMID: 33503560 PMCID: PMC7834302 DOI: 10.1016/j.saa.2020.119388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 05/14/2023]
Abstract
Prospective antiviral molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been probed using Fourier transform infrared (FTIR), FT-Raman and quantum chemical computations. The geometry equilibrium and natural bond orbital analysis have been carried out with density functional theory employing Becke, 3-parameter, Lee-Yang-Parr method with the 6-311G++(d,p) basis set. The vibrational assignments pertaining to different modes of vibrations have been augmented by normal coordinate analysis, force constant and potential energy distributions. Drug likeness and oral activity have been carried out based on Lipinski's rule of five. The inhibiting potency of 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been investigated by docking simulation against SARS-CoV-2 protein. The optimized geometry shows a planar structure between the chromone and the side chain. Differences in the geometries due to the substitution of the electronegative atom and intermolecular contacts due to the chromone and hydrazinecarbothioamide were analyzed. NBO analysis confirms the presence of two strong stable hydrogen bonded NH⋯O intermolecular interactions and two weak hydrogen bonded CH⋯O interactions. The red shift in NH stretching frequency exposed from IR substantiates the formation of NH⋯O intermolecular hydrogen bond and the blue shift in CH stretching frequency substantiates the formation of CH⋯O intermolecular hydrogen bond. Drug likeness, absorption, distribution, metabolism, excretion and toxicity property gives an idea about the pharmacokinetic properties of the title molecule. The binding energy of the nonbonding interaction with Histidine 41 and Cysteine 145, present a clear view that 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide can irreversibly interact with SARS-CoV-2 protease.
Collapse
Affiliation(s)
- S J Jenepha Mary
- Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629003, Tamil Nadu, Affiliated to Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli 627012, India
| | - Sayantan Pradhan
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - C James
- Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil 629003, Tamil Nadu, Affiliated to Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli 627012, India.
| |
Collapse
|
10
|
Stępnik K. Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood-Brain Barrier. Int J Mol Sci 2021; 22:3573. [PMID: 33808219 PMCID: PMC8037809 DOI: 10.3390/ijms22073573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic (non-cell based in vitro) and computational (in silico) studies are commonly used as screening tests in laboratory practice in the first stages of an experiment on biologically active compounds (potential drugs) and constitute an important step in the research on the drug design process. The main aim of this study was to evaluate the ability of triterpenoid saponins of plant origin to cross the blood-brain barrier (BBB) using both computational methods, including QSAR methodology, and biomimetic chromatographic methods, i.e., High Performance Liquid Chromatography (HPLC) with Immobilized Artificial Membrane (IAM) and cholesterol (CHOL) stationary phases, as well as Bio-partitioning Micellar Chromatography (BMC). The tested compounds were as follows: arjunic acid (Terminalia arjuna), akebia saponin D (Akebia quinata), bacoside A (Bacopa monnieri) and platycodin D (Platycodon grandiflorum). The pharmacokinetic BBB parameters calculated in silico show that three of the four substances, i.e., arjunic acid, akebia saponin D, and bacoside A exhibit similar values of brain/plasma equilibration rate expressed as logPSFubrain (the average logPSFubrain: -5.03), whereas the logPSFubrain value for platycodin D is -9.0. Platycodin D also shows the highest value of the unbound fraction in the brain obtained using the examined compounds (0.98). In these studies, it was found out for the first time that the logarithm of the analyte-micelle association constant (logKMA) calculated based on Foley's equation can describe the passage of substances through the BBB. The most similar logBB values were obtained for hydrophilic platycodin D, applying both biomimetic and computational methods. All of the obtained logBB values and physicochemical parameters of the molecule indicate that platycodin D does not cross the BBB (the average logBB: -1.681), even though the in silico estimated value of the fraction unbound in plasma is relatively high (0.52). As far as it is known, this is the first paper that shows the applicability of biomimetic chromatographic methods in predicting the penetration of triterpenoid saponins through the BBB.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| |
Collapse
|
11
|
Mary SJJ, Siddique MUM, Pradhan S, Jayaprakash V, James C. Quantum chemical insight into molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT-IR, FT-Raman), drug likeness and molecular docking of the novel anti COVID-19 molecule 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluorophenyl)acetamide - dimer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118825. [PMID: 32866803 PMCID: PMC7419267 DOI: 10.1016/j.saa.2020.118825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 05/02/2023]
Abstract
Novel antiviral active molecule 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl)acetamide has been synthesised and characterized by FT-IR and FT-Raman spectra. The equilibrium geometry, natural bond orbital calculations and vibrational assignments have been carried out using density functional B3LYP method with the 6-311G++(d,p) basis set. The complete vibrational assignments for all the vibrational modes have been supported by normal coordinate analysis, force constants and potential energy distributions. A detailed analysis of the intermolecular interactions has been performed based on the Hirshfeld surfaces. Drug likeness has been carried out based on Lipinski's rule and the absorption, distribution, metabolism, excretion and toxicity of the title molecule has been calculated. Antiviral potency of 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro-phenyl) acetamide has been investigated by docking against SARS-CoV-2 protein. The optimized geometry shows near-planarity between the phenyl ring and the pyrimidine ring. Differences in the geometries due to the substitution of the most electronegative fluorine atom and intermolecular contacts due to amino pyrimidine were analyzed. NBO analysis reveals the formation of two strong stable hydrogen bonded N-H···N intermolecular interactions and weak intramolecular interactions C-H···O and N-H···O. The Hirshfeld surfaces and consequently the 2D-fingerprint confirm the nature of intermolecular interactions and their quantitative contributions towards the crystal packing. The red shift in N-H stretching frequency exposed from IR substantiate the formation of N-H···N intermolecular hydrogen bond. Drug likeness and absorption, distribution, metabolism, excretion and toxicity properties analysis gives an idea about the pharmacokinetic properties of the title molecule. The binding energy -8.7 kcal/mol of the nonbonding interaction present a clear view that 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl) acetamide can irreversibly interact with SARS-CoV-2 protease.
Collapse
Affiliation(s)
- S J Jenepha Mary
- Register number 18113162132001, Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil- 629003, Tamil Nadu, Affiliated to Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli 627012, India
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India; Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, JH, India
| | - Sayantan Pradhan
- Department of Chemistry, Jadavpur University, Kolkata 700 032, WestBengal, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, JH, India
| | - C James
- Register number 18113162132001, Department of Physics and Research Centre, Scott Christian College (Autonomous), Nagercoil- 629003, Tamil Nadu, Affiliated to Manonmaniam Sundarnar University, Abishekapatti, Tirunelveli 627012, India.
| |
Collapse
|
12
|
Tot K, Lazić A, Djaković Sekulić T. A comparative study of chromatographic lipophilicity and bioactivity parameters of selected spirohydantoins. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1856137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kristina Tot
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Anita Lazić
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Republic of Serbia
| | - Tatjana Djaković Sekulić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
13
|
Pandian SRK, Pavadai P, Vellaisamy S, Ravishankar V, Palanisamy P, Sundar LM, Chandramohan V, Sankaranarayanan M, Panneerselvam T, Kunjiappan S. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:735-749. [PMID: 33156389 DOI: 10.1007/s00210-020-02015-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
The primary requirement for curing cancer is the delivery of essential drug load at the cancer microenvironment with therapeutic efficacy. Considering this, the present study aims to formulate "Rutin"-encapsulated solid lipid nanoparticles (SLNs) for effective brain delivery across the blood-brain barrier (BBB). Rutin-loaded SLNs were fabricated by oil-in-water microemulsion technique and were characterized for their physicochemical properties. The in vivo biodistribution study of rutin-loaded SLNs was studied using Rattus norvegicus rats. Subsequently, in silico molecular docking and dynamic calculations were performed to examine the binding affinity as well as stability of rutin at the active site of target protein "epidermal growth factor receptor (EGFR)." Formulated rutin-loaded SLNs were predominantly spherical in shape with an average particle diameter of 100 nm. Additionally, the biocompatibility and stability have been proved in vitro. The presence and biodistribution of rutin in vivo after 54 h of injection were observed as 15.23 ± 0.32% in the brain, 8.68 ± 0.63% in the heart, 4.78 ± 0.28% in the kidney, 5.04 ± 0.37% in the liver, 0.92 ± 0.04% in the lung, and 11.52 ± 0.65% in the spleen, respectively. Molecular docking results revealed the higher binding energy of - 150.973 kJ/mol of rutin with EGFR. Molecular dynamic simulation studies demonstrated that rutin with EGFR receptor complex was highly stable at 30 ns. The observed results exemplified that the formulated rutin-loaded SLNs were stable in circulation for a period up to 5 days. Thus, rutin-encapsulated SLN formulations can be used as a promising vector to target tumors across BBB. Graphical abstract.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, Karnataka, 560054, India
| | - Sivakumar Vellaisamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil, Tamilnadu, 626126, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Lakshmi M Sundar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, Karnataka, 560054, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | | | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu, 637205, India.
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India.
| |
Collapse
|
14
|
Godyń J, Gucwa D, Kobrlova T, Novak M, Soukup O, Malawska B, Bajda M. Novel application of capillary electrophoresis with a liposome coated capillary for prediction of blood-brain barrier permeability. Talanta 2020; 217:121023. [DOI: 10.1016/j.talanta.2020.121023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
|
15
|
|
16
|
Ciura K, Kawczak P, Greber KE, Kapica H, Nowakowska J, Bączek T. Application of reversed-phase thin layer chromatography and QSRR modelling for prediction of protein binding of selected β-blockers. J Pharm Biomed Anal 2019; 176:112767. [DOI: 10.1016/j.jpba.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
|
17
|
Ciura K, Dziomba S. Application of separation methods for in vitro prediction of blood-brain barrier permeability-The state of the art. J Pharm Biomed Anal 2019; 177:112891. [PMID: 31568968 DOI: 10.1016/j.jpba.2019.112891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023]
Abstract
Despite many efforts, drug discovery pipeline is still a highly inefficient process. Nowadays, when combinatorial chemistry enables to synthesize hundreds of new drugs candidates, methods for rapid assessment of biopharmaceutical parameters of new compounds are highly desired. Over one-third of drugs candidates is rejected because of unsatisfactory pharmacokinetic properties. In the drug discovery process, the blood-brain barrier (BBB) permeability plays a critical role for central nervous system active drugs candidates as well as non-central nervous system active drugs. For this reason, knowledge on the BBB permeability of compounds is essential in the development of new medicines. The review was focused on the application of different separation methods for BBB permeability assessment. Both chromatographic and electrophoretic methods were described. In the article, the advantages and limitations of well-established chromatographic methods like immobilized artificial membrane chromatography or micellar liquid chromatography, and less common techniques were discussed. Special attention was devoted to methods were microemulsion is used as mobile or pseudostationary phases.
Collapse
Affiliation(s)
- Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416, Gdansk, Poland.
| | - Szymon Dziomba
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416, Gdansk, Poland
| |
Collapse
|
18
|
Sobańska AW, Brzezińska E. Application of planar and column micellar liquid chromatography to the prediction of physicochemical properties and biological activity of compounds. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1585614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, Lodz, Poland
| | - Elżbieta Brzezińska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, Lodz, Poland
| |
Collapse
|
19
|
Shokry DS, Waters LJ, Parkes GMB, Mitchell JC. Prediction of human intestinal absorption using micellar liquid chromatography with an aminopropyl stationary phase. Biomed Chromatogr 2019; 33:e4515. [PMID: 30811616 DOI: 10.1002/bmc.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022]
Abstract
The extent of human intestinal absorption (HIA) for a drug is considered to be an important pharmacokinetic parameter which must be determined for orally administered drugs. Traditional experimental methods relied upon animal testing and are renowned for being time consuming and expensive as well as being ethically unfavourable. As a result, the development of alternative methods to evaluate a drug's pharmacokinetics is crucial. Micellar liquid chromatography is considered to be one of these methods that can replace the use of animals in the prediction of HIA. In this study, the combination of an aminopropyl column with the biosurfactant sodium deoxycholate bile salt was used in the experimental determination of micelle-water partition coefficients (log Pmw ) for a group of compounds. Multiple linear regression was then used for the prediction of HIA using the experimentally determined log Pmw along with other molecular descriptors, leading to the construction of a model equation of R2 = 85% and a prediction power represented by R2 Pred. = 72%. The use of micellar liquid chromatography with an aminopropyl column in combination with sodium deoxycholate was found to be a good method for the prediction of human intestinal absorption, providing data for a far wider range of compounds compared with previous studies.
Collapse
Affiliation(s)
- Dina S Shokry
- School of Engineering and Science, Medway Centre for Pharmaceutical Science, University of Greenwich, Chatham, Kent, UK
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Gareth M B Parkes
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - John C Mitchell
- School of Engineering and Science, Medway Centre for Pharmaceutical Science, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
20
|
Vastag G, Apostolov S, Matijević B, Assaleh F. Multivariate assessment of azo dyes' biological activity parameters. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:141-149. [PMID: 29604612 DOI: 10.1016/j.jchromb.2018.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Lipophilicity as key molecular descriptor of potential biological activity for selected derivatives of azo dyes was determined mathematically, by using relevant software packages and by reversed-phase thin-layer chromatography (RPTLC) on C18 and cyano modified carriers in mixtures of water/n-propanol and water/acetone. The obtained chromatographic parameters, RM0 and m, of the examined azo dyes were correlated with the standard measure of lipophilicity, log P, important pharmacokinetic predictors and selected toxicity parameters applying linear regression analysis. Thereby, good correlations for each applied system were obtained (average correlation coefficient, r, 0.944, 0.885 and 0.919). Also, the correlations between the studied parameters of azo dyes were examined applying two multivariate methods (Cluster Analysis and Principal Component Analysis). It was shown that the polarity of the substituent, and to a lesser extent its electronic effects has the greatest influence on the studied parameters of the azo dyes derivatives. Multivariate methods pointed out the similarity of the chromatographic retention constant, RM0, with the parameters of lipophilicity, unlike the chromatographic parameter m, which exhibits better agreement with the toxicity parameters.
Collapse
Affiliation(s)
- Gyöngyi Vastag
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Suzana Apostolov
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Borko Matijević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Fathi Assaleh
- University of Zawia, Faculty of Science, P.O. Box 16168, Zawia, Libya
| |
Collapse
|
21
|
Zarei K, Atabati M, Ahmadi M. Shuffling cross-validation-bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatography. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:346-352. [PMID: 28277080 DOI: 10.1080/03601234.2017.1283139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bee algorithm (BA) is an optimization algorithm inspired by the natural foraging behaviour of honey bees to find the optimal solution which can be proposed to feature selection. In this paper, shuffling cross-validation-BA (CV-BA) was applied to select the best descriptors that could describe the retention factor (log k) in the biopartitioning micellar chromatography (BMC) of 79 heterogeneous pesticides. Six descriptors were obtained using BA and then the selected descriptors were applied for model development using multiple linear regression (MLR). The descriptor selection was also performed using stepwise, genetic algorithm and simulated annealing methods and MLR was applied to model development and then the results were compared with those obtained from shuffling CV-BA. The results showed that shuffling CV-BA can be applied as a powerful descriptor selection method. Support vector machine (SVM) was also applied for model development using six selected descriptors by BA. The obtained statistical results using SVM were better than those obtained using MLR, as the root mean square error (RMSE) and correlation coefficient (R) for whole data set (training and test), using shuffling CV-BA-MLR, were obtained as 0.1863 and 0.9426, respectively, while these amounts for the shuffling CV-BA-SVM method were obtained as 0.0704 and 0.9922, respectively.
Collapse
Affiliation(s)
- Kobra Zarei
- a School of Chemistry , Damghan University , Damghan , Iran
| | | | - Monire Ahmadi
- a School of Chemistry , Damghan University , Damghan , Iran
| |
Collapse
|
22
|
Vucicevic J, Popovic M, Nikolic K, Filipic S, Obradovic D, Agbaba D. Use of biopartitioning micellar chromatography and RP-HPLC for the determination of blood-brain barrier penetration of α-adrenergic/imidazoline receptor ligands, and QSPR analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:235-252. [PMID: 28332439 DOI: 10.1080/1062936x.2017.1302506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
For this study, 31 compounds, including 16 imidazoline/α-adrenergic receptor (IRs/α-ARs) ligands and 15 central nervous system (CNS) drugs, were characterized in terms of the retention factors (k) obtained using biopartitioning micellar and classical reversed phase chromatography (log kBMC and log kwRP, respectively). Based on the retention factor (log kwRP) and slope of the linear curve (S) the isocratic parameter (φ0) was calculated. Obtained retention factors were correlated with experimental log BB values for the group of examined compounds. High correlations were obtained between logarithm of biopartitioning micellar chromatography (BMC) retention factor and effective permeability (r(log kBMC/log BB): 0.77), while for RP-HPLC system the correlations were lower (r(log kwRP/log BB): 0.58; r(S/log BB): -0.50; r(φ0/Pe): 0.61). Based on the log kBMC retention data and calculated molecular parameters of the examined compounds, quantitative structure-permeability relationship (QSPR) models were developed using partial least squares, stepwise multiple linear regression, support vector machine and artificial neural network methodologies. A high degree of structural diversity of the analysed IRs/α-ARs ligands and CNS drugs provides wide applicability domain of the QSPR models for estimation of blood-brain barrier penetration of the related compounds.
Collapse
Affiliation(s)
- J Vucicevic
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - M Popovic
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - K Nikolic
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - S Filipic
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - D Obradovic
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| | - D Agbaba
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
23
|
Dobričić V, Savić J, Nikolic K, Vladimirov S, Vujić Z, Brborić J. Application of biopartitioning micellar chromatography and QSRR modeling for prediction of gastrointestinal absorption and design of novel β-hydroxy-β-arylalkanoic acids. Eur J Pharm Sci 2017; 100:280-284. [PMID: 28126559 DOI: 10.1016/j.ejps.2017.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 12/28/2022]
Abstract
Gastrointestinal absorption of thirteen novel β-hydroxy-β-arylalkanoic acids (HAA) with anti-inflammatory activity was predicted by use of biopartitioning micellar chromatography and compared to ibuprofen. All tested HAA have lower retention factors (k) and lower expected gastrointestinal absorption than ibuprofen, whereas derivatives with the highest values of k are 1C, 2APTF and 2C. Quantitative structure-retention relationship (QSRR) analysis was performed in order to identify molecular descriptors with the highest influence on k and ANN(k) model was selected as optimal. Descriptors which form this model (nBM, P_VSA_LogP_8 and Eta_L) indicate that replacement of phenyl ring with a saturated or partially unsaturated one, as well as presence of halogens and nitro group should positively affect k values. On the basis of these conclusions, six novel HAA were designed and selected QSRR model was used for the prediction of their k values.
Collapse
Affiliation(s)
- Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Jelena Savić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Sote Vladimirov
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Zorica Vujić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Jasmina Brborić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Salary M, Hadjmohammadi M. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs. J Pharm Biomed Anal 2015; 114:1-7. [DOI: 10.1016/j.jpba.2015.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023]
|
25
|
Tuning the predictive capacity of the PAMPA-BBB model. Eur J Pharm Sci 2015; 79:53-60. [PMID: 26344358 DOI: 10.1016/j.ejps.2015.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/23/2022]
Abstract
Due to its robustness and versatility, several variations of the blood-brain barrier specific parallel artificial membrane permeability assay (PAMPA-BBB) have been reported in the central nervous system (CNS) drug discovery practice. In this study, the impact of the main assay parameters on the predictive power of PAMPA-BBB was thoroughly investigated with 27, passively BBB-transported drug molecules with in vivo logBB data. The single and combined effects of the following variables were systematically studied and optimized: incubation time and temperature (4 vs. 18h, RT vs. 37°C), type of the read-out (UV-reader vs. HPLC), solvent composition (n-dodecane/n-hexane), lipid concentration (0-10w/v % PBLE), cholesterol content (0-1.66w/v %), and thickness of the lipid membrane, and the DMSO cosolvent content (5-20v/v %), respectively. Based on our results, solvent-driven and lipid-driven mechanisms of diffusion were identified in different assay conditions. Moreover, the analysis of membrane retention (MR%; the mole fraction of solute "lost" to the membrane) data obtained at various membrane compositions (volume of solvent and concentration of phospholipids) revealed the compound-specific nature of this parameter. The optimized conditions for the PAMPA-BBB were the following: 4h incubation at 37°C, detection by HPLC-DAD, iso-pH conditions (pH=7.4) with 5v/v % DMSO content in buffer solutions, and PBLE (10w/v %; without cholesterol) as membrane dissolved in the mixture of n-hexane:n-dodecane 3:1.
Collapse
|
26
|
In vitro prediction of human intestinal absorption and blood–brain barrier partitioning: development of a lipid analog for micellar liquid chromatography. Anal Bioanal Chem 2015; 407:7453-66. [DOI: 10.1007/s00216-015-8911-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
27
|
Green mixed micellar liquid chromatography as a toxicity screening method of psychotropic drugs. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0606-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
De Vrieze M, Verzele D, Szucs R, Sandra P, Lynen F. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier. Anal Bioanal Chem 2014; 406:6179-88. [PMID: 25124450 DOI: 10.1007/s00216-014-8054-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Abstract
Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models.
Collapse
Affiliation(s)
- Mike De Vrieze
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4bis, 9000, Ghent, Belgium
| | | | | | | | | |
Collapse
|
29
|
Stępnik KE, Malinowska I, Rój E. in vitro and in silico determination of oral, jejunum and Caco-2 human absorption of fatty acids and polyphenols. Micellar liquid chromatography. Talanta 2014; 130:265-73. [PMID: 25159408 DOI: 10.1016/j.talanta.2014.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
Abstract
In this investigation chosen saturated, mono- and polyunsaturated fatty acids as well as polyphenols have been analyzed. The main aim of this study was to determine oral, jejunum and Caco-2 human absorption of chosen fatty acids and polyphenols using in vitro and in silico methods. For in vitro determination of human drug absorption, the usefulness of Micellar Liquid Chromatography (MLC) with mobile phases containing different surfactants (including Brij35-Biopartitioning Micellar Chromatography (BMC)) has been confirmed. On the basis of Foley's equation, 1/k vs. CM correlations for the tested compounds have been done. Satisfactory linearity of the relationships was found over the whole eluents composition range studied with R(2) approximately 0.99 in each case. Moreover, the analyte-micelle association constants (Kma) from Foley's equation have been compared for different micellar environments, containing Brij35, SDS and CTAB as a main component of micellar mobile phases. Completely new models describing human oral as well as Caco-2 and jejunum absorption have been constructed and compared with the cited models. These models are based on the Abraham descriptors and lipophilicity parameters as well as steric descriptors. Furthermore, many different correlations between physicochemical parameters and human intestinal absorption have been done, e.g. the correlation between human jejunum permeability estimated in silico and received using LSER parameters was excellent (R(2) nearly 0.99). Chromatographic parameters have been collated with steric, electronic and physicochemical ones using QRAR (Quantitative Retention - Activity Relationships) and QSAR (Quantitative Structure - Activity Relationships) models. Moreover, retention BMC data have been compared with lipophilicity parameter logPo/w (n-octanol-water partition coefficient). The influence of lipophilicity on oral absorption (%) has been checked. The correlation between predicted oral absorption (%) and logPo/w has been done. Obtained R(2) was 0.82. On the basis of chromatographic, lipophilicity, steric and different physicochemical parameters, the principal components analysis (PCA) has been done.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Irena Malinowska
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Edward Rój
- Fertilizer Research Institute, Tysiąclecia Państwa Polskiego Ave.13a, 24-110 Puławy, Poland
| |
Collapse
|
30
|
Janicka M, Pachuta-Stec A. Retention-property relationships of 1,2,4-triazoles by micellar and reversed-phase liquid chromatography. J Sep Sci 2014; 37:1419-28. [DOI: 10.1002/jssc.201400192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry; Maria Curie-Skłodowska University; Lublin Poland
| | - Anna Pachuta-Stec
- Department of Organic Chemistry, Faculty of Pharmacy; Medical University; Lublin Poland
| |
Collapse
|
31
|
Janicka M, Sztanke M, Sztanke K. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. J Chromatogr A 2013; 1318:92-101. [PMID: 24157086 DOI: 10.1016/j.chroma.2013.09.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Reversed-phase liquid chromatography (RPLC) with different stationary phases, i.e., octadecylsilyl, immobilized artificial membrane and immobilized cholesterol, was used to study lipophilicity of 56 newly-designed 7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones and 2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-diones with potential anti-proliferative, anti-metastatic and analgesic activities. Extrapolated retention parameters that correspond to pure buffer as the mobile phase, i.e., logkw values are used as chromatographic lipophilicities. The lipophilic properties of compounds also are characterized by computed logP values and basic pharmacokinetic descriptors calculated in silico with the use of ACD/Percepta software according to Abraham's linear solvation energy relationship. Chromatographic and partitioning parameters are compared with biological descriptors using principal component analysis (PCA), and similarities and dissimilarities between variables and compounds are described. Highly significant, predictive relationships between biological descriptors and chromatographic parameters are obtained. Reversed parabolic relationships, which have very good statistical quality between various biological descriptors, i.e., logKsc, logKp, logBB, and logKhsa, and the logkw values, indicate the advantages of a cholesterol column in comparison with immobilized artificial membrane and octadecylsilyl stationary phase.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Physical Chemistry, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | | | | |
Collapse
|
32
|
De Vrieze M, Lynen F, Chen K, Szucs R, Sandra P. Predicting drug penetration across the blood–brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography. Anal Bioanal Chem 2013; 405:6029-41. [DOI: 10.1007/s00216-013-7015-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 12/01/2022]
|
33
|
SDS-Based Biomembrane Mimetic Chromatography for Prediction of Human Drug Transport as an in Vitro Technique. Chromatographia 2013. [DOI: 10.1007/s10337-013-2480-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Stępnik KE, Malinowska I. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. J Chromatogr A 2013; 1286:127-36. [PMID: 23506703 DOI: 10.1016/j.chroma.2013.02.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/14/2013] [Accepted: 02/20/2013] [Indexed: 11/25/2022]
Abstract
Biopartitioning Micellar Chromatography (BMC) is a mode of micellar liquid chromatography that uses C18 stationary phases and micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic human drug absorption, blood-brain barrier distribution or partitioning processes in biological systems. BMC system can be useful in constructing good predictive models because the characteristics of the BMC system are similar to biological barriers and extracellular fluids. Immobilized Artificial Membrane (IAM) chromatography uses stationary phase which consists of a monolayer of phosphatidylcholine covalently immobilized on an inert silica support. IAM columns are thought to mimic very closely a membrane bilayer and are used in a HPLC system with a physiological buffer as eluent. In this paper the usefulness of BMC and IAM system for in silico and in vitro determination of blood-brain barrier (BBB) penetration of phenols has been demonstrated. The most important pharmacokinetic parameters of brain have been obtained for the determination of BBB penetration, i.e. BBB permeability - surface area product (PS), usually given as a logPS, brain/plasma equilibration rate (log(PS×fu,brain)) and fraction unbound in plasma (Fu). Moreover, the relationships between retention of eighteen phenols and different parameters of molecular size, lipophilicity and BBB penetration were studied. Extrapolated to pure water values of the logarithms of retention factors (logkw) have been compared with the corresponding octanol-water partition coefficient (logPo-w) values of the solutes. In addition, different physicochemical parameters from Foley's equation for BMC system have been collated with the chromatographic data. The Linear Solvation Energy Relationship (LSER) using Abraham model for the describing of phenols penetration across BBB has been used. Four equations were developed as a multiple linear regression using retention data from IAM and BMC system (QRAR models) and molecular volume parameter (Vm) and Abraham descriptors to correlate the logBB values. Moreover, in order to establish the relationships between different variables, the principal components analysis (PCA) has been done. The results of PCA were obtained using chromatographic data from IAM and BMC systems as well as from the structures of tested phenols. The four parameters: logkwIAM(exp), logkwBMC(exp), analyte-micelle association constant (Kma) and logPo-w have been checked.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | | |
Collapse
|
35
|
Hadjmohammadi M, Salary M. Biopartitioning micellar chromatography with sodium dodecyl sulfate as a pseudo α(1)-acid glycoprotein to the prediction of protein-drug binding. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 912:50-5. [PMID: 23261822 DOI: 10.1016/j.jchromb.2012.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022]
Abstract
A simple and fast method is of urgent need to measure protein-drug binding affinity in order to meet the rapid development of new drugs. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography (MLC) using micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug-protein interactions. In this study, sodium dodecyl sulfate-micellar liquid chromatography (SDS-MLC) was used for the prediction of protein-drug binding based on the similar property of SDS micelles to α(1)-acid glycoprotein (AGP). The relationships between the BMC retention data of a heterogeneous set of 14 basic and neutral drugs and their plasma protein binding parameter were studied and the predictive ability of models was evaluated. Modeling of logk(BMC) of these compounds was established by multiple linear regression (MLR) and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of SDS. The developed MLR models were characterized by both the descriptive and predictive ability (R(2)=0.882, R(CV)(2)=0.832 and R(2)=0.840, R(CV)(2)=0.765 for 0.07 and 0.09M SDS, respectively). The p values <0.01 also indicated that the relationships between the protein-drug binding and the logk(BMC) values were statistically significant at the 99% confidence level. The standard error of estimation showed the standard deviation of the regression to be 11.89 and 13.87 for 0.07 and 0.09M, respectively. The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values were in good agreement with the experimental value.
Collapse
|
36
|
Verzele D, Lynen F, Vrieze MD, Wright AG, Hanna-Brown M, Sandra P. Development of the first sphingomyelin biomimetic stationary phase for immobilized artificial membrane (IAM) chromatography. Chem Commun (Camb) 2012; 48:1162-4. [DOI: 10.1039/c2cc16872c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Noorizadeh H, Farmany A, Noorizadeh M, Kohzadi M. Prediction of polar surface area of drug molecules: A QSPR approach. Drug Test Anal 2011; 5:222-7. [DOI: 10.1002/dta.288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/02/2023]
|
38
|
Sá MMD, Pasqualoto KFM, Rangel-Yagui CDO. A 2D-QSPR approach to predict blood-brain barrier penetration of drugs acting on the central nervous system. BRAZ J PHARM SCI 2010. [DOI: 10.1590/s1984-82502010000400016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drugs acting on the central nervous system (CNS) have to cross the blood-brain barrier (BBB) in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB). As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR) can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88), s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP), polar surface area (PSA), and polarizability (α). Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%). These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.
Collapse
|
39
|
Nicoli R, Martel S, Rudaz S, Wolfender JL, Veuthey JL, Carrupt PA, Guillarme D. Advances in LC platforms for drug discovery. Expert Opin Drug Discov 2010; 5:475-89. [DOI: 10.1517/17460441003733874] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Vilar S, Chakrabarti M, Costanzi S. Prediction of passive blood-brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors. J Mol Graph Model 2010; 28:899-903. [PMID: 20427217 DOI: 10.1016/j.jmgm.2010.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/29/2010] [Indexed: 11/30/2022]
Abstract
The distribution of compounds between blood and brain is a very important consideration for new candidate drug molecules. In this paper, we describe the derivation of two linear discriminant analysis (LDA) models for the prediction of passive blood-brain partitioning, expressed in terms of logBB values. The models are based on computationally derived physicochemical descriptors, namely the octanol/water partition coefficient (logP), the topological polar surface area (TPSA) and the total number of acidic and basic atoms, and were obtained using a homogeneous training set of 307 compounds, for all of which the published experimental logBB data had been determined in vivo. In particular, since molecules with logBB>0.3 cross the blood-brain barrier (BBB) readily while molecules with logBB<-1 are poorly distributed to the brain, on the basis of these thresholds we derived two distinct models, both of which show a percentage of good classification of about 80%. Notably, the predictive power of our models was confirmed by the analysis of a large external dataset of compounds with reported activity on the central nervous system (CNS) or lack thereof. The calculation of straightforward physicochemical descriptors is the only requirement for the prediction of the logBB of novel compounds through our models, which can be conveniently applied in conjunction with drug design and virtual screenings.
Collapse
Affiliation(s)
- Santiago Vilar
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Zhang N, Li Z, Che W, Xu S, Wang S. Biopartitioning Micellar Chromatography to Predict Dihydropyridine Selective Calcium Channel Antagonist Toxicity. Chromatographia 2009. [DOI: 10.1365/s10337-009-1251-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Lu R, Sun J, Wang Y, Li H, Liu J, Fang L, He Z. Characterization of biopartitioning micellar chromatography system using monolithic column by linear solvation energy relationship and application to predict blood–brain barrier penetration. J Chromatogr A 2009; 1216:5190-8. [DOI: 10.1016/j.chroma.2009.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/26/2009] [Accepted: 05/04/2009] [Indexed: 11/28/2022]
|
43
|
Lu R, Sun J, Wang Y, He Z. Quantitative Structure-Retention Relationship Studies with Biopartitioning Micellar Chromatography Systems by Amended Linear Solvation Energy Relationships in Consideration of Electronic Factor. Chromatographia 2009. [DOI: 10.1365/s10337-009-1150-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Hu Z, Zhang W, He H, Feng Y, Da S. Profiling of Permeable Compounds in Ligusticum chuanxiong by Biopartitioning Micellar Chromatography. Chromatographia 2009. [DOI: 10.1365/s10337-008-0873-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Wu LP, Cui Y, Xiong MJ, Wang SR, Chen C, Ye LM. Mixed micellar liquid chromatography methods: modelling quantitative retention-activity relationships of angiotensin converting enzyme inhibitors. Biomed Chromatogr 2008; 22:1243-51. [DOI: 10.1002/bmc.1053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Yang G, Cao W, Zhu T, Bai L, Zhao Y. The QRAR model study of β-lactam antibiotics by capillary coated with cell membrane. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:1-7. [DOI: 10.1016/j.jchromb.2008.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/04/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
|
47
|
Liu J, Sun J, Sui X, Wang Y, Hou Y, He Z. Predicting blood–brain barrier penetration of drugs by microemulsion liquid chromatography with corrected retention factor. J Chromatogr A 2008; 1198-1199:164-72. [DOI: 10.1016/j.chroma.2008.05.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/17/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
|
48
|
Wu LP, Ye LM, Chen C, Wu JQ, Chen Y. Biopartitioning micellar chromatography separation methods: modelling quantitative retention–activity relationships of cephalosporins. Biomed Chromatogr 2008; 22:606-15. [DOI: 10.1002/bmc.976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Gao K, Sun J, Qiu F, Liu X, Sun Y, Cheng M, He Z. Uptake and transport of new antiasthmatic compounds by human intestinal Caco-2 cells: correlations with lipophilicity by biopartitioning chromatography. J Drug Deliv Sci Technol 2008. [DOI: 10.1016/s1773-2247(08)50046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Diniz A, Escuder-Gilabert L, Lopes NP, Gobbo-Neto L, Villanueva-Camañas RM, Sagrado S, Medina-Hernández MJ. Permeability profile estimation of flavonoids and other phenolic compounds by biopartitioning micellar capillary chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8372-8379. [PMID: 17927146 DOI: 10.1021/jf070730r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper points out the usefulness of biopartitioning micellar chromatography (BMC) using capillary columns as a high-throughput primary screening tool providing key information about the oral absorption, skin permeability, and brain-blood distribution coefficients of 15 polyphenols (6 flavones, 2 flavonols, a flavanone, 2 flavan-3-ols, 3 phenolic acids, and a phloroglucinol) in a simple and economical way. For the compounds studied, except vicenin-2, rutin, chlorogenic acid, p-hydroxycinnamic acid, and 4-hydroxybenzoic acid, maximal oral absorption (>90%) can be expected, if there are not solubility problems or metabolic processes. On the other hand, the most retained compounds in BMC, that is, 5-hydroxyflavone, flavone, and flavanone, show the highest brain-blood distribution coefficients and skin permeability coefficients.
Collapse
Affiliation(s)
- Andréa Diniz
- Departamento de Ciências Farmacêuticas, CCS, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 km 380, CEP 86051-990, Londrina, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|