1
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Colombo S, Domingues P, Domingues MR. Mass spectrometry strategies to unveil modified aminophospholipids of biological interest. MASS SPECTROMETRY REVIEWS 2019; 38:323-355. [PMID: 30597614 DOI: 10.1002/mas.21584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
The biological functions of modified aminophospholipids (APL) have become a topic of interest during the last two decades, and distinct roles have been found for these biomolecules in both physiological and pathological contexts. Modifications of APL include oxidation, glycation, and adduction to electrophilic aldehydes, altogether contributing to a high structural variability of modified APL. An outstanding technique used in this challenging field is mass spectrometry (MS). MS has been widely used to unveil modified APL of biological interest, mainly when associated with soft ionization methods (electrospray and matrix-assisted laser desorption ionization) and coupled with separation techniques as liquid chromatography. This review summarizes the biological roles and the chemical mechanisms underlying APL modifications, and comprehensively reviews the current MS-based knowledge that has been gathered until now for their analysis. The interpretation of the MS data obtained by in vitro-identification studies is explained in detail. The perspective of an analytical detection of modified APL in clinical samples is explored, highlighting the fundamental role of MS in unveiling APL modifications and their relevance in pathophysiology.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Chemistry and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Colombo S, Coliva G, Kraj A, Chervet JP, Fedorova M, Domingues P, Domingues MR. Electrochemical oxidation of phosphatidylethanolamines studied by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:223-233. [PMID: 29282829 DOI: 10.1002/jms.4056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Losito I, Facchini L, Diomede S, Conte E, Megli FM, Cataldi TRI, Palmisano F. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids. J Chromatogr A 2015; 1422:194-205. [PMID: 26508677 DOI: 10.1016/j.chroma.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022]
Abstract
A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ɷ-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems.
Collapse
Affiliation(s)
- I Losito
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy.
| | - L Facchini
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - S Diomede
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - E Conte
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - F M Megli
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - T R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - F Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
5
|
Losito I, Conte E, Introna B, Megli FM, Palmisano F. Improved specificity of cardiolipin peroxidation by soybean lipoxygenase: a liquid chromatography - electrospray ionization mass spectrometry investigation. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1255-62. [PMID: 22223416 DOI: 10.1002/jms.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Peroxidation catalysed by Soybean Lypoxigenase was performed on tetralinoleyl-cardiolipin with the aim of generating selectively oxidized products, to be used subsequently as standards for studies on cardiolipin oxidation. The reaction products were characterized by LC-ESI-MS and MS/MS, and the process was found to link a hydroperoxylic group on one or more linoleic chains of cardiolipin, up to a total of four groups per molecule. Interestingly, the incidence of other oxidized products, like those arising from multiple hydroxylation or mixed hydroxylation-hydroperoxydation, previously observed after the chemical oxidation of the same cardiolipin, was found to be negligible. Moreover, evidences for the presence of the hydroperoxylic group(s) almost exclusively on carbon 13 of the linoleic chain(s) were obtained by MS/MS measurements. The enzymatic approach, integrated with a preparative separation step, which could be developed by adapting the chromatographic conditions adopted in the present work for analytical purposes, represents a promising strategy for the synthesis of highly specific mono- or multi-peroxidated derivatives of cardiolipins.
Collapse
Affiliation(s)
- I Losito
- Dipartimento di Chimica, Università degli Studi di Bari, Via E. Orabona 4, 70126, Bari, Italy.
| | | | | | | | | |
Collapse
|
6
|
Yang YL, Chong CP, Tsai MH, Liu MY. Analysis of in vitro oxidized human LDL phospholipids by solid-phase extraction and micellar electrokinetic capillary chromatography. Biomed Chromatogr 2011; 26:441-8. [PMID: 22392513 DOI: 10.1002/bmc.1684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 06/21/2011] [Indexed: 11/11/2022]
Abstract
Phospholipids of in vitro oxidized human low-density lipoproteins (LDL) were separated by two different solid-phase extraction (SPE) methods. One of the two methods was designed to test the effects of gradient elution. This SPE method isolated more phospholipids from in vitro oxidized LDL than the other one according to the results of liquid chromatography and electrospray ionization mass spectrometry (LC ESI-MS) analysis. A micellar electrokinetic capillary chromatography (MEKC) method was also used to analyze phospholipids separated by SPE. The results of MEKC and LC ESI-MS were consistent for the major phospholipid classes, including PC, lysoPC, PE, PI and PS. The MEKC profiles showed significant differences for native and oxidized LDL phospholipids. Therefore, the unique combination of SPE and MEKC methods showed dramatic distinctions between native and in vitro oxidized human LDL phospholipids. The combination also shows great potential for rapid analysis of in vivo oxidized human LDL phospholipids in the future.
Collapse
Affiliation(s)
- Ying-Ling Yang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | | | | | | |
Collapse
|
7
|
Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. J Biomed Biotechnol 2010; 2011. [PMID: 20871812 PMCID: PMC2943112 DOI: 10.1155/2011/385786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022] Open
Abstract
In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatised lipids of body fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the individual analytical techniques are addressed.
Collapse
|
8
|
Domingues MRM, Simões C, da Costa JP, Reis A, Domingues P. Identification of 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine modifications under oxidative stress conditions by LC-MS/MS. Biomed Chromatogr 2009; 23:588-601. [PMID: 19277956 DOI: 10.1002/bmc.1157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylethanolamines are a major class of phospholipids found in cellular membranes. Identification of the alterations in these phospholipids, induced by free radicals, could provide new tools for in vivo diagnosis of oxidative stress. In this study, 1-palmitoyl-2-linoleoyl-phosphatidylethanolamine oxidation products, induced by the hydroxyl radical, were studied using LC-MS and LC-MS/MS. Data obtained allowed the identification and separation of isomeric oxidative products with modifications in the sn-2 acyl chain, attributed to long- and short-chain products. Among long-chain products keto, keto-hydroxy, hydroxy, poly-hydroxy, peroxy and hydroxy-peroxy derivatives were identified. Product ions formed by loss of two H2O molecules vs loss of HOOH, allowed the identification of, respectively, di- (or poli-) hydroxy vs peroxy derivatives. Location of functional groups was determined by the product ions formed by cleavage of C-C bonds, in the vicinity of the oxidation positions, allowing the identification of C9, C12 and C13 as the predominant substituted positions. Short-chain products identified comprised aldehydes, hydroxy-aldehydes and carboxylic derivatives, with modified sn-2 acyl lengths of C7-C9 and C11, C12. Among the short-chain products identified, C9 products showed higher relative abundance.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
9
|
Lipidomic Analysis of Glycerolipid and Cholesteryl Ester Autooxidation Products. Mol Biotechnol 2009; 42:224-68. [DOI: 10.1007/s12033-009-9146-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/08/2009] [Indexed: 11/25/2022]
|
10
|
Kuksis A, Suomela JP, Tarvainen M, Kallio H. Use of lipidomics for analyzing glycerolipid and cholesteryl ester oxidation by gas chromatography, HPLC, and on-line MS. Methods Mol Biol 2009; 580:39-91. [PMID: 19784594 DOI: 10.1007/978-1-60761-325-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Various analytical techniques have been adopted for the isolation and identification of the oxolipids and for determining their functionality. Gas chromatography in combination with mass spectrometry (MS) has been specifically utilized in analysis of isoprostanes and other low molecular weight oxolipids, although it requires derivatization of the solutes. In contrast, liquid chromatography (LC) in combination with on-line MS has proven to be well suited for analysis of intact oxolipids without (or minimal) derivatization. LC-MS has also been helpful for the identification of lipidomic changes resulting from covalent binding of lipid ester core aldehydes to amino lipids, amino acids, peptides, and proteins. This chapter reviews the use of the above techniques for lipidomic analysis of the autoxidation products of cholesteryl esters and glycerolipids as practiced in the authors' laboratories.
Collapse
Affiliation(s)
- Arnis Kuksis
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
11
|
Megli FM, Russo L, Conte E. Spin labeling EPR studies of the properties of oxidized phospholipid-containing lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:371-9. [PMID: 18996354 DOI: 10.1016/j.bbamem.2008.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
This study aims at characterizing the structure and some properties of phospholipid multi-lamellar vesicles (MLVs) containing the oxidized species gamma-palmitoyl-beta-(9-hydroperoxy-10,12-octadecanedienoyl)-lecithin (HPPLPC), gamma-palmitoyl-beta-(9-hydroxy-10,12-octadecanedienoyl)-lecithin (HOPLPC), gamma-palmitoyl-beta-glutaroyl-lecithin (GlPPC) and gamma-palmitoyl-beta-azelaoyl-lecithin (AzPPC). Sepharose 4B gel-chromatography was used to ensure and check that only MLVs are used in EPR measurements. Gel-solid to gel-liquid transition temperature (Tm), lateral phase separation, fluidity gradient and polarity profile were studied by use of EPR spectroscopy of enclosed n-doxylstearoyl lecithin spin labels. Contrarily to conjugate dienes and normal phospholipids, pure carboxyacyl species yielded aqueous suspensions showing gel-chromatography elution profile resembling that of lysolecithin micelles. Conjugate dienes/DPPC MLVs showed lateral phase separation at room temperature and Tm value lower than pure DPPC MLVs. Pure conjugate dienes MLVs resembled more PLPC MLVs and displayed free miscibility with PLPC in mixed MLVs. Pure HPPLPC MLV bilayer appeared to be slightly more rigid, while that of HOPLPC and the polarity profile of MLVs made of the pure conjugate dienes species were similar to those of normal PLPC. It is concluded that carboxyacyl lecithins in MLVs tend to disrupt vesicle structure, while conjugated dienes lecithins are more able to affect some physical properties of the bilayer, and that DPPC in MLVs enhances these effects while PLPC shows a better compatibility with the lipoperoxides.
Collapse
Affiliation(s)
- Francesco M Megli
- Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello, Università di Bari, e Centro di Studio sui Mitocondri e Metabolismo Energetico-CNR, Via E. Orabona, 4-70126 Bari, Italy.
| | | | | |
Collapse
|
12
|
Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 2008; 156:1-12. [PMID: 18671956 DOI: 10.1016/j.chemphyslip.2008.07.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
The evidence that oxidized phospholipids play a role in signaling, apoptotic events and in age-related diseases is responsible for the increasing interest for the study of this subject. Phospholipid changes induced by oxidative reactions yield a huge number of structurally different oxidation products which difficult their isolation and characterization. Mass spectrometry (MS), and tandem mass spectrometry (MS/MS) using the soft ionization methods (electrospray and matrix-assisted laser desorption ionization) is one of the finest approaches for the study of oxidized phospholipids. Product ions in tandem mass spectra of oxidized phospholipids, allow identifying changes in the fatty acyl chain and specific features such as presence of new functional groups in the molecule and their location along the fatty acyl chain. This review describes the work published on the use of mass spectrometry in identifying oxidized phospholipids from the different classes.
Collapse
Affiliation(s)
- M Rosário M Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Santiago, Aveiro, Portugal.
| | | | | |
Collapse
|
13
|
Megli FM, Russo L. Different oxidized phospholipid molecules unequally affect bilayer packing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:143-52. [PMID: 18054893 DOI: 10.1016/j.bbamem.2007.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/13/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to gain more detailed knowledge about the effect of the presence of defined oxidized phospholipid molecules in phospholipid bilayers. After chromatographic and mass spectrometry analysis, the previously used product of the Fenton reaction with unsaturated lecithins proved to consist of a plethora of oxidatively modified lecithins, useless either for the detailed study of the effects brought about in the bilayer or as the source of defined oxidized phospholipid molecules. The latter, particularly 2-(omega-carboxyacyl)- and 2-(n-hydroperoxyacyl)-lecithins, can be more conveniently prepared by chemical or enzymatic synthesis rather than by chemical or physical oxidation. The effect of those molecules and of commercially available 12-hydroxy-stearic and dodecanedioic acid was studied in planar supported phospholipid bilayers (SPBs) by use of EPR spectrometry. The SPBs also contained 2-(5-doxylstearoyl)-lecithin as the spin probe, and the EPR spectral anisotropy loss, indicative of bilayer disordering, was measured as a function of the molar percentage of oxidized lipid. Most oxidized lipid molecules examined in this study were able to induce bilayer disordering, while hydroperoxyl group-bearing acyl chains appeared to be much less effective. It is concluded that the effects of different oxidized phospholipids on phospholipid bilayer structure cannot be generalized, as happens with batch-oxidized phospholipids, and that the use of defined oxidized phospholipid molecular species for membrane oxidative stress guarantees a more reliable and detailed response.
Collapse
Affiliation(s)
- Francesco M Megli
- Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello, Università di Bari, and Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, Via E. Orabona, 4-70126 Bari, Italy.
| | | |
Collapse
|
14
|
Reis A, Domingues MRM, Amado FML, Ferrer-Correia AJ, Domingues P. Radical peroxidation of palmitoyl-lineloyl-glycerophosphocholine liposomes: Identification of long-chain oxidised products by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:186-99. [PMID: 17540625 DOI: 10.1016/j.jchromb.2007.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 04/18/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
Liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was used to identify palmitoyl-lineloyl-glycerophosphatidylcholine oxidation products (PL(O(1-6))PC). Structural and positional isomers of keto, hydroxy and/or epoxy, and hydroperoxide derivatives of PLPC were identified based on MS/MS data, namely product ions attributed to lyso-phosphatidylcholines, product ions formed by loss of nH(2)O and H(2)O(2) from [MH](+) ions groups, and product ions involving the hydroxy groups, providing information about the position of these groups and of the double bonds along the carbon chain of lineloyl moiety.
Collapse
Affiliation(s)
- Ana Reis
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | | |
Collapse
|