1
|
Li M, Dong H, Chen Y, Hao W, Wang Y, Zhang Y, Zhang Z, Hao Y, Zhou Y, Li F, Liu L. A dual-ligand lanthanide-based metal-organic framework for highly selective and sensitive colorimetric detection of Fe 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:899-906. [PMID: 38247388 DOI: 10.1039/d3ay02089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Accumulation of heavy metals in humans and mammals causes health problems due to their abundance as transition metal ions. Iron (Fe2+) serves significantly in numerous biological processes as a heavy metal ion. In this study, we have designed and prepared a metal-organic framework (MOF) utilizing a one-step solvothermal process, incorporating a dual-ligand combination of terephthalic acid (H2BDC) and α,α',α''-tert-pyridine (TPY) with Eu3+ as the metal node. For this MOF, we termed it Eu-BDC/TPY. Eu-BDC/TPY has superior selectivity over other metal cations. It provides an accurate, sensitive, broad linear range colorimetric method for detecting Fe2+ in a concentration range of 1-50 μM with a modest limit of detection (0.33 μM). Eu-BDC/TPY detects the absence of Fe2+ quickly (within 5 seconds), which is very valuable in practical applications. In addition, the results can be used to create a digital image colorimetric card (DIC) using colorimetric software, enabling instantaneous detection of Fe2+ concentration using a smartphone.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanan Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Wanqing Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yixin Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yaqian Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ziyi Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yizhao Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Fei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Lantao Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
2
|
Etoposide in combination with erastin synergistically altered iron homeostasis and induced ferroptotic cell death through regulating IREB2/FPN1 expression in estrogen receptor positive-breast cancer cells. Life Sci 2022; 312:121222. [PMID: 36442526 DOI: 10.1016/j.lfs.2022.121222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
AIM Ferroptosis is an iron-dependent cell death mechanism that substantially differs from apoptosis. Since its mechanism involves increased oxidative stress and rich iron content, cancer cells are particularly vulnerable to ferroptotic death compared to healthy tissues. In the present study, the effect of etoposide in combination with a ferroptotic agent, erastin, was investigated in breast cancer. MAIN METHODS Cell viability was assessed by the MTT assay. Oxidative stress, lipid peroxidation and glutathione peroxidase activity were detected using the relevant kits. Intracellular iron levels were measured by HPLC. Ferroptosis markers were explored by western blotting. KEY FINDINGS Results demonstrated that although etoposide didn't induce a significant cell death up to 50 μM in MCF-7 cells, with the addition of erastin, a significant synergistic activity was achieved at a dose as low as 1 μM (p < 0.05), contrary to normal breast epithelial cells. This cytotoxic effect was blocked by ferrostatin-1, which is a specific inhibitor of ferroptosis. The combined treatment of etoposide and erastin synergistically induced oxidative stress and lipid peroxidation, while suppressing glutathione peroxidase activity. More importantly, the combination treatment synergistically increased iron accumulation, which was associated with altered expression of IREB2/FPN1. Additionally, ferroptosis-regulating proteins ACSF2 and GPX4 were altered more potently by the combination treatment, compared to untreated cells and erastin treatment alone (p < 0.05). SIGNIFICANCE In conclusion, this is the first study that reports enhanced cytotoxicity of etoposide, in combination with erastin, in ER-positive breast cancer cells via activation of ferroptotic pathways, and offers a new perspective for future regimens.
Collapse
|
3
|
Siyal P, Nafady A, Memon R, Tufail Hussain Sherazi S, Nisar J, Ali Siyal A, Raza Shah M, Ahmed Mahesar S, Bhagat S. Highly selective, sensitive and simpler colorimetric sensor for Fe 2+ detection based on biosynthesized gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119645. [PMID: 33744706 DOI: 10.1016/j.saa.2021.119645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Herein, we describe the fabrication of green bell pepper, Capsicum annuum L. extract capped gold nanoparticles (CA-AuNPs) in aqueous medium using tetrachloroaurate (HAuCl4·3H2O) as precursor salt and sodium hydroxide (NaOH) solution as accelerator as well as pH adjuster. Formation of CA-AuNPs was verified via colour change from yellowish to ruby red with further confirmation through surface plasmon resonance (SPR) band at 519 nm using ultraviolet violet-visible (UV-Vis) spectroscopy. Other characterizations techniques include, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), dynamic light scattering (DLS) with Zeta-potential analysis (ZPA) and X-ray diffraction (XRD) method. The resulting AuNPs were efficaciously implemented as highly sensitive colorimetric sensor for selective detection of Fe2+ in the presence of several interfering cations including Fe3+. Importantly, the fabricated CA-AuNPs based colorimetric sensor functioned linearly in the range of 0.3-7.0 ppb Fe2+, based on increasing absorption intensity with R2 value of 0.9938 using UV-Vis spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) for Fe2+ were estimated as 0.036 and 0.12 ppb, respectively. Finally, the sensor was effectively tested for determination of Fe2+ in some locally collected real water samples.
Collapse
Affiliation(s)
- Pirah Siyal
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roomia Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | | | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Altaf Ali Siyal
- U.S.-PCAS-W, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, 75270, Pakistan
| | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Shabana Bhagat
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| |
Collapse
|
4
|
Bou-Fakhredin R, Dia B, Ghadieh HE, Rivella S, Cappellini MD, Eid AA, Taher AT. CYP450 Mediates Reactive Oxygen Species Production in a Mouse Model of β-Thalassemia through an Increase in 20-HETE Activity. Int J Mol Sci 2021; 22:1106. [PMID: 33498614 PMCID: PMC7865490 DOI: 10.3390/ijms22031106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for β-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.B.-F.); (B.D.); (H.E.G.)
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.B.-F.); (B.D.); (H.E.G.)
| | - Hilda E. Ghadieh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.B.-F.); (B.D.); (H.E.G.)
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA;
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Affinity Group (CAMB), University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP, Philadelphia, PA 19104, USA
- Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA 19104, USA
| | - Maria Domenica Cappellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Internal Medicine, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.B.-F.); (B.D.); (H.E.G.)
| | - Ali T. Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
5
|
Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe 2+ and Fe 3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj01342d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Distinctive detection of Fe2+ and Fe3+via naked eye colorimetic sensing.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| |
Collapse
|
6
|
Pai AB, Meyer DE, Bales BC, Cotero VE, Pai MP, Zheng N, Jiang W. Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations. Clin Transl Sci 2017; 10:194-200. [PMID: 28160427 PMCID: PMC5421824 DOI: 10.1111/cts.12443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
Emerging data from global markets outside the United States, where many generic iron sucrose formulations are available, have revealed that non-US generic intravenous (i.v.) iron formulations may have iron release profiles that differ from the reference listed drug (RLD). The first generic i.v. iron approved in the United States was sodium ferric gluconate complex in 2011. We evaluated chelatable and redox labile iron assay methods to measure the amount of labile iron released from i.v. iron formulations in biorelevant matrices in vitro. The majority of published labile iron assays evaluated were not suitable for use in vitro due to overwhelming interference by the presence of the i.v. iron products. However, an optimized high-performance liquid chromatography (HPLC)-based method performed well for use in vitro labile iron detection in a biorelevant matrix. Application of this method may enhance bioequivalence evaluation of generic i.v. iron formulations in the future.
Collapse
Affiliation(s)
- AB Pai
- University of Michigan College of PharmacyAnn ArborMichiganUSA
| | - DE Meyer
- General Electric Global Research CenterNiskayunaNew YorkUSA
| | - BC Bales
- General Electric Global Research CenterNiskayunaNew YorkUSA
| | - VE Cotero
- General Electric Global Research CenterNiskayunaNew YorkUSA
| | - MP Pai
- University of Michigan College of PharmacyAnn ArborMichiganUSA
| | - N Zheng
- Food and Drug AdministrationOffice of Generic DrugsSilver SpringMarylandUSA
| | - W Jiang
- Food and Drug AdministrationOffice of Generic DrugsSilver SpringMarylandUSA
| |
Collapse
|
7
|
Koba M, Słomka A, Bączek T, Marszałł MP, Żekanowska E. Ability to determine the desferrioxamine-chelatable iron fractions of nontransferrin-bound iron using HPLC. J Sep Sci 2013; 36:665-9. [DOI: 10.1002/jssc.201200683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Marcin Koba
- Department of Toxicology, Faculty of Pharmacy; Collegium Medicum of Nicolaus Copernicus University; Bydgoszcz Poland
| | - Artur Słomka
- Department of Pathophysiology, Faculty of Pharmacy; Collegium Medicum of Nicolaus Copernicus University; Bydgoszcz Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Medical University of Gdańsk; Gdańsk Poland
| | - Michał P. Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy; Collegium Medicum of Nicolaus Copernicus University; Bydgoszcz Poland
| | - Ewa Żekanowska
- Department of Pathophysiology, Faculty of Pharmacy; Collegium Medicum of Nicolaus Copernicus University; Bydgoszcz Poland
| |
Collapse
|
8
|
Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compost Anal 2012. [DOI: 10.1016/j.jfca.2012.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Transport of iron chelators and chelates across MDCK cell monolayers: implications for iron excretion during chelation therapy. Int J Hematol 2010; 91:401-12. [PMID: 20213118 DOI: 10.1007/s12185-010-0510-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/29/2009] [Accepted: 01/25/2010] [Indexed: 12/17/2022]
Abstract
Iron chelators are effective at removing iron from the body in iron overload, but little is known about the handling of iron chelates by the kidney. We studied the transport of deferoxamine, deferasirox, and three hydroxypyridones, and their iron chelates, in polarized renal epithelial MDCK cells growing on Transwell inserts. Directional iron efflux was also studied in (59)Fe-loaded cells. The chelators were transported at comparable rates in the apical and basolateral directions and moved faster than their corresponding chelates, except for deferoxamine, which did not move from the basolateral to the apical side. In contrast, the chelates were transported faster in the apical-to-basolateral direction. More permeable chelators were more efficient at removing iron from iron-loaded cells compared with deferoxamine. Iron is preferentially removed from the basolateral side, and kinetic modeling suggests facilitated diffusion of chelates in some cases. Basolateral iron efflux is temperature-dependent and partially sensitive to ATP depletion. Polarized transport of chelates suggests the kidney may be involved in reabsorption of iron bound to chelators, with a temperature-sensitive facilitated removal of some iron complexes from the basolateral side. Further studies are warranted to determine if these processes may contribute to the observed nephrotoxicity of some iron chelators.
Collapse
|
10
|
Campion B, Sparvoli F, Doria E, Tagliabue G, Galasso I, Fileppi M, Bollini R, Nielsen E. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1211-21. [PMID: 19224193 DOI: 10.1007/s00122-009-0975-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 01/20/2009] [Indexed: 05/19/2023]
Abstract
Phytic acid is considered as one of the major antinutritional compounds in cereal and legume seeds. The development of lpa (low phytic acid) grains, resulting in increased mineral cation availability, is considered a major goal in the improvement of the nutritional quality of seed crops, especially those largely consumed in developing countries. From a mutagenized population of common bean we isolated a homozygous lpa mutant line (lpa-280-10) showing, compared to wild type, a 90% reduction of phytic acid, a 25% reduction of raffinosaccharides and a much higher amount of free or weakly bound iron cations in the seed. Genetic analysis showed that the lpa character is due to a recessive mutation that segregates in a monogenic, Mendelian fashion. Germination tests performed using varying ageing or stress conditions, clearly showed that the bean line lpa-280-10 has a better germination response than the wild type. These data, together with those obtained from 2 years of agronomic trials showing that the mutant seed yield is close to that of its parents and other evidence, indicate that the new lpa-280-10 mutation might be the first devoid of visible macroscopic negative effects in plants, pods and seeds.
Collapse
Affiliation(s)
- Bruno Campion
- CRA, Unità di Ricerca per l'Orticoltura, Montanaso Lombardo, Lodi, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Surfactant-Mediated Catalytic Determination of Fe(II) in Herbal and Pharmaceutical Products. J SURFACTANTS DETERG 2007. [DOI: 10.1007/s11743-007-1042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|