1
|
Sun H, Liu J, Li Y, Wang J, Zhang Y. Characterization of the heterogeneous adsorption of three drugs on immobilized bovine serum albumin by adsorption energy distribution. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121727. [DOI: 10.1016/j.jchromb.2019.121727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
|
2
|
Vargas-Badilla J, Poddar S, Azaria S, Zhang C, Hage DS. Optimization of protein entrapment in affinity microcolumns using hydrazide-activated silica and glycogen as a capping agent. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:1-8. [PMID: 31079009 DOI: 10.1016/j.jchromb.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/16/2019] [Accepted: 05/03/2019] [Indexed: 01/01/2023]
Abstract
Several approaches were compared for the entrapment of proteins within hydrazide-activated silica for use in affinity microcolumns and high performance affinity chromatography. Human serum albumin (HSA) and concanavalin A (Con A) were used as model proteins for this work. Items considered in this study included the role played by the solution volume, amount of added protein, and use of slurry vs. on-column entrapment on the levels of solute retention and extent of protein immobilization that could be obtained by means of entrapment. The levels of retention and protein immobilization were evaluated by injecting warfarin or 4-methylumbellipheryl α-D-mannopyranoside as solutes with known binding properties for HSA or Con A. Altering both the solution volume and amount of added protein led to an increase of up to 17-fold in the extent of protein immobilization for HSA in slurry-based entrapment; on-column entrapment provided an additional 3.6-fold increase in protein content vs. the optimized slurry method. Similar general trends were seen for Con A. The protein contents obtained by entrapment for HSA or Con A (i.e., up to ~87 and 46 mg/g silica, respectively) were comparable to or higher than levels reported for the covalent immobilization of these proteins onto silica. The retention of warfarin on the entrapped HSA was at least 1.7-fold higher than has been obtained under comparable support and mobile phase conditions when using covalent immobilization. These results indicated that entrapment can be an attractive alternative to covalent immobilization for proteins such as HSA and Con A, with this approach serving as a potential means for obtaining good solute binding and retention in work with affinity microcolumns or related microscale devices.
Collapse
Affiliation(s)
- John Vargas-Badilla
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Saumen Poddar
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Shiden Azaria
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chenhua Zhang
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David S Hage
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Monolith weak affinity chromatography for μg-protein-ligand interaction study. J Pharm Biomed Anal 2019; 166:164-173. [DOI: 10.1016/j.jpba.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/17/2022]
|
4
|
Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: A historical perspective. J Pharm Biomed Anal 2017; 144:12-24. [PMID: 28094095 PMCID: PMC5505820 DOI: 10.1016/j.jpba.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The interactions of drugs with serum proteins are often stereoselective and can affect the distribution, activity, toxicity and rate of excretion of these drugs in the body. A number of approaches based on affinity chromatography, and particularly high-performance affinity chromatography (HPAC), have been used as tools to study these interactions. This review describes the general principles of affinity chromatography and HPAC as related to their use in drug binding studies. The types of serum agents that have been examined with these methods are also discussed, including human serum albumin, α1-acid glycoprotein, and lipoproteins. This is followed by a description of the various formats based on affinity chromatography and HPAC that have been used to investigate drug interactions with serum proteins and the historical development for each of these formats. Specific techniques that are discussed include zonal elution, frontal analysis, and kinetic methods such as those that make use of band-broadening measurements, peak decay analysis, or ultrafast affinity extraction.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
5
|
Abstract
The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations.
Collapse
Affiliation(s)
- Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Shiden Azaria
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sandya Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
6
|
Abstract
This chapter includes the aspects of carbamazepine. The drug is synthesized by the use of 5H-dibenz[b,f]azepine and phosgene followed by subsequent reaction with ammonia. Carbamazepine is generally used for the treatment of seizure disorders and neuropathic pain, it is also important as off-label for a second-line treatment for bipolar disorder and in combination with an antipsychotic in some cases of schizophrenia when treatment with a conventional antipsychotic alone has failed. Other uses may include attention deficit hyperactivity disorder, schizophrenia, phantom limb syndrome, complex regional pain syndrome, borderline personality disorder, and posttraumatic stress disorder. The chapter discusses the drug metabolism and pharmacokinetics and presents various methods of analysis of this drug such electrochemical analysis, spectroscopic analysis, and chromatographic techniques of separation. It also discusses its physical properties such as solubility characteristics, X-ray powder diffraction pattern, and thermal methods of analysis. The chapter is concluded with a discussion on its biological properties such as activity, toxicity, and safety.
Collapse
|
7
|
Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography. Anal Bioanal Chem 2015; 408:805-14. [PMID: 26573171 DOI: 10.1007/s00216-015-9163-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.
Collapse
|
8
|
Li Z, Beeram SR, Bi C, Suresh D, Zheng X, Hage DS. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:1-39. [PMID: 26827600 DOI: 10.1016/bs.apcsb.2015.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sandya R Beeram
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - D Suresh
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xiwei Zheng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
9
|
Naik KM, Nandibewoor ST. Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multispectroscopic methods. LUMINESCENCE 2015; 31:433-441. [DOI: 10.1002/bio.2979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/12/2015] [Accepted: 06/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Keerti M. Naik
- Post Graduate Department of Studies in Chemistry; Karnatak University; Dharwad 580 003 India
| | | |
Collapse
|
10
|
Zheng X, Podariu M, Bi C, Hage DS. Development of enhanced capacity affinity microcolumns by using a hybrid of protein cross-linking/modification and immobilization. J Chromatogr A 2015; 1400:82-90. [PMID: 25981291 DOI: 10.1016/j.chroma.2015.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/29/2022]
Abstract
A hybrid method was examined for increasing the binding capacity and activity of protein-based affinity columns by using a combination of protein cross-linking/modification and covalent immobilization. Various applications of this approach in the study of drug-protein interactions and in use with affinity microcolumns were considered. Human serum albumin (HSA) was utilized as a model protein for this work. Bismaleimidohexane (BMH, a homobifunctional maleimide) was used to modify and/or cross-link HSA through the single free sulfhydryl group that is present on this protein. Up to a 75-113% increase in protein content was obtained when comparing affinity supports that were prepared with BMH versus reference supports that were made by using only covalent immobilization. Several drugs that are known to bind HSA (e.g., warfarin, verapamil and carbamazepine) were further found to have a significant increase in retention on HSA microcolumns that were treated with BMH (i.e., a 70-100% increase in protein-based retention). These BMH-treated HSA microcolumns were used in chiral separations and in ultrafast affinity extraction to measure free drug fractions in drug/protein mixtures, with the latter method giving association equilibrium constants that had good agreement with literature values. In addition, it was found that the reversible binding of HSA with ethacrynic acid, an agent that can combine irreversibly with the free sulfhydryl group on this protein, could be examined by using the BMH-treated HSA microcolumns. The same hybrid immobilization method could be extended to other proteins or alternative applications that may require protein-based affinity columns with enhanced binding capacities and activities.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
11
|
Gao X, Li Q, Zhao X, Huang J, Bian L, Zheng J, Li Z, Zhang Y, Zheng X. Investigation on the Binding of Terazosin Hydrochloride and Naftopidil to an Immobilized α 1-Adrenoceptor by Zonal Elution. Chromatographia 2014. [DOI: 10.1007/s10337-014-2716-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
An Y, Li Q, Chen J, Gao X, Chen H, Xiao C, Bian L, Zheng J, Zhao X, Zheng X. Binding of caffeic acid to human serum albumin by the retention data and frontal analysis. Biomed Chromatogr 2014; 28:1881-6. [DOI: 10.1002/bmc.3238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Yuxin An
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jiejun Chen
- China National Center for Biotechnology Development; Beijing 100036 China
| | - Xiaokang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Hongwei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jianbin Zheng
- Institute of Analytical Science; Northwest University; Xi'an 710069 China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| |
Collapse
|
13
|
Zhao X, Li Q, Bian L, Zheng X, Zheng J, Zhang Y, Li Z. Using immobilized G-protein coupled receptors to screen bioactive traditional Chinese medicine compounds with multiple targets. J Pharm Biomed Anal 2012; 70:549-52. [PMID: 22651959 DOI: 10.1016/j.jpba.2012.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/25/2012] [Accepted: 05/05/2012] [Indexed: 10/28/2022]
Abstract
Demand on high-throughput methods for multi-target compounds screening continues to increase nowadays due to the decline of new drugs on the market. Two kinds of G-protein-coupled receptors, alpha1-adrenoceptor (α(1A)-AR) and beta2-adrenoceptor (β(2)-AR), were purified and immobilized on the surface of macroporous silica gel to prepare new chromatographic stationary phases. Control drugs (e.g., prazosin, terazosin, salbutamol, and terbutaline) were used to characterize the retention behavior of the obtained α(1A)-AR and β(2)-AR columns. This study also coupled both columns with a six-way switching valve to construct an automatic two-dimensional system for multi-target compounds screening in complex mixtures. Adrenaline hydrochloride was used as a representative drug to evaluate the chromatographic performance of the two dimensional system. The aqueous extracts from Salvia miltiorrhiza and Coptis chinensis were also analyzed by the automatic system. The compounds in S. miltiorrhiza had no binding to both α(1A)-AR and β(2)-AR columns. But berberine, palmatine and jatrorrhizine were screened as the bioactive compounds in C. chinensis, targeting both the receptors. The proposed method is an alternative for recognizing and separating the compounds targeting different proteins from a complex matrix.
Collapse
Affiliation(s)
- Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Calleri E, Fracchiolla G, Montanari R, Pochetti G, Lavecchia A, Loiodice F, Laghezza A, Piemontese L, Massolini G, Temporini C. Frontal affinity chromatography with MS detection of the ligand binding domain of PPARγ receptor: ligand affinity screening and stereoselective ligand-macromolecule interaction. J Chromatogr A 2011; 1232:84-92. [PMID: 22056242 DOI: 10.1016/j.chroma.2011.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 02/08/2023]
Abstract
In this study we report the development of new chromatographic tools for binding studies based on the gamma isoform ligand binding domain (LBD) of peroxisome proliferator-activated receptor (PPARγ) belonging to the nuclear receptor superfamily of ligand-activated transcription factors. PPARγ subtype plays important roles in the functions of adipocytes, muscles, and macrophages with a direct impact on type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In order to set up a suitable immobilization chemistry, the LBD of PPARγ receptor was first covalently immobilized onto the surface of aminopropyl silica particles to create a PPARγ-Silica column for zonal elution experiments and then onto the surface of open tubular (OT) capillaries to create PPARγ-OT capillaries following different immobilization conditions. The capillaries were used in frontal affinity chromatography coupled to mass spectrometry (FAC-MS) experiments to determine the relative binding affinities of a series of chiral fibrates. The relative affinity orders obtained for these derivatives were consistent with the EC(50) values reported in literature. The optimized PPARγ-OT capillary was validated by determining the K(d) values of two selected compounds. Known the role of stereoselectivity in the binding of chiral fibrates, for the first time a detailed study was carried out by analysing two enantioselective couples on the LBD-PPARγ capillary by FAC and a characteristic two-stairs frontal profile was derived as the result of the two saturation events. All the obtained data indicate that the immobilized form of PPARγ-LBD retained the ability to specifically bind ligands.
Collapse
Affiliation(s)
- E Calleri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Research Spotlight: Research in bioanalysis and separations at the University of Nebraska – Lincoln. Bioanalysis 2011; 3:1065-76. [DOI: 10.4155/bio.11.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Chemistry Department at the University of Nebraska – Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC–MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.
Collapse
|
16
|
Tong Z, Schiel JE, Papastavros E, Ohnmacht CM, Smith QR, Hage DS. Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns. J Chromatogr A 2011; 1218:2065-71. [PMID: 21067755 PMCID: PMC3065503 DOI: 10.1016/j.chroma.2010.10.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/10/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation of improved assays for these analytes in biological samples. In this report, an approach based on peak profiling was used with high-performance affinity chromatography to measure the dissociation rate constants for carbamazepine and imipramine with HSA. This approach compared the elution profiles for each drug and a non-retained species on an HSA column and control column over a board range of flow rates. Various approaches for the corrections of non-specific binding between these drugs and the support were considered and compared in this process. Dissociation rate constants of 1.7 (±0.2) s(-1) and 0.67 (±0.04) s(-1) at pH 7.4 and 37°C were estimated by this approach for HSA in its interactions with carbamazepine and imipramine, respectively. These results gave good agreement with rate constants that have determined by other methods or for similar solute interactions with HSA. The approach described in this report for kinetic studies is not limited to these particular drugs or HSA but can also be extended to other drugs and proteins.
Collapse
Affiliation(s)
- Zenghan Tong
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588-0304 (USA)
| | - John E. Schiel
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588-0304 (USA)
| | - Efthimia Papastavros
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588-0304 (USA)
| | - Corey M. Ohnmacht
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588-0304 (USA)
| | - Quentin R. Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, 68588-0304 (USA)
| |
Collapse
|
17
|
Morgan BP, Muci A, Lu PP, Qian X, Tochimoto T, Smith WW, Garard M, Kraynack E, Collibee S, Suehiro I, Tomasi A, Valdez SC, Wang W, Jiang H, Hartman J, Rodriguez HM, Kawas R, Sylvester S, Elias KA, Godinez G, Lee K, Anderson R, Sueoka S, Xu D, Wang Z, Djordjevic N, Malik FI, Morgans DJ. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac Myosin. ACS Med Chem Lett 2010; 1:472-7. [PMID: 24900233 DOI: 10.1021/ml100138q] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/26/2010] [Indexed: 12/12/2022] Open
Abstract
We report the design, synthesis, and optimization of the first, selective activators of cardiac myosin. Starting with a poorly soluble, nitro-aromatic hit compound (1), potent, selective, and soluble myosin activators were designed culminating in the discovery of omecamtiv mecarbil (24). Compound 24 is currently in clinical trials for the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Bradley P. Morgan
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Alexander Muci
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Pu-Ping Lu
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Xiangping Qian
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Todd Tochimoto
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Whitney W. Smith
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Marc Garard
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Erica Kraynack
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Scott Collibee
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Ion Suehiro
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Adam Tomasi
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - S. Corey Valdez
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Wenyue Wang
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Hong Jiang
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - James Hartman
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Hector M. Rodriguez
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Raja Kawas
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Sheila Sylvester
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Kathleen A. Elias
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Guillermo Godinez
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Kenneth Lee
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Robert Anderson
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Sandra Sueoka
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Donghong Xu
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Zhengping Wang
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Nebojsa Djordjevic
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - Fady I. Malik
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| | - David J. Morgans
- Cytokinetics, Inc., 280 East Grand Avenue, South San Francisco, California 94080
| |
Collapse
|
18
|
Characterization of interaction and the effect of carbamazepine on the structure of human serum albumin. J Pharm Biomed Anal 2010; 53:660-6. [DOI: 10.1016/j.jpba.2010.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/24/2022]
|
19
|
Yoo MJ, Schiel JE, Hage DS. Evaluation of affinity microcolumns containing human serum albumin for rapid analysis of drug-protein binding. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1707-13. [PMID: 20462808 DOI: 10.1016/j.jchromb.2010.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 04/14/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
Abstract
This study examined the use of affinity microcolumns as tools for the rapid analysis and high-throughput screening of drug-protein binding. The protein used was immobilized human serum albumin (HSA) and the model analytes were warfarin and L-tryptophan, two solutes often used as site-specific probes for drug binding to Sudlow sites I and II of HSA, respectively. The use of HSA microcolumns in binding studies was examined by using both zonal elution and frontal analysis formats. The zonal elution studies were conducted by injecting the probe compounds onto HSA microcolumns of varying lengths while measuring the resulting retention factors, plate heights and peak asymmetries. A decrease in the retention factor was noted when moving from longer to shorter column lengths while using a constant amount of injected solute. However, this change could be corrected, in part, by determining the relative retention factor of a solute versus a reference compound injected onto the same microcolumn. The plate height values were relatively consistent for all column lengths and gave an expected increase at higher linear velocities. The peak asymmetries were similar for all columns up to 1 mL/min but shifted to larger values at higher flow rates and when using short microcolumns (e.g., 1 mm length). The association equilibrium constants and number of binding sites estimated by frontal analysis for warfarin with HSA were consistent at the various column sizes that were tested and gave good agreement with previous literature values. These results confirmed affinity microcolumns provide comparable results to those obtained with longer columns and can be used in the rapid analysis of drug-protein binding and in the high-throughput screening of such interactions.
Collapse
Affiliation(s)
- Michelle J Yoo
- Department of Chemistry, University of Nebraska-Lincoln, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
20
|
Soman S, Yoo MJ, Jang YJ, Hage DS. Analysis of lidocaine interactions with serum proteins using high-performance affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:705-8. [PMID: 20138813 DOI: 10.1016/j.jchromb.2010.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
High-performance affinity chromatography was used to study binding by the drug lidocaine to human serum albumin (HSA) and alpha(1)-acid glycoprotein (AGP). AGP had strong binding to lidocaine, with an association equilibrium constant (K(a)) of 1.1-1.7 x 10(5) M(-1) at 37 degrees C and pH 7.4. Lidocaine had weak to moderate binding to HSA, with a K(a) in the range of 10(3) to 10(4) M(-1). Competitive experiments with site selective probes showed that lidocaine was interacting with Sudlow site II of HSA and the propranolol site of AGP. These results agree with previous observations in the literature and provide a better quantitative understanding of how lidocaine binds to these serum proteins and is transported in the circulation. This study also demonstrates how HPAC can be used to examine the binding of a drug with multiple serum proteins and provide detailed information on the interaction sites and equilibrium constants that are involved in such processes.
Collapse
Affiliation(s)
- Sony Soman
- Chemistry Department, University of Nebraska, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | | | |
Collapse
|
21
|
Chen S, Sobansky MR, Hage DS. Analysis of drug interactions with high-density lipoprotein by high-performance affinity chromatography. Anal Biochem 2009; 397:107-14. [PMID: 19833090 DOI: 10.1016/j.ab.2009.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography (HPAC). This approach was evaluated by using it to examine the binding of high-density lipoprotein (HDL) to the drugs propranolol and verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPAC columns with reproducible binding to propranolol over 4-5days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interaction were occurring between R- or S-propranolol and HDL at 37 degrees C: saturable binding with an association equilibrium constant (K(a)) of 1.1-1.9x10(5)M(-1) and nonsaturable binding with an overall affinity constant (n K(a)) of 3.7-4.1x10(4)M(-1). Similar results were found at 4 and 27 degrees C. Verapamil also gave similar behavior, with a K(a) of 6.0x10(4) M(-1) at 37 degrees C for the saturable sites and an n K(a) for the nonsaturable sites of 2.5x10(4)M(-1). These measured affinities gave good agreement with solution phase values. The results indicated that HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body.
Collapse
Affiliation(s)
- Sike Chen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
22
|
Kim HS, Siluk D, Wainer IW. Quantitative determination of fenoterol and fenoterol derivatives in rat plasma using on-line immunoextraction and liquid chromatography/mass spectrometry. J Chromatogr A 2009; 1216:3526-32. [PMID: 18778830 PMCID: PMC2663019 DOI: 10.1016/j.chroma.2008.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/15/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022]
Abstract
An on-line immunoextraction and liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol in rat plasma. Sample preparation involved immunoextraction of analytes using an antibody raised against R,R'- and R,S'-aminofenoterol that was immobilized onto chromatographic support. LC was performed on a Waters hydrophilic interaction chromatography (HILIC) column (150 mm x 2.1mm), using an isocratic mobile phase of methanol:ammonium acetate (10mM, pH 6.8) (90:10, v/v) at a flow rate of 0.2 ml/min. The MS was operated in the single ion monitoring mode (m/z 304.2 for R,R'-fenoterol, m/z 318.1 for R,R'-methoxyfenoterol, and m/z 339.2 for R,S'-naphthylfenoterol). Optimization of analytes desorption process from the immunoextraction column was performed by factorial analysis and the sample calibration curves were made with spiked rat plasma samples containing 0.5-100 ng/ml of drugs. The cross-selectivity studies of the antibody were determined and the results suggested high selectivities toward R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol. The accuracy of assay was more than 96% while intra- and inter-day precision of assay were less than 12.4%. Stability studies (2h benchtop, freeze/thaw, and autosampler stability) were conducted and the analytes were stable through out studies. The validated method was used to determine the plasma concentration-time profiles of drugs after oral administration to rats of R,R'-fenoterol, R,R'-methoxyfenoterol and R,S'-naphthylfenoterol.
Collapse
Affiliation(s)
- Hee Seung Kim
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA.
| | | | | |
Collapse
|
23
|
Hage DS, Jackson A, Sobansky MR, Schiel JE, Yoo MJ, Joseph KS. Characterization of drug-protein interactions in blood using high-performance affinity chromatography. J Sep Sci 2009; 32:835-53. [PMID: 19278006 PMCID: PMC2771590 DOI: 10.1002/jssc.200800640] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The binding of drugs with proteins in blood, serum, or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including HSA and alpha(1)-acid glycoprotein (AGP). Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Behavior of interacting species in vacancy affinity capillary electrophoresis described by mass balance equation. Electrophoresis 2008; 29:3333-41. [DOI: 10.1002/elps.200800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Kandagal PB, Kalanur SS, Manjunatha DH, Seetharamappa J. Mechanism of interaction between human serum albumin and N-alkyl phenothiazines studied using spectroscopic methods. J Pharm Biomed Anal 2008; 47:260-7. [PMID: 18313253 DOI: 10.1016/j.jpba.2008.01.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 11/16/2022]
Abstract
The binding characteristics of human serum albumin (HSA) with N-alkyl phenothiazines derivatives (NAP) viz., levomepromazine monomaleate (LMM) and propericiazine (PPC) have been studied by employing fluorescence, absorption, circular dichroism and FT-IR techniques. The Stern-Volmer quenching constant, K(SV) values were found to decrease with increase in temperature thereby indicating the presence of static quenching mechanism in the interactions of NAP with HSA. The number of binding sites, n and the binding constant, K were noticed to be, respectively, 1.11 and (5.188+/-0.034)x10(4) M(-1) for LMM and 1.06 and (4.436+/-0.066)x10(4) M(-1) for PPC at 298 K. The negative value of enthalpy change and positive value of entropy change in the present study indicated that the hydrophobic forces played a major role in the binding of NAP to HSA. The circular dichroism and FT-IR spectral data revealed the conformational changes in the structure of protein upon its interaction with NAP. The binding distances and the energy transfer efficiency between NAP and protein were determined based on Förster's theory of energy transfer. The decreased binding constants of HAS-LMM and HAS-PPC systems in presence of common ions indicated the availability of higher concentration of free drug in plasma.
Collapse
Affiliation(s)
- P B Kandagal
- Department of Chemistry, Karnatak University, Dharwad, India
| | | | | | | |
Collapse
|
26
|
Mallik R, Wa C, Hage DS. Development of sulfhydryl-reactive silica for protein immobilization in high-performance affinity chromatography. Anal Chem 2007; 79:1411-24. [PMID: 17297940 PMCID: PMC2528201 DOI: 10.1021/ac061779j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77-81% of this protein to maleimide- or iodoacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, nonspecific binding, stability, and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations.
Collapse
Affiliation(s)
| | | | - David S. Hage
- *Author for correspondence: Phone, 402-472-2744; FAX, 402-472-9402; E-mail,
| |
Collapse
|