1
|
Ngu EL, Tan CY, Lai NJY, Wong KH, Lim SH, Ming LC, Tan KO, Phang SM, Yow YY. Spirulina platensis Suppressed iNOS and Proinflammatory Cytokines in Lipopolysaccharide-Induced BV2 Microglia. Metabolites 2022; 12:1147. [PMID: 36422287 PMCID: PMC9698046 DOI: 10.3390/metabo12111147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/01/2023] Open
Abstract
The disease burden of neurodegenerative diseases is on the rise due to the aging population, and neuroinflammation is one of the underlying causes. Spirulina platensis is a well-known superfood with numerous reported bioactivities. However, the effect of S. platensis Universiti Malaya Algae Culture Collection 159 (UMACC 159) (a strain isolated from Israel) on proinflammatory mediators and cytokines remains unknown. In this study, we aimed to determine the anti-neuroinflammatory activity of S. platensis extracts and identify the potential bioactive compounds. S. platensis extracts (hexane, ethyl acetate, ethanol, and aqueous) were screened for phytochemical content and antioxidant activity. Ethanol extract was studied for its effect on proinflammatory mediators and cytokines in lipopolysaccharide (LPS)-induced BV2 microglia. The potential bioactive compounds were identified using liquid chromatography-mass spectrometric (LC-MS) analysis. Ethanol extract had the highest flavonoid content and antioxidant and nitric oxide (NO) inhibitory activity. Ethanol extract completely inhibited the production of NO via the downregulation of inducible NO synthase (iNOS) and significantly reduced the production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Emmotin A, palmitic amide, and 1-monopalmitin, which might play an important role in cell signaling, have been identified. In conclusion, S. platensis ethanol extract inhibited neuroinflammation through the downregulation of NO, TNF-α and IL-6. This preliminary study provided insight into compound(s) isolation, which could contribute to the development of precision nutrition for disease management.
Collapse
Affiliation(s)
- Ee-Ling Ngu
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Cheng-Yau Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Nicole Jean-Yean Lai
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Kuan-Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Siew-Moi Phang
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
2
|
Lamari F, Mochel F, Sedel F, Saudubray JM. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis 2013; 36:411-25. [PMID: 22814679 DOI: 10.1007/s10545-012-9509-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 12/29/2022]
Abstract
We wish to delineate a novel, and rapidly expanding, group of inborn errors of metabolism with neurological/muscular presentations: the defects in phospholipids, sphingolipids and long chain fatty acids biosynthesis. At least 14 disorders have been described so far. Clinical presentations are diverse but can be divided into (1) diseases of the central nervous system; (2) peripheral neuropathies; and (3) muscular/cardiac presentations. (1) Leukodystrophy and/or iron deposits in basal ganglia is a common feature of phospholipase A2 deficiency, fatty acid hydroxylase deficiency, and pantothenate kinase-associated neurodegeneration. Infantile epilepsy has been reported in GM3 synthetase deficiency. Spastic quadriplegia with ichthyosis and intellectual disability are the presenting signs of the elongase 4 deficiency and the Sjogren-Larsson syndrome caused by fatty aldehyde dehydrogenase deficiency. Spastic paraplegia and muscle wasting are also seen in patients with mutations in the neuropathy target esterase gene. (2) Peripheral neuropathy is a prominent feature in PHARC syndrome due to α/β-hydrolase 12 deficiency, and in hereditary sensory autonomic neuropathy type I due to serine palmitoyl-CoA transferase deficiency. (3) Muscular/cardiac presentations include recurrent myoglobinuria in phosphatidate phosphatase 1 (Lipin1) deficiency; cardiomyopathy and multivisceral involvement in Barth syndrome secondary to tafazzin mutations; congenital muscular dystrophy due to choline kinase deficiency, Sengers syndrome due to acylglycerol kinase deficiency and Chanarin Dorfman syndrome due to α/β- hydrolase 5 deficiency. These synthesis defects of complex lipid molecules stand at the frontier between classical inborn errors of metabolism and other genetic diseases involving the metabolism of structural proteins.
Collapse
Affiliation(s)
- F Lamari
- Neurometabolic Unit, Pitié-Salpêtrière Hospital, AP-HP & University Pierre and Marie Curie, Paris, France
| | | | | | | |
Collapse
|
3
|
Fuijkschot J, Theelen T, Seyger MMB, van der Graaf M, de Groot IJM, Wevers RA, Wanders RJA, Waterham HR, Willemsen MAAP. Sjögren-Larsson syndrome in clinical practice. J Inherit Metab Dis 2012; 35:955-62. [PMID: 22833178 DOI: 10.1007/s10545-012-9518-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
This review article gives a state-of-the-art synopsis of current pathophysiological concepts in Sjögren-Larsson syndrome (SLS) mainly based upon original research data of the authors in one of the world's largest clinical SLS study cohorts. Clinical features are discussed in order of appearance, and diagnostic tests are set out to guide the clinician toward the diagnosis SLS. Furthermore, current and future treatment strategies are discussed to render a comprehensive review of the topic.
Collapse
Affiliation(s)
- Joris Fuijkschot
- Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Keller MA, Watschinger K, Lange K, Golderer G, Werner-Felmayer G, Hermetter A, Wanders RJA, Werner ER. Studying fatty aldehyde metabolism in living cells with pyrene-labeled compounds. J Lipid Res 2012; 53:1410-6. [PMID: 22508945 PMCID: PMC3371253 DOI: 10.1194/jlr.d025650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The lack of fatty aldehyde dehydrogenase function in Sjögren Larsson Syndrome
(SLS) patient cells not only impairs the conversion of fatty aldehydes into their
corresponding fatty acid but also has an effect on connected pathways. Alteration of
the lipid profile in these cells is thought to be responsible for severe symptoms
such as ichtyosis, mental retardation, and spasticity. Here we present a novel
approach to examine fatty aldehyde metabolism in a time-dependent manner by measuring
pyrene-labeled fatty aldehyde, fatty alcohol, fatty acid, and alkylglycerol in the
culture medium of living cells using HPLC separation and fluorescence detection. Our
results show that in fibroblasts from SLS patients, fatty aldehyde is not
accumulating but is converted readily into fatty alcohol. In control cells, in
contrast, exclusively the corresponding fatty acid is formed. SLS patient cells did
not display a hypersensitivity toward hexadecanal or hexadecanol, but 3-fold lower
concentrations of the fatty alcohol than the corresponding fatty aldehyde were needed
to induce toxicity in SLS patient and in control cells.
Collapse
Affiliation(s)
- Markus A Keller
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:272-80. [DOI: 10.1016/j.bbalip.2010.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
|
6
|
Keller MA, Watschinger K, Golderer G, Maglione M, Sarg B, Lindner HH, Werner-Felmayer G, Terrinoni A, Wanders RJA, Werner ER. Monitoring of fatty aldehyde dehydrogenase by formation of pyrenedecanoic acid from pyrenedecanal. J Lipid Res 2009; 51:1554-9. [PMID: 19965611 PMCID: PMC3035519 DOI: 10.1194/jlr.d002220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty aldehyde dehydrogenase (EC 1.2.1.48) converts long-chain fatty aldehydes to the corresponding acids. Deficiency in this enzyme causes the Sjogren Larsson Syndrome, a rare inherited disorder characterized by ichthyosis, spasticity, and mental retardation. Using a fluorescent aldehyde, pyrenedecanal, and HPLC with fluorescence detection, we developed a novel method to monitor fatty aldehyde dehydrogenase activity by quantification of the product pyrenedecanoic acid together with the substrate pyrenedecanal and possible side products, such as aldehyde adducts. As shown with recombinant enzymes, pyrenedecanal showed a high preference for fatty aldehyde dehydrogenase compared with other aldehyde dehydrogenases. The method allowed detection of fatty aldehyde dehydrogenase activity in nanogram amounts of microsomal or tissue protein and microgram amounts of Sjogren Larsson syndrome patients' skin fibroblast protein. It could successfully be adapted for the analysis of fatty aldehyde dehydrogenase activity in gel slices derived from low-temperature SDS-PAGE, showing that fatty aldehyde dehydrogenase activity from solubilized rat liver microsomes migrates as a dimer. Thus, monitoring of pyrenedecanoic acid formation from pyrenedecanal by HPLC with fluorescence detection provides a robust and sensitive method for determination of fatty aldehyde dehydrogenase activity.
Collapse
Affiliation(s)
- Markus A Keller
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|