1
|
Li J, Ng KW, Sung CC, Chung KKK. The role of age-associated alpha-synuclein aggregation in a conditional transgenic mouse model of Parkinson's disease: Implications for Lewy body formation. J Neurochem 2024; 168:1215-1236. [PMID: 38693066 DOI: 10.1111/jnc.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is affecting an increasing number of older adults. Although PD is mostly sporadic, genetic mutations have been found in cohorts of families with a history of familial PD (FPD). The first such mutation linked to FPD causes a point mutation (A53T) in α-synuclein (α-syn), a major component of Lewy bodies, which are a classical pathological hallmark of PD. These findings suggest that α-syn is an important contributor to the development of PD. In our previous study, we developed an adenoviral mouse model of PD and showed that the expression of wild-type (WT) α-syn or a mutant form with an increased propensity to aggregate, designated as WT-CL1 α-syn, could be used to study how α-syn aggregation contributes to PD. In this study, we established a transgenic mouse model that conditionally expresses WT or WT-CL1 α-syn in dopaminergic (DA) neurons and found that the expression of either WT or WT-CL1 α-syn was associated with an age-dependent degeneration of DA neurons and movement dysfunction. Using this model, we were able to monitor the process of α-syn aggregate formation and found a correlation between age and the number and sizes of α-syn aggregates formed. These results provide a potential mechanism by which age-dependent α-syn aggregation may lead to the formation of Lewy bodies in PD pathogenesis.
Collapse
Affiliation(s)
- Jiahua Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Wai Ng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chun Chau Sung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kenny K K Chung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Bagchi S, Nozohouri E, Ahn Y, Patel D, Bickel U, Karamyan VT. Systemic and Brain Pharmacokinetics of Milnacipran in Mice: Comparison of Intraperitoneal and Intravenous Administration. Pharmaceutics 2023; 16:53. [PMID: 38258064 PMCID: PMC10819729 DOI: 10.3390/pharmaceutics16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Milnacipran is a dual serotonin and norepinephrine reuptake inhibitor, clinically used for the treatment of major depression or fibromyalgia. Currently, there are no studies reporting the pharmacokinetics (PK) of milnacipran after intraperitoneal (IP) injection, despite this being the primary administration route in numerous experimental studies using the drug. Therefore, the present study was designed to investigate the PK profile of IP-administered milnacipran in mice and compare it to the intravenous (IV) route. First a liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated to accurately quantify milnacipran in biological samples. The method was used to quantify milnacipran in blood and brain samples collected at various time-points post-administration. Non-compartmental and PK analyses were employed to determine key PK parameters. The maximum concentration (Cmax) of the drug in plasma was at 5 min after IP administration, whereas in the brain, it was at 60 min for both routes of administration. Curiously, the majority of PK parameters were similar irrespective of the administration route, and the bioavailability was 92.5% after the IP injection. These findings provide insight into milnacipran's absorption, distribution, and elimination characteristics in mice after IP administration for the first time and should be valuable for future pharmacological studies.
Collapse
Affiliation(s)
- Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.B.); (E.N.); (Y.A.)
| | - Vardan T. Karamyan
- Department of Foundational Medical Studies, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
3
|
A high performance liquid chromatography tandem mass spectrometry protocol for detection of neurotransmitters in the rat brain tissue. MethodsX 2023; 10:102083. [PMID: 36875344 PMCID: PMC9978030 DOI: 10.1016/j.mex.2023.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The detection of neurotransmitters has extensively been applied to the study of the pathogenesis, diagnosis, and therapeutic effect of drugs on many neuropsychiatric diseases. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been employed to determine neurotransmitters levels due to its distinct advantages. However, neurotransmitter detection still presents some challenges. A rapid and sensitive HPLC-MS/MS protocol has been established in our lab, which can simultaneously detect 5 neurotransmitters with an easy pretreatment procedure. The protocol provides demanded reference value for the lab using an Agilent HPLC-MS/MS system with a triple quadrupole analyzer.
Collapse
|
4
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
5
|
Wei Y, Cong P, Liu H, Li R, Liu Y, Yu Y, Wang G, Zheng H, Xue C. Determination of 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) in shellfish by UPLC-QqQ/MS and evaluation of matrix effect. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Luo W, van Beek TA, Chen B, Zuilhof H, Salentijn GIJ. Boronate affinity paper spray mass spectrometry for determination of elevated levels of catecholamines in urine. Anal Chim Acta 2022; 1235:340508. [DOI: 10.1016/j.aca.2022.340508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
7
|
Sayed Zia Mohammadi, Mosazadeh F, Beitollah H, Barani Z. A Novel Electrochemical Sensor for Epinephrine in the Presence of Acetylcholine Based on Modified Screen-Printed Electrode. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ebube. Uwaya G, Wen Y, Bisetty K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Almalki AH, Naguib IA, Alshehri FS, Alghamdi BS, Alsaab HO, Althobaiti YS, Alshehri S, Abdallah FF. Application of Three Ecological Assessment Tools in Examining Chromatographic Methods for the Green Analysis of a Mixture of Dopamine, Serotonin, Glutamate and GABA: A Comparative Study. Molecules 2021; 26:5436. [PMID: 34576907 PMCID: PMC8467375 DOI: 10.3390/molecules26185436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
The assessment of greenness of analytical protocols is of great importance now to preserve the environment. Some studies have analyzed either only the neurotransmitters, dopamine, serotonin, glutamate, and gamma-aminobutyric acid (GABA), together or with other neurotransmitters and biomarkers. However, these methods have not been investigated for their greenness and were not compared with each other to find the optimum one. Therefore, this study aims to compare seven published chromatographic methods that analyzed the four neurotransmitters and their mixtures using the National Environmental Method Index, Analytical Eco-Scale Assessment (ESA), and Green Analytical Procedure Index (GAPI). As these methods cover both qualitative and quantitative aspects, they offer better transparency. Overall, GAPI showed maximum greenness throughout the analysis. Method 6 was proven to be the method of choice for analyzing the mixture, owing to its greenness, according to NEMI, ESA, and GAPI. Additionally, method 6 has a wide scope of application (13 components can be analyzed), high sensitivity (low LOQ values), and fast analysis (low retention times, especially for glutamate and GABA).
Collapse
Affiliation(s)
- Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Hashem O. Alsaab
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.O.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Fatma F. Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| |
Collapse
|
10
|
Li R, Wang L, Wang X, Zhang D, Zhang Y, Li Z, Fang M. Simultaneous Determination of Four Monoamine Neurotransmitters and Seven Effective Components of Zaoren Anshen Prescription in Rat Tissue using UPLC-Ms/Ms. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190709095958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Zaoren Anshen Prescription (ZAP) is widely used as a classic Chinese Traditional
Medicine (TCM) prescription for the treatment of palpitations and insomnia in China. Some
studies have identified the main active components for its anti-insomnia effect and observed changes
of some endogenous components that are closely related to its anti-insomnia effect. However, simultaneous
determination of four monoamine neurotransmitters and seven effective components of ZAP and
the investigation of their distribution in tissues by using ultra-performance liquid chromatography
with tandem mass spectrometry (UPLC-MS/MS) have not been reported.
Methods:
An ultra-performance liquid chromatography with tandem mass spectrometry method was
developed and validated for simultaneous quantification of four monoamine neurotransmitters (norepinephrine,
dopamine, 5-hydroxy tryptamine and 5-hydroxyindoleacetic acid) and seven prescription
components (danshensu, protocatechualdehyde, spinosin, 6´´´-feruylspinosin, salviaolic acid B, schisandrin
and deoxyschisandrin) in rats’ tissues. Tissue samples were prepared by protein precipitation
with acetonitrile. Chromatographic separation was carried out on a C18 column with a gradient mobile
phase consisting of acetonitrile and 0.01% formic acid water. An electrospray ionization triple quadrupole
concatenation mass spectrometer was set to switch between positive and negative modes in single
run time. All the components were quantitated by multiple-reaction monitoring scanning.
Results:
: The lower limits of quantitation for all analytical components were 0.78 ng/mL-1.99 ng/mL in
the heart, liver, spleen, lung, kidney and brain. All the calibration curves displayed good linearity (r >
0.99544). The precision was evaluated by intra-day and inter-day assays, and the relative standard
deviation (RSD) values were all within 12.67%. The relative errors of the accuracy were all within ±
19.88%. The recovery ranged from 76.00% to 98.78% and the matrix effects of eleven components
were found to be between 85.10% and 96.40%.
Conclusion:
This method was successfully applied to study the distribution of seven components from
ZAP and the concentration changes of four monoamine neurotransmitters after oral ZAP in six tissues.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Lin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Xiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Dian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Yafeng Zhang
- Xi’an Institute for Food and Drug Control, Xi’an 710054, China
| | - Zhuo Li
- Xi’an Institute for Food and Drug Control, Xi’an 710054, China
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| |
Collapse
|
11
|
Gonzalez-Sepulveda M, Laguna A, Carballo-Carbajal I, Galiano-Landeira J, Romero-Gimenez J, Cuadros T, Parent A, Peñuelas N, Compte J, Nicolau A, Guillard-Sirieix C, Xicoy H, Kobayashi J, Vila M. Validation of a Reversed Phase UPLC-MS/MS Method to Determine Dopamine Metabolites and Oxidation Intermediates in Neuronal Differentiated SH-SY5Y Cells and Brain Tissue. ACS Chem Neurosci 2020; 11:2679-2687. [PMID: 32786306 DOI: 10.1021/acschemneuro.0c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine is a key neurotransmitter in the pathophysiology of various neurological disorders such as addiction or Parkinson's disease. Disturbances in its metabolism could lead to dopamine accumulation in the cytoplasm and an increased production of o-quinones and their derivatives, which have neurotoxic potential and act as precursors in neuromelanin synthesis. Thus, quantification of the dopaminergic metabolism is essential for monitoring changes that may contribute to disease development. Here, we developed and validated an UPLC-MS/MS method to detect and quantify a panel of eight dopaminergic metabolites, including the oxidation product aminochrome. Our method was validated in differentiated SH-SY5Y cells and mouse brain tissue and was then employed in brain samples from humans and rats to ensure method reliability in different matrices. Finally, to prove the biological relevance of our method, we determined metabolic changes in an in vitro cellular model of dopamine oxidation/neuromelanin production and in human postmortem samples from Parkinson's disease patients. The current study provides a validated method to simultaneously monitor possible alterations in dopamine degradation and o-quinone production pathways that can be applied to in vitro and in vivo experimental models of neurological disorders and human brain samples.
Collapse
Affiliation(s)
- Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jordi Galiano-Landeira
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Nuria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Jumpei Kobayashi
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
12
|
Grecco CF, Miranda LFC, Costa Queiroz ME. Aminopropyl hybrid silica monolithic capillary containing mesoporous SBA-15 particles for in-tube SPME-HILIC-MS/MS to determine levodopa, carbidopa, benserazide, dopamine, and 3-O-methyldopa in plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Samandari R, Hassanpour-Ezatti M, Fakhri S, Abbaszadeh F, Jorjani M. Sex Differences and Role of Gonadal Hormones on Glutamate LevelAfter Spinal Cord Injury in Rats: A Microdialysis Study. Basic Clin Neurosci 2019; 10:225-234. [PMID: 31462977 PMCID: PMC6712632 DOI: 10.32598/bcn.9.10.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction: Sex differences in outcomes of Spinal Cord Injury (SCI) suggest a sex-hormone-mediated effect on post-SCI pathological events, including glutamate excitotoxicity. This study aimed to investigate the importance of gonadal hormones on glutamate release subsequent to SCI in rats. Methods: After laminectomy at T8–T9, an electrolytic lesion was applied to the spinothalamic tracts of male and female rats. Using spinal microdialysis, we assessed glutamate levels at the site of lesion in both intact and gonadectomized rats for 4 hours. In this way, we examined the sex differences in the glutamate concentrations. Results: The peak retention time of glutamate level was 10.6 min and spinal glutamate concentration reached a maximum level 40 min following SCI. In male SCI rats, gonadectomy caused a significant elevation of glutamate level (P<0.001) following injury which was maximum 40 min post-SCI as well. However, no significant alterations were seen in gonadectomized female rats. Conclusion: The significant differences in glutamate levels between both intact and gonadectomized SCI male and female rats show the sex-hormone-related mechanisms underlying the molecular events in the second phase of SCI. It seems that the role of male gonadal hormones to prevent glutamate excitotoxicity is more prominent. The exact mechanisms of these hormones on the functional recovery after SCI should be clarified in further studies.
Collapse
Affiliation(s)
- Razieh Samandari
- Department of Physiology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Safaei M, Beitollahi H, Shishehbore MR. Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193518130402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
He X, Yu Y, Li Y. Facile synthesis of boronic acid-functionalized magnetic metal-organic frameworks for selective extraction and quantification of catecholamines in rat plasma. RSC Adv 2018; 8:41976-41985. [PMID: 35558777 PMCID: PMC9092088 DOI: 10.1039/c8ra07356b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022] Open
Abstract
Precise determination of the endogenous catecholamines, dopamine (DA), epinephrine (E) and norepinephrine (NE) faces substantial challenges due to their low physiological concentrations in plasma. We synthesized, for the first time, a magnetic metal-organic framework (MIL-100) composite with boronic acid-functionalized pore-walls (denoted as MG@MIL-100-B composite) using a metal-ligand-fragment coassembly (MLFC) strategy. The composites were then applied as an effective magnetic solid-phase extraction (SPE) sorbent for determination of trace catecholamine concentrations in rat plasma through coupling with HPLC-MS/MS. The obtained nano-composites exhibited high magnetic responsivity, uniform mesopores, large specific surface area, and boronic acid-functionalized inner pore-walls. Catecholamines in rat plasma were extracted through interaction between the cis-diol structures and the boronic acid groups in the MG@MIL-100-B composites. Extraction conditions were optimized by studying SPE parameters including adsorption and desorption time, elution solvent type, pH conditions and adsorbent amount. With our approach, the detection limits (S/N = 3) were as low as 0.005 ng mL-1 for DA and E, and 0.02 ng mL-1 for NE. Intra- and inter-day precision ranged from 2.84-6.63% (n = 6) and 5.70-11.44% (n = 6), respectively. Recoveries from spiking experiments also showed satisfactory results of 94.40-109.51%. Finally, the MG@MIL-100-B composites were applied successfully to determine catecholamine concentrations in rat plasma.
Collapse
Affiliation(s)
- Xinying He
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University Shanghai 201203 China +86-21-51980057 +86-21-51980057
| | - Yunqiu Yu
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University Shanghai 201203 China +86-21-51980057 +86-21-51980057
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University Shanghai 201203 China +86-21-51980057 +86-21-51980057
- Fudan University Affiliated Pudong Medical Center, Fudan University Shanghai China
| |
Collapse
|
16
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
17
|
Rapid HPLC-ESI-MS/MS Analysis of Neurotransmitters in the Brain Tissue of Alzheimer's Disease Rats before and after Oral Administration of Xanthoceras sorbifolia Bunge. Molecules 2018; 23:molecules23123111. [PMID: 30486507 PMCID: PMC6321314 DOI: 10.3390/molecules23123111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
In order to explore the potential therapeutic effect of Xanthoceras sorbifolia Bunge. against Alzheimer’s disease, an HPLC-MS/MS method has been developed and validated for simultaneous determination in rat brain of eight neurotransmitters, including dopamine, norepinephrine, 5-hydroxy-tryptamine, acetylcholine, l-tryptophan, γ-aminobutyric acid, glutamic acid and aspartic acid with a simple protein precipitation method for sample pre-treatment. The brain samples were separated on a polar functional group embedded column, then detected on a 4000 QTrap HPLC-MS/MS system equipped with a turbo ion spray source in positive ion and multiple reaction monitoring mode. The method was fully validated to be precise and accurate within the linearity range of the assay, and successfully applied to compare the neurotransmitters in the rat brain from four groups of normal, Alzheimer’s disease, and the oral administration group of X. sorbifolia extract and huperzine. The results indicated that brain levels of dopamine, norepinephrine and acetyl choline all decreased in the AD rats, while l-tryptophan showed an opposite trend. After administration of the Xanthoceras sorbifolia extract and huperzine, the level of acetyl choline and tryptophan returned to normal. Combination of the metabolic analysis, the results indicated that acetyl choline and l-tryptophan could be employed as therapy biomarkers for AD, and the results shown that the crude extract of the husks from Xanthoceras sorbifolia might ameliorate the impairment of learning and memory in the Alzheimer’s disease animal model with similar function of AchEI as huperzine. The established method would provide an innovative and effective way for the discovery of novel drug against Alzheimer’s disease, and stimulate a theoretical basis for the design and development of new drugs.
Collapse
|
18
|
Cheng L, Chen L, Wei X, Wang Y, Ren Z, Zeng S, Zhang X, Wen H, Gao C, Liu H. NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson's disease. J Neuroinflammation 2018; 15:243. [PMID: 30157869 PMCID: PMC6116377 DOI: 10.1186/s12974-018-1289-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/22/2018] [Indexed: 01/24/2023] Open
Abstract
Background In Parkinson’s disease (PD), loss of striatal dopaminergic (DA) terminals and degeneration of DA neurons in the substantia nigra (SN) are associated with inflammation. Nucleotide-binding oligomerization domain-containing protein (NOD)2, one of the first discovered NOD-like receptors, plays an important role in inflammation. However, the role of NOD2 has not been elucidated in PD. Methods NOD2 mRNA and protein expression in the SN and the striatum of C57BL/6 mice treated with 6-hydroxydopamine (6-OHDA) was measured. We next investigated the potential contribution of the NOD2-dependent pathway to 6-OHDA-induced DA degeneration using NOD2-deficient (NOD2−/−) mice. Assays examining DA degeneration and inflammation include HPLC, Western blot, immunohistochemistry, TUNEL staining, and cytometric bead array. To further explore a possible link between NADPH oxidase 2 (NOX2) and NOD2 signaling in PD, microglia were transfected with shRNA specific to NOX2 in vitro and apocynin were given to mice subjected to 6-OHDA and muramyl dipeptide (MDP) striatal injection. Results The expression of NOD2 was upregulated in an experimental PD model induced by the neurotoxin 6-OHDA. NOD2 deficiency resulted in a protective effect against 6-OHDA-induced DA degeneration and neuronal death, which was associated with the attenuated inflammatory response. Moreover, silencing of NOX2 in microglia suppressed the expression of NOD2 and the inflammatory response induced by 6-OHDA and attenuated the toxicity of conditioned medium from 6-OHDA or MDP-stimulated microglia to neuronal cells. Furthermore, apocynin treatment inhibited NOD2 upregulation and DA degeneration in the SN of WT mice induced by 6-OHDA and MDP. Conclusion This study provides the direct evidence that NOD2 is related to 6-OHDA-induced DA degeneration through NOX2-mediated oxidative stress, indicating NOD2 is a novel innate immune signaling molecule participating in PD inflammatory response. Electronic supplementary material The online version of this article (10.1186/s12974-018-1289-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Zhiping Ren
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Shenglan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Xiumei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Wenhua West Road 44, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
19
|
Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
21
|
Fonseca BM, Cristóvão AC, Alves G. An easy-to-use liquid chromatography method with fluorescence detection for the simultaneous determination of five neuroactive amino acids in different regions of rat brain. J Pharmacol Toxicol Methods 2018; 91:72-79. [DOI: 10.1016/j.vascn.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
|
22
|
Cao Q, Ouyang C, Zhong X, Li L. Profiling of small molecule metabolites and neurotransmitters in crustacean hemolymph and neuronal tissues using reversed-phase LC-MS/MS. Electrophoresis 2018; 39:1241-1248. [PMID: 29579349 PMCID: PMC7382969 DOI: 10.1002/elps.201800058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Crustaceans have been long used as model animals for neuromodulation studies because of their well-defined neural circuitry. The identification of small molecule metabolites and signaling molecules in circulating fluids and neuronal tissues presents unique challenges due to their diverse structures, biological functions, and wide range of concentrations. LC combined with high resolution MS/MS is one of the most powerful tools to uncover endogenous small molecules. Here we explored several sample preparation techniques (solid-phase extraction and denaturing) and MS data acquisition strategies (data-dependent acquisition and targeted MS2-based acquisition) that provided complementary coverage and improved overall identification rate in C18 LC-MS/MS experiment. By MS/MS spectral matching with mzCloud database and those generated from standard compounds, a total of 129 small molecule metabolites and neurotransmitters were identified from crustacean hemolymph and neuronal tissues. These confidently identified small molecules covered predominant biosynthetic pathways for major neurotransmitters, validating the effectiveness of the high-throughput RPLC-MS/MS approach in studying the metabolism of neurotransmitters.
Collapse
Affiliation(s)
- Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Chuanzi Ouyang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, United States
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
23
|
Defaix C, Solgadi A, Pham TH, Gardier AM, Chaminade P, Tritschler L. Rapid analysis of glutamate, glutamine and GABA in mice frontal cortex microdialysis samples using HPLC coupled to electrospray tandem mass spectrometry. J Pharm Biomed Anal 2018; 152:31-38. [DOI: 10.1016/j.jpba.2018.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
|
24
|
Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X, Jiang F, Lou H. TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson's disease. Exp Neurol 2018; 302:205-213. [PMID: 29407460 DOI: 10.1016/j.expneurol.2018.01.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) was a newly identified receptor expressed on microglia. Several observations support the hypothesis that TREM2 variation may confer susceptibility to Parkinson's disease (PD). Therefore, in this paper, we explored the role of TREM2 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Our results revealed that overexpression of TREM2 remarkably reduced MPTP-induced neuropathology including the dopaminergic neurodegeneration and neuroinflammation in vivo. Further mechanistic study revealed that TREM2 inhibited neuroinflammation by negatively regulating the TRAF6/TLR4-mediated activation of the MAPK and NF-κB signaling pathways. Taken together, our data suggest that TREM2 may have important neuroprotective effects against PD by critically modulating neuroinflammatory responses. These findings provide insights into the role of TREM2 in PD pathogenesis, and highlight TREM2 as a potential therapeutic target for this kind of disease.
Collapse
Affiliation(s)
- Manru Ren
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Ying Guo
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Shaoqi Yan
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Yue Qin
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - Fan Jiang
- Department of Pathophysiology, School of Medicine, Shandong University, Jinan 250012, China
| | - Haiyan Lou
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
25
|
Chen PH, Mahmood Q, Mariottini GL, Chiang TA, Lee KW. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3904098. [PMID: 29376073 PMCID: PMC5742426 DOI: 10.1155/2017/3904098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Global reports estimate 600 million betel quid (BQ) chewers. BQ chewing has been demonstrated not only to be a risk factor for cancers of the oral cavity and pharynx and oral potentially malignant disorders (OPMD) but also to cause other cancers and adverse health effects. Herein, we summarized the international comparison data to aid in the understanding of the close relationship between the prevalence of BQ chewing, the occurrence of oral and pharyngeal cancers, and adverse health effects. Potential biomarkers of BQ carcinogens, such as areca nut, alkaloids, and 3-methylnitrosaminopropionitrile (MNPN), are closely associated with human health toxicology. Molecular mechanisms or pathways involving autophagy, hypoxia, COX-2, NF-κB activity, and stemness are known to be induced by BQ ingredients and are very closely related to the carcinogenesis of cancers of oral and pharynx. BQ abuse-related monoamine oxidase (MAO) gene was associated with the occurrence and progress of oral and pharyngeal cancers. In summary, our review article provides important insights into the potential roles of environmental BQ (specific alkaloid biomarkers and nitrosamine products MNPN) and genetic factors (MAO) and offers a basis for studies aiming to reduce or eliminate BQ-related OPMD and oral/pharyngeal cancer incidences in the future.
Collapse
Affiliation(s)
- Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, No. 70 Lienhai Road, Kaohsiung 80424, Taiwan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Tai-An Chiang
- College of Human Science and Technology, Chung Hwa University of Medical Technology, No. 89, Wenhwa 1st St., Rende Shiang, Tainan 71703, Taiwan
| | - Ka-Wo Lee
- Department of Otolaryngology, Kaohsiung Medical University Hospital, No. 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- Department of Otolaryngology, College of Medicine, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
26
|
Pérez-Fernández V, Harman DG, Morley JW, Cameron MA. Optimized Method to Quantify Dopamine Turnover in the Mammalian Retina. Anal Chem 2017; 89:12276-12283. [PMID: 29057649 DOI: 10.1021/acs.analchem.7b03216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of dopamine (DA) release in the retina allows the interrogation of the complex neural circuits within this tissue. A number of previous methods have been used to quantify this neuromodulator, the most common of which is HPLC with electrochemical detection (HPLC-ECD). However, this technique can produce significant concentration uncertainties. In this present study, we report a sensitive and accurate UHPLC-MS/MS method for the quantification of DA and its primary metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in mouse retina. Internal standards DA-d4 and DOPAC-d5 result in standard curve linearity for DA from 0.05-100 ng/mL (LOD = 6 pg/mL) and DOPAC from 0.5-100 ng/mL (LOD = 162 pg/mL). A systematic study of tissue extraction conditions reveals that the use of formic acid (1%), in place of the more commonly used perchloric acid, combined with 0.5 mM ascorbic acid prevents significant oxidation of the analytes. When the method is applied to mouse retinae a significant increase in the DOPAC/DA ratio is observed following in vivo light stimulation. We additionally examined the effect of anesthesia on DA and DOPAC levels in the retina in vivo and find that basal dark-adapted concentrations are not affected. Light caused a similar increase in DOPAC/DA ratio but interindividual variation was significantly reduced. Together, we systematically describe the ideal conditions to accurately and reliably measure DA turnover in the mammalian retina.
Collapse
Affiliation(s)
| | - David G Harman
- School of Medicine, Western Sydney University , Sydney, Australia
| | - John W Morley
- School of Medicine, Western Sydney University , Sydney, Australia
| | - Morven A Cameron
- School of Medicine, Western Sydney University , Sydney, Australia
| |
Collapse
|
27
|
Dinesh B, Veeramani V, Chen SM, Saraswathi R. In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Veselova IA, Sergeeva EA, Makedonskaya MI, Eremina OE, Kalmykov SN, Shekhovtsova TN. Methods for determining neurotransmitter metabolism markers for clinical diagnostics. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934816120108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson's Disease Mice. Neurochem Res 2016; 42:1141-1150. [PMID: 28005221 DOI: 10.1007/s11064-016-2148-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder and characterized by motor system disorders resulting in loss of dopaminergic (DA) neurons. CXC195, a novel tetramethylpyrazine derivative, has been shown strongest neuroprotective effects due to its anti-apoptotic activity. However, whether CXC195 protects against DA neuronal damage in PD and the mechanisms underlying its beneficial effects are unknown. The purpose of our study was to investigate the potential neuroprotective role of CXC195 and to elucidate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. CXC195 administration improved DA neurodegeneration in PD mice induced by 6-OHDA. Our further findings confirmed treatment of CXC195 at the dose of 10 mg/kg significantly inhibited the apoptosis by decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in 6-OHDA-lesioned mice. Meanwhile, 6-OHDA also decreased the amount of phosphorylated Akt while increased GSK-3β activity (the amount of phosphorylated GSK-3β at Ser9 was decreased) which was prevented by CXC195. Wortmannin, a specific PI3K inhibitor, dramatically abolished the changes induced by CXC195. Our study firstly demonstrated that CXC195 protected against DA neurodegeneration in 6-OHDA-induced PD model by its anti-apoptotic properties and PI3K/Akt/GSK3β signaling pathway was involved in it.
Collapse
|
30
|
Ren M, Han M, Wei X, Guo Y, Shi H, Zhang X, Perez RG, Lou H. FTY720 Attenuates 6-OHDA-Associated Dopaminergic Degeneration in Cellular and Mouse Parkinsonian Models. Neurochem Res 2016; 42:686-696. [PMID: 27943027 DOI: 10.1007/s11064-016-2125-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
FTY720 (fingolimod) is the first oral drug approved for treating relapsing-remitting forms of multiple sclerosis. It is also protective in other neurological models including ischemia, Alzheimer's disease, Huntington disease and Rett syndrome. However, whether it might protect in a 6-hydroxydopamine (6-OHDA) mouse model associated with the dopaminergic pathology of Parkinson's disease (PD), has not been explored. Therefore, in the present study, we investigated the effects of FTY720 on 6-OHDA-induced neurotoxicity in cell cultures and mice. Here we show that FTY720 protected against 6-OHDA cytotoxicity and apoptosis in SH-SY5Y cells. We also show that prior administration of FTY720 to 6-OHDA lesioned mice ameliorated both motor deficits and nigral dopaminergic neurotoxicity, while also reducing 6-OHDA-associated inflammation. The protective effects of FTY720 were associated with activation of AKT and ERK1/2 pro-survival pathways and an increase in brain derived neurotrophic factor (BDNF) expression in vitro and in vivo. These findings suggest that FTY720 holds promise as a PD therapeutic acting, at least in part, through AKT/ERK1/2/P-CREB-associated BDNF expression.
Collapse
Affiliation(s)
- Manru Ren
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Minxing Han
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ying Guo
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huanying Shi
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ruth G Perez
- Paul L. Foster School of Medicine, Graduate School of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
| | - Haiyan Lou
- Department of Pharmacology, School of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
31
|
Zhou L, Ma SL, Yeung PKK, Wong YH, Tsim KWK, So KF, Lam LCW, Chung SK. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. Transl Psychiatry 2016; 6:e881. [PMID: 27598965 PMCID: PMC5048194 DOI: 10.1038/tp.2016.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1(-/-)) or Epac2 (Epac2(-/-)) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2(-/-) mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2(-/-) mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2(-/-) mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis.
Collapse
Affiliation(s)
- L Zhou
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - S L Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - P K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - K W K Tsim
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay, Clear Water Bay, Hong Kong SAR, China
| | - K F So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - L C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - S K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,School of Biomedical Sciences, The University of Hong Kong, 1/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. E-mail:
| |
Collapse
|
32
|
Aigner M, Kalcher K, Macheroux P, Lienhart WD, Wallner S, Edmondson D, Ortner A. Determination of Total Monoamines in Rat Brain via Nanotubes Based Human Monoamine Oxidase B Biosensor. ELECTROANAL 2016. [DOI: 10.1002/elan.201600326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maximilian Aigner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry; University of Graz; 8010 Graz Austria
| | - Kurt Kalcher
- Institute of Chemistry; University of Graz; 8010 Graz Austria
| | - Peter Macheroux
- Institute of Biochemistry; Technical University of Graz; 8010 Graz Austria
| | | | - Silvia Wallner
- Institute of Biochemistry; Technical University of Graz; 8010 Graz Austria
| | - Dale Edmondson
- Department of Biochemistry; Emory University; Atlanta GA 30322 USA
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry; University of Graz; 8010 Graz Austria
| |
Collapse
|
33
|
Wojnicz A, Avendaño-Ortiz J, de Pascual R, Ruiz-Pascual L, García AG, Ruiz-Nuño A. Simultaneous monitoring of monoamines, amino acids, nucleotides and neuropeptides by liquid chromatography-tandem mass spectrometry and its application to neurosecretion in bovine chromaffin cells. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:651-664. [PMID: 28239974 DOI: 10.1002/jms.3794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
The primary functions of adrenal medullary chromaffin cells are the synthesis and storage in their chromaffin vesicles of the catecholamines noradrenaline (NA) and adrenaline (AD), and their subsequent release into the bloodstream by Ca2+ -dependent exocytosis under conditions of fear or stress (fight or flight response). Several monoamines, nucleotides and opiates, such as leucine-enkephalin (LENK) and methionine-enkephalin (MENK), are also co-stored and co-released with the catecholamines. However, other neurotransmitters have not been studied in depth. Here, we present a novel high-resolution liquid chromatography-tandem mass spectrometry approach for the simultaneous monitoring of 14 compounds stored and released in bovine chromaffin cells (BCCs). We validated the analytical method according to the recommendations of the EMA and FDA by testing matrix effect, selectivity, sensitivity, precision, accuracy, stability and carry-over. After testing on six batches of BCCs from different cultures, the method enabled simultaneous quantitative determination of monoamines (AD, NA, dopamine, serotonin, 5-hydroxyindoleacetic acid, histamine and metanephrine), amino acids (L-glutamic acid, γ-aminobutyric acid), nucleotides (adenosine 5'-diphosphate, adenosine 5'-monophosphate, cyclic adenosine 5'-monophosphate) and neuropeptides (LENK and MENK) in the intracellular content, basal secretion and acetylcholine induced secretion of BBCs. The high-resolution approach used here enabled us to determine the levels of 14 compounds in the same BCC batch in only 16 min. This novel approach will make it possible to study the regulatory mechanisms of Ca2+ signaling, exocytosis and endocytosis using different neurotrophic factors and/or secretagogues as stimuli in primary BCC cultures. Our method is actually being applied to human plasma samples of different therapeutic areas where sympathoadrenal axis is involved in stress situations such as Alzheimer's disease, migraine or cirrhosis, to improve diagnosis and clinical practice. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aneta Wojnicz
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Avendaño-Ortiz
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Ricardo de Pascual
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Lucía Ruiz-Pascual
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Ruiz-Nuño
- Instituto-Fundación Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Validated methods for determination of neurotransmitters and metabolites in rodent brain tissue and extracellular fluid by reversed phase UHPLC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:120-129. [DOI: 10.1016/j.jchromb.2016.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
|
35
|
Cui JD, Xu ML, Liu EYL, Dong TTX, Lin HQ, Tsim KWK, Bi CWC. Expression of globular form acetylcholinesterase is not altered in P2Y1R knock-out mouse brain. Chem Biol Interact 2016; 259:291-294. [PMID: 27378627 DOI: 10.1016/j.cbi.2016.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/18/2016] [Accepted: 06/29/2016] [Indexed: 01/08/2023]
Abstract
Adenosine 5'-triphosphate (ATP), a neurotransmitter and a neuromodulator, has been shown to be co-stored and co-released with acetylcholine (ACh) at the pre-synaptic vesicles in vertebrate neuromuscular junction (nmj). Several lines of studies demonstrated that binding of ATP to its corresponding P2Y1 receptors (P2Y1R) in muscle and neuron regulated the post-synaptic gene expressions. Indeed, the expression of acetylcholinesterase (AChE) in muscle was markedly decreased in P2Y1R-/- (P2Y1R knock-out) mice. In order to search for possible role of P2Y1R in cholinergic function of the brain, the expression of globular form AChE was determined in the brain of P2Y1R-/- mice. In contrast to that in muscle, the amounts of AChE activity, AChE catalytic subunit, structure subunit PRiMA and the amount of ACh, in the brain were not, significantly, altered, suggesting the role of P2Y1R in neuron could have different function as that in muscle. However, the expressions of a series of neuronal development markers, i.e. neurofilaments, were reduced in P2Y1R-/- mouse brain, indicating P2Y1R may be involved in neuronal development process.
Collapse
Affiliation(s)
- Jane D Cui
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - H Q Lin
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
36
|
Yang R, Chen K, Zhao Y, Tian P, Duan F, Sun W, Liu Y, Yan Z, Li S. Analysis of Potential Amino Acid Biomarkers in Brain Tissue and the Effect of Galangin on Cerebral Ischemia. Molecules 2016; 21:438. [PMID: 27058522 PMCID: PMC6274550 DOI: 10.3390/molecules21040438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Galangin, a potent scavenger of free radicals, has been used as an herbal medicine for various ailments for centuries in Asia. With complex pathophysiology, ischemic stroke is one of the most frequent causes of death and disability worldwide. We have reported that galangin provides direct protection against ischemic injury as a potential neuroprotective agent and has potential therapeutic effects on the changes of serum amino acids in ischemic stroke; however, the mechanism of the changes of amino acids in the ischemic brain tissue has not yet been clarified. In this paper, we explored brain tissue amino acid biomarkers in the acute phase of cerebral ischemia and the effect of galangin on those potential biomarkers. Finally, we identified that glutamic acid, alanine and aspartic acid showed significant changes (p < 0.05 or p < 0.01) in galangin-treated groups compared with vehicle-treated rats and the four enzymes associated with these three AAs’ metabolic pathways; GLUD1, SLC16A10, SLC1A1 and GPT were identified by multiplex interactions with the three amino acids. By metabolite-protein network analysis and molecular docking, six of 28 proteins were identified and might become potential galangin biomarkers for acute ischemic stroke. The data in our study provides thoughts for exploring the mechanism of disease, discovering new targets for drug candidates and elucidating the related regulatory signal network.
Collapse
Affiliation(s)
- Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kun Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanyan Zhao
- College of Pharmaceutical Science, Hebei University, Hebei 071002, China.
| | - Pengpeng Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmaceutical Science, Hebei University, Hebei 071002, China.
| | - Feipeng Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenli Sun
- Pharmacy Department, Hebei Yanda Ludaopei Hospital, Hebei 065000, China.
| | - Yuxin Liu
- College of Pharmaceutical Science, Hebei University, Hebei 071002, China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
37
|
Wu D, Xie H, Lu H, Li W, Zhang Q. Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag(HIO6 )2 ](5-) -luminol chemiluminescence detection. Biomed Chromatogr 2016; 30:1458-66. [PMID: 26876580 DOI: 10.1002/bmc.3704] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 11/08/2022]
Abstract
Based on the enhancing effects of norepinephrine (NE), epinephrine (EP), dopamine (DA) and 5-hydroxytryptamine (5-HT) on the chemiluminescence (CL) reaction between [Ag(HIO6 )2 ](5-) and luminol in alkaline solution, a high-performance liquid chromatography (HPLC) method with CL detection was explored for the sensitive determination of monoamine neurotransmitters for the first time. The UV-visible absorption spectra were recorded to study the enhancement mechanism of monoamine neurotransmitters on the CL of [Ag(HIO6 )2 ](5-) and luminol reaction. The HPLC separation of NE, EP, DA and 5-HT was achieved with isocratic elution using a mixture of aqueous 0.2% phosphoric acid and methanol (5:95, v/v) within 11.0 min. Under the optimized conditions, the detection limits of NE, EP, DA, and 5-HT were 4.8, 0.9, 1.9 and 2.3 ng/mL, respectively, corresponding to 17.6-96.0 pg for 20 μL sample injection. The recoveries of monoamine neurotransmitters in rat brain were >95.6% with the precisions expressed by RSD <5.0%. The validated HPLC-CL method was successfully applied for the quantification of NE, EP, DA and 5-HT in rat brain. This method has promising potential for some biological and clinical investigations focusing on the levels of monoamine neurotransmitters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dong Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China.,Department of pharmacy, Fuyang People's Hospital, Fuyang, 236000, People's Republic of China
| | - He Xie
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Haifeng Lu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wei Li
- Department of Antibiotics, Anhui Institute for Food and Drug Control, Hefei, 230051, People's Republic of China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| |
Collapse
|
38
|
Konieczna L, Roszkowska A, Niedźwiecki M, Bączek T. Hydrophilic interaction chromatography combined with dispersive liquid–liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J Chromatogr A 2016; 1431:111-121. [DOI: 10.1016/j.chroma.2015.12.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 01/01/2023]
|
39
|
Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression. Clin Chim Acta 2015; 453:174-81. [PMID: 26712273 DOI: 10.1016/j.cca.2015.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
Analysis of neurotransmitters and their metabolites is useful for the diagnosis of central nervous system diseases. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with protein precipitation was developed to monitor levels of adrenaline (AD), noradrenaline (NA), glutamic acid (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in rat brain tissue. Isoprenaline was used as an internal standard (IS). Neurotransmitters and metabolites were eluted with a reverse phase column under gradient conditions through a mobile phase consisting of 0.2% formic acid water solution/acetonitrile. The compounds were detected and quantified by LC-MS/MS with positive or negative electrospray ionization, which operates in multiple-reaction monitoring mode. The method was linear or polynomial (R(2)>0.99) for AD, NA, Glu, GABA, DA, 5-HT, 5-HIAA, and MHPG in the range of 0.25-200, 0.5-200, 250-20,000, 250-20,000, 0.25-200, 10-3000, 1-50, and 1-50ng/mL, respectively. The validation assays for accuracy and precision, matrix effect, extraction recovery, stability and carry-over of the samples for neurotransmitters and metabolites were consistent with the requirements of regulatory agencies. The method enables rapid quantification of neurotransmitters and their metabolites and has been applied in the nuclear factor (erythroid 2-derived)-like 2 (Nrf2) knockout mouse model of depression.
Collapse
|
40
|
Zhang Z, Xiao T, Hao J, Yu P, Ohsaka T, Mao L. An Online Electrochemical System for Continuous Measurement of Glutamate with Signal Amplification by Enzymatic Substrate Cycling. ELECTROANAL 2015. [DOI: 10.1002/elan.201500122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Zhou W, Zhu B, Liu F, Lyu C, Zhang S, Yan C, Cheng Y, Wei H. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:379-86. [DOI: 10.1016/j.jchromb.2015.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
|
42
|
Ba Q, Cui C, Wen L, Feng S, Zhou J, Yang K. Schisandrin B shows neuroprotective effect in 6-OHDA-induced Parkinson's disease via inhibiting the negative modulation of miR-34a on Nrf2 pathway. Biomed Pharmacother 2015; 75:165-72. [PMID: 26282218 DOI: 10.1016/j.biopha.2015.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/26/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND MiR-34 family members have been previously shown to play potential functional role in Parkinson's disease (PD) pathogenesis. However, the regulatory role of miR-34a has not been demonstrated in PD yet. This study aims to clarify the potential neuroprotective effect of Schisandrin B (Sch B) involving miR-34a function in 6-OHDA-induced PD model. METHODS The expression changes of miR-34a and Nrf2 pathway related genes were detected in 6-OHDA-treated SH-SY5Y cells under Sch B pretreatment. Cell viability and PD feathers of 6-OHDA-induced PD mice were measured for neuroprotection assessment. The regulation of miR-34a on Nrf2 activity and expression was demonstrated through gain-of-function and loss-of-function studies, while the regulatory role of miR-34a in the neuroprotection of Sch B was investigated both in vitro and in vivo. RESULTS Sch B pretreatment ameliorated 6-OHDA-induced changes in vitro, like upregulated miR-34a expression, inhibited Nrf2 pathways and decreased cell survival, and PD feathers in vivo. Moreover, Nrf2 was negatively regulated by miR-34a, while miR-34a overexpression inhibited the neuroprotection of Sch B in both dopaminergic SH-SY5Y cells and PD mice. CONCLUSION Sch B showed neuroprotective effect in 6-OHDA-induced PD pathogenesis, which could be inhibited by miR-34a, involving the negative regulatory mechanism of miR-34a on Nrf2 pathways.
Collapse
Affiliation(s)
- Qinghua Ba
- Department of Neurology, People's Hospital of Zhengzhou, Zhengzhou, China.
| | - Chuanju Cui
- Department of Neurology, the First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Lijun Wen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shutao Feng
- Department of Neurology, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Junchao Zhou
- Department of Neurology, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Ke Yang
- Department of Neurology, People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
43
|
Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography–tandem mass spectrometry coupled with solid phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:154-61. [DOI: 10.1016/j.jchromb.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022]
|
44
|
Gong Y, Li X, Kang L, Xie Y, Rong Z, Wang H, Qi H, Chen H. Simultaneous determination of endocannabinoids in murine plasma and brain substructures by surrogate-based LC–MS/MS: Application in tumor-bearing mice. J Pharm Biomed Anal 2015; 111:57-63. [DOI: 10.1016/j.jpba.2015.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
|
45
|
Zhang XS, Ha S, Wang XL, Shi YL, Duan SS, Li ZA. Tanshinone IIA protects dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity through miR-153/NF-E2-related factor 2/antioxidant response element signaling pathway. Neuroscience 2015; 303:489-502. [PMID: 26116522 DOI: 10.1016/j.neuroscience.2015.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/23/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (Tan IIA), a major bioactive diterpene quinone of Salva miltiorrhiza, had been proved effective in the MPTP model through its anti-inflammatory activity. Here in this research, we found that Tan IIA prevented the loss of nigrostriatal dopaminergic neurons by activating the NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was attenuated by the treatment of Tan IIA in SH-SY5Y cells, which significantly reduced 6-OHDA-induced lactic dehydrogenase release and reactive oxygen species production. Further study indicated that Tan IIA contributed to the nuclear accumulation of Nrf2, which bound to the ARE sequence, and activated ARE-regulated genes, including heme oxygenase-1, glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modifier subunit (GCLM). Tan IIA also protected against damage to mitochondrial membrane potential, reduced the translocation of cytochrome c from the mitochondria to the cytoplasm and the activation of Caspase-9 and Caspase-3. Moreover, we demonstrated the above effects were performed in Nrf2-dependent manner. Further studies revealed that Tan IIA reduced the enhancement of miR-153 by 6-OHDA, which targeted the 3'-UTR of Nrf2, and suppressed its expression and activation. Additionally, neurodegeneration caused by in vivo stereotaxic injection of 6-OHDA could also be ameliorated by the administration of Tan IIA. Taken together, our results strongly suggest that Tan IIA may be beneficial for the treatment of PD, and also confirm that targeting the Nrf2/ARE pathway is a promising strategy for therapeutic intervention in PD.
Collapse
Affiliation(s)
- X S Zhang
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China
| | - S Ha
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China
| | - X L Wang
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China
| | - Y L Shi
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China
| | - S S Duan
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China
| | - Z A Li
- Department of Ultrasound, the Affiliated Hospital of Innermongolia Medical University, Huhhot 010050, China.
| |
Collapse
|
46
|
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 2015; 53:3030-3045. [DOI: 10.1007/s12035-015-9182-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
|
47
|
Bi Y, Qu PC, Wang QS, Zheng L, Liu HL, Luo R, Chen XQ, Ba YY, Wu X, Yang H. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson's disease. PHARMACEUTICAL BIOLOGY 2015; 53:1516-1524. [PMID: 25857256 DOI: 10.3109/13880209.2014.991835] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Alkaloids of Piper longum L. (Piperaceae) (PLA) include piperine and piperlonguminine. Piper longum and piperine have multiple biological properties including antioxidant activity. OBJECTIVE The present study investigated the neuroprotective effects of PLA in a MPTP-induced mouse model of Parkinson's disease. MATERIALS AND METHODS PLA was prepared by extracting the dry seed of P. longum using 85% ethanol. Adult male C57BL/6 mice were divided into eight groups of 12 rats each. Experimental and control groups received an equivalent volume of saline, 0.5% CMC-Na, and 0.1% Tween 80, treated groups received oral PLA (30, 60, and 120 mg/kg), other groups treated with piperine (60 mg/kg) or Madopar (50 mg/kg). The PLA prevention group (PLA-Pr) administrated PLA (120 mg/kg) for 1 week before MPTP challenged. Except for the PLA-Pr group, others were treated for seven consecutive weeks. Parkinson's disease was induced by injecting MPTP intraperitoneally (25 mg/kg) twice weekly for five consecutive weeks. Dopaminerigic (DA) neurons and their metabolism were detected by UFLC-MS/MS. Tyrosine hydroxylase (TH)-immunohistochemistry assay and Western blotting were performed. The antioxidant enzymatic levels were determined by kit-based assays. RESULTS The LD50 value of PLA was determined at 1509 mg/kg of body weight. PLA (60 mg/kg) can significantly increase total movement time and distance (p < 0.05), increase levels of DA (p < 0.05) and DOPAC (p < .05), increase glutathione (GSH) level and superoxide dismutase (SOD) activity (p < 0.05), and decrease the lipid peroxidation of malondiadehycle (MDA) (p < 0.05) in PLA-treated groups as compared with the control group. DISCUSSION AND CONCLUSION Our results indicate that PLA possesses neuroprotective effects and has ameliorative properties in dopaminergic neurons.
Collapse
Affiliation(s)
- Ying Bi
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H. A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron 2015; 65:31-8. [DOI: 10.1016/j.bios.2014.09.099] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023]
|
49
|
Microextraction by packed sorbent (MEPS) to analyze catecholamines in innovative biological samples. J Pharm Biomed Anal 2015; 104:122-9. [DOI: 10.1016/j.jpba.2014.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/20/2014] [Accepted: 11/01/2014] [Indexed: 11/19/2022]
|
50
|
Jing X, Shi H, Zhang C, Ren M, Han M, Wei X, Zhang X, Lou H. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 2014; 286:131-40. [PMID: 25449120 DOI: 10.1016/j.neuroscience.2014.11.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 11/17/2022]
Abstract
Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- X Jing
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - H Shi
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - C Zhang
- Department of Pharmacy, Jinan Women and Children's Hospital, Jinan 250012, China
| | - M Ren
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - M Han
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - X Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - X Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China
| | - H Lou
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|