1
|
Hajeyah AA, Protty MB, Paul D, Costa D, Omidvar N, Morgan B, Iwasaki Y, McGill B, Jenkins PV, Yousef Z, Allen-Redpath K, Soyama S, Choudhury A, Mitra R, Yaqoob P, Morrissey JH, Collins PW, O'Donnell VB. Phosphatidylthreonine is a procoagulant lipid detected in human blood and elevated in coronary artery disease. J Lipid Res 2024; 65:100484. [PMID: 38103786 PMCID: PMC10809103 DOI: 10.1016/j.jlr.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Aminophospholipids (aPL) such as phosphatidylserine are essential for supporting the activity of coagulation factors, circulating platelets, and blood cells. Phosphatidylthreonine (PT) is an aminophospholipid previously reported in eukaryotic parasites and animal cell cultures, but not yet in human tissues. Here, we evaluated whether PT is present in blood cells and characterized its ability to support coagulation. Several PT molecular species were detected in human blood, washed platelets, extracellular vesicles, and isolated leukocytes from healthy volunteers using liquid chromatography-tandem mass spectrometry. The ability of PT to support coagulation was demonstrated in vitro using biochemical and biophysical assays. In liposomes, PT supported prothrombinase activity in the presence and absence of phosphatidylserine. PT nanodiscs strongly bound FVa and lactadherin (nM affinity) but poorly bound prothrombin and FX, suggesting that PT supports prothrombinase through recruitment of FVa. PT liposomes bearing tissue factor poorly generated thrombin in platelet poor plasma, indicating that PT poorly supports extrinsic tenase activity. On platelet activation, PT is externalized and partially metabolized. Last, PT was significantly higher in platelets and extracellular vesicle from patients with coronary artery disease than in healthy controls. In summary, PT is present in human blood, binds FVa and lactadherin, supports coagulation in vitro through FVa binding, and is elevated in atherosclerotic vascular disease. Our studies reveal a new phospholipid subclass, that contributes to the procoagulant membrane, and may support thrombosis in patients at elevated risk.
Collapse
Affiliation(s)
- Ali A Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Biological Sciences, Kuwait University, Safat, Kuwait.
| | - Majd B Protty
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Divyani Paul
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Daniela Costa
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Nader Omidvar
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Bethan Morgan
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Beth McGill
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | | | - Zaheer Yousef
- University Hospital of Wales, Cardiff, United Kingdom
| | - Keith Allen-Redpath
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Shin Soyama
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | | | - Rito Mitra
- University Hospital of Wales, Cardiff, United Kingdom
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter W Collins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; University Hospital of Wales, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
2
|
Iwasaki Y, Sakurai Y, Damnjanović J. A simple chemo-enzymatic synthesis of alkyl-acyl (plasmanyl) phospholipids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Robison HM, Chini CE, Comi TJ, Ryu SW, Ognjanovski E, Perry RH. Identification of lipid biomarkers of metastatic potential and gene expression (HER2/p53) in human breast cancer cell cultures using ambient mass spectrometry. Anal Bioanal Chem 2020; 412:2949-2961. [PMID: 32322955 DOI: 10.1007/s00216-020-02537-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
In breast cancer, overexpression of human epidermal growth factor receptor 2 (HER2) correlates with overactivation of lipogenesis, mutation of tumor suppressor p53, and increased metastatic potential. The mechanisms through which lipids mediate p53, HER2, and metastatic potential are largely unknown. We have developed a desorption electrospray ionization mass spectrometry (DESI-MS) method to identify lipid biomarkers of HER2/p53 expression, metastatic potential, and disease state (viz. cancer vs. non-cancerous) in monolayer and suspension breast cancer cell cultures (metastatic potential: MCF-7, T-47D, MDA-MB-231; HER2/p53: HCC2218 (HER2+++/p53+), HCC1599 (HER2-/p53-), HCC202 (HER2++/p53-), HCC1419 (HER2+++/p53-) HCC70 (HER2-/p53+++); non-cancerous: MCF-10A). Unsupervised principal component analysis (PCA) of DESI-MS spectra enabled identification of twelve lipid biomarkers of metastatic potential and disease state, as well as ten lipids that distinguish cell lines based on HER2/p53 expression levels (> 200 lipids were identified per cell line). In addition, we developed a DESI-MS imaging (DESI-MSI) method for mapping the spatial distribution of lipids in metastatic spheroids (MDA-MB-231). Of the twelve lipids that correlate with changes in the metastatic potential of monolayer cell cultures, three were localized to the necrotic core of spheroids, indicating a potential role in promoting cancer cell survival in nutrient-deficient environments. One lipid species, which was not detected in monolayer MDA-MB-231 cultures, was spatially localized to the periphery of the spheroid, suggesting a potential role in invasion and/or proliferation. These results demonstrate that combining DESI-MS/PCA of monolayer and suspension cell cultures with DESI-MSI of spheroids is a promising approach for identifying lipid biomarkers of specific genotypes and phenotypes, as well as elucidating the potential function of these biomarkers in breast cancer. Graphical Absract.
Collapse
Affiliation(s)
- Heather M Robison
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Corryn E Chini
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Troy J Comi
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Seung Woo Ryu
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | - Elaine Ognjanovski
- Department of Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Richard H Perry
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA. .,Department of Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
| |
Collapse
|
4
|
Damnjanović J, Matsunaga N, Adachi M, Nakano H, Iwasaki Y. Facile Enzymatic Synthesis of Phosphatidylthreonine Using an Engineered Phospholipase D. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Nozomi Matsunaga
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Masaatsu Adachi
- Laboratory of Organic ChemistryDepartment of Applied Molecular BiosciencesGraduate School of Bioagricultural SciencesNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Hideo Nakano
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Yugo Iwasaki
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| |
Collapse
|