1
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
2
|
Hintzen KF, Eussen MM, Neutel C, Bouvy ND, van Schooten FJ, Hooijmans CR, Lubbers T. A systematic review on the detection of volatile organic compounds in exhaled breath in experimental animals in the context of gastrointestinal and hepatic diseases. PLoS One 2023; 18:e0291636. [PMID: 37733754 PMCID: PMC10513283 DOI: 10.1371/journal.pone.0291636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has the potential to serve as an accurate diagnostic tool for gastro-intestinal diseases. Animal studies could be instrumental as a preclinical base and subsequent clinical translation to humans, as they are easier to standardize and better equipped to relate specific VOCs to metabolic and pathological processes. This review provides an overview of the study design, characteristics and methodological quality of previously published animal studies on analysis of exhaled breath in gastrointestinal and hepatic diseases. Guidelines are provided for standardization in study design and breath collection methods to improve comparability, avoid duplication of research and reduce discomfort of animals in future studies. METHODS PubMed and Embase database were searched for animal studies using exhaled breath analysis to detect gastro-intestinal diseases. Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. Information on study design, standardization methods, animal models, breath collection methods and identified VOCs were extracted from the included studies. RESULTS 10 studies were included (acute liver failure n = 1, non-alcoholic steatohepatitis n = 1, hepatic ischemia n = 2, mesenteric ischemia n = 2, sepsis and peritonitis n = 3, colitis n = 1). Rats were used in most of the studies. Exhaled breath was mostly collected using invasive procedures as tracheal cannulation or tracheostomy. Poor reporting on standardization, breath collection methods, analytical techniques, as well as heterogeneity of the studies, complicate comparison of the different studies. CONCLUSION Poor reporting of essential methodological details impaired comprehensive summarizing the various studies on exhaled breath in gastrointestinal and hepatic diseases. Potential pitfalls in study design, and suggestions for improvement of study design are discussed which, when applied, lead to consistent and generalizable results and a reduction in the use of laboratory animals. Refining the methodological quality of animal studies has the potential to improve subsequent clinical trial design.
Collapse
Affiliation(s)
- Kim F.H. Hintzen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Myrthe M.M. Eussen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Céline Neutel
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, The Netherlands
| | - Carlijn R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Doty AC, Wilson AD, Forse LB, Risch TS. Biomarker Metabolites Discriminate between Physiological States of Field, Cave and White-nose Syndrome Diseased Bats. SENSORS 2022; 22:s22031031. [PMID: 35161777 PMCID: PMC8840073 DOI: 10.3390/s22031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Analysis of volatile organic compound (VOC) emissions using electronic-nose (e-nose) devices has shown promise for early detection of white-nose syndrome (WNS) in bats. Tricolored bats, Perimyotis subflavus, from three separate sampling groups defined by environmental conditions, levels of physical activity, and WNS-disease status were captured temporarily for collection of VOC emissions to determine relationships between these combinations of factors and physiological states, Pseudogymnoascus destructans (Pd)-infection status, and metabolic conditions. Physiologically active (non-torpid) healthy individuals were captured outside of caves in Arkansas and Louisiana. In addition, healthy and WNS-diseased torpid bats were sampled within caves in Arkansas. Whole-body VOC emissions from bats were collected using portable air-collection and sampling-chamber devices in tandem. Electronic aroma-detection data using three-dimensional Principal Component Analysis provided strong evidence that the three groups of bats had significantly different e-nose aroma signatures, indicative of different VOC profiles. This was confirmed by differences in peak numbers, peak areas, and tentative chemical identities indicated by chromatograms from dual-column GC-analyses. The numbers and quantities of VOCs present in whole-body emissions from physiologically active healthy field bats were significantly greater than those of torpid healthy and diseased cave bats. Specific VOCs were identified as chemical biomarkers of healthy and diseased states, environmental conditions (outside and inside of caves), and levels of physiological activity. These results suggest that GC/E-nose dual-technologies based on VOC-detection and analyses of physiological states, provide noninvasive alternative means for early assessments of Pd-infection, WNS-disease status, and other physiological states.
Collapse
Affiliation(s)
- Anna C. Doty
- Department of Biology, California State University Bakersfield, Bakersfield, CA 93311, USA
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Correspondence: ; Tel.: +1-661-654-6836
| | - A. Dan Wilson
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Lisa B. Forse
- Pathology Department, Southern Hardwoods Laboratory, Center for Forest Genetics & Ecosystems Biology, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA; (A.D.W.); (L.B.F.)
| | - Thomas S. Risch
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
4
|
Abstract
Sepsis remains a significant cause of neonatal mortality and morbidity, especially in low- and middle-income countries. Neonatal sepsis presents with nonspecific signs and symptoms that necessitate tests to confirm the diagnosis. Early and accurate diagnosis of infection will improve clinical outcomes and decrease the overuse of antibiotics. Current diagnostic methods rely on conventional culture methods, which is time-consuming, and may delay critical therapeutic decisions. Nonculture-based techniques including molecular methods and mass spectrometry may overcome some of the limitations seen with culture-based techniques. Biomarkers including hematological indices, cell adhesion molecules, interleukins, and acute-phase reactants have been used for the diagnosis of neonatal sepsis. In this review, we examine past and current microbiological techniques, hematological indices, and inflammatory biomarkers that may aid sepsis diagnosis. The search for an ideal biomarker that has adequate diagnostic accuracy early in sepsis is still ongoing. We discuss promising strategies for the future that are being developed and tested that may help us diagnose sepsis early and improve clinical outcomes. IMPACT: Reviews the clinical relevance of currently available diagnostic tests for sepsis. Summarizes the diagnostic accuracy of novel biomarkers for neonatal sepsis. Outlines future strategies including the use of omics technology, personalized medicine, and point of care tests.
Collapse
|
5
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
6
|
Sharma R, Zhou M, Tiba MH, McCracken BM, Dickson RP, Gillies CE, Sjoding MW, Nemzek JA, Ward KR, Stringer KA, Fan X. Breath analysis for detection and trajectory monitoring of acute respiratory distress syndrome in swine. ERJ Open Res 2021; 8:00154-2021. [PMID: 35174248 PMCID: PMC8841990 DOI: 10.1183/23120541.00154-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/19/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is poorly defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced using both direct and indirect lung injury. An automated portable gas chromatography device developed in-house was used for point of care breath analysis and to monitor swine breath hourly, starting from initiation of the experiment until the development of ARDS, which was adjudicated based on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the experiment. A total of 67 breath samples (chromatograms) were collected and analysed. Through machine learning, principal component analysis and linear discrimination analysis, seven VOC biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers found in our breath analysis study of human ARDS, corroborating our findings. We also demonstrated that breath analysis detects changes 1–6 h earlier than the clinical adjudication based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used to identify early changes associated with ARDS pathogenesis in swine. Its clinical application could provide intensive care clinicians with a noninvasive diagnostic tool for early detection and continuous monitoring of ARDS. ARDS, confirmed by lung biopsy, was induced in swine, with breath monitored hourly. Seven VOC markers distinguish ARDS, which are the same as those in human ARDS and can predict ARDS onset ∼3 h earlier than clinical adjudication.https://bit.ly/3zIIIMQ
Collapse
|
7
|
Jaimes-Mogollón AL, Welearegay TG, Salumets A, Ionescu R. Review on Volatolomic Studies as a Frontier Approach in Animal Research. Adv Biol (Weinh) 2021; 5:e2000397. [PMID: 33844886 DOI: 10.1002/adbi.202000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/24/2021] [Indexed: 11/06/2022]
Abstract
This paper presents a comprehensive review of the research studies in volatolomics performed on animals so far. At first, the procedures proposed for the collection, preconcentration, and storing of the volatile organic compounds emitted by various biological samples of different animals are presented and discussed. Next, the results obtained in the analysis of the collected volatile samples with analytical equipment are shown. The possible volatile biomarkers identified for various diseases are highlighted for different types of diseases, animal species, and biological samples analyzed. The chemical classes of these compounds, as well as the biomarkers found in a higher number of animal diseases, are indicated, and their possible origin is analyzed. The studies that dealt with the diagnosis of various diseases from sample measurement with electronic nose systems are also presented and discussed. The paper ends with a final remark regarding the necessity of optimization and standardization of sample collection and analysis procedures for obtaining meaningful results.
Collapse
Affiliation(s)
| | - Tesfalem G Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, 75103, Sweden
| | - Andres Salumets
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, 51014, Estonia.,Competence Centre on Health Technologies, Tartu, 50411, Estonia
| | - Radu Ionescu
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| |
Collapse
|
8
|
Lorenz D, Maurer F, Philipp D, Albrecht F, Hüppe T, Sessler DI, Wolf B, Volk T, Kreuer S, Fink T. Changes in volatile organic compounds provoked by lipopolysaccharide- or alpha toxin-induced inflammation in ventilated rats. J Breath Res 2020; 15:016003. [PMID: 33103661 DOI: 10.1088/1752-7163/abb449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.
Collapse
Affiliation(s)
- Dominik Lorenz
- CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Building 57, 66421, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Exhaled Volatile Organic Compounds during Inflammation Induced by TNF-α in Ventilated Rats. Metabolites 2020; 10:metabo10060245. [PMID: 32549262 PMCID: PMC7345252 DOI: 10.3390/metabo10060245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
Systemic inflammation alters the composition of exhaled breath, possibly helping clinicians diagnose conditions such as sepsis. We therefore evaluated changes in exhaled breath of rats given tumor necrosis factor-alpha (TNF-α). Thirty male Sprague-Dawley rats were randomly assigned to three groups (n = 10 each) with intravenous injections of normal saline (control), 200 µg·kg−1 bodyweight TNF-α (TNF-α-200), or 600 µg·kg−1 bodyweight TNF-α (TNF-α-600), and were observed for 24 h or until death. Animals were ventilated with highly-purified synthetic air to analyze exhaled air by multicapillary column–ion mobility spectrometry. Volatile organic compounds (VOCs) were identified from a database. We recorded blood pressure and cardiac output, along with cytokine plasma concentrations. Control rats survived the 24 h observation period, whereas mean survival time decreased to 22 h for TNF-α-200 and 23 h for TNF-α-600 rats. Mean arterial pressure decreased in TNF-α groups, whereas IL-6 increased, consistent with mild to moderate inflammation. Hundreds of VOCs were detected in exhalome. P-cymol increased by a factor-of-two 4 h after injection of TNF-α-600 compared to the control and TNF-α-200. We found that 1-butanol and 1-pentanol increased in both TNF-α groups after 20 h compared to the control. As breath analysis distinguishes between two doses of TNF-α and none, we conclude that it might help clinicians identify systemic inflammation.
Collapse
|
10
|
Longo V, Forleo A, Capone S, Scoditti E, Carluccio MA, Siciliano P, Massaro M. In vitro profiling of endothelial volatile organic compounds under resting and pro-inflammatory conditions. Metabolomics 2019; 15:132. [PMID: 31583479 DOI: 10.1007/s11306-019-1602-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The evaluation of volatile organic compounds(VOCs) emitted by human body offers a unique tool to set up new non-invasive devices for early diagnosis and long-lasting monitoring of most human diseases. However, their cellular origin and metabolic fate have not been completely elucidated yet, thus limiting their clinical application. Endothelium acts as an interface between blood and surrounding tissues. As such, it adapts its physiology in response to different environmental modifications thus playing a role in the pathogenesis of many metabolic and inflammatory diseases. OBJECTIVES Since endothelium specifically reshapes its physiologic functions upon environmental changes the objective of this study was to evaluate if and how pro-inflammatory stimuli affect VOC metabolism in endothelial cell in culture. METHODS Gas chromatography with mass spectrometric detection was applied to profile VOCs in the headspace of cultured endothelial cells (EC) in the absence or presence of the pro-inflammatory stimulus lipopolysaccharide (LPS). RESULTS We observed that, under resting conditions, EC affected the amount of 58 VOCs belonging to aldehyde, alkane and ketone families. Among these, LPS significantly altered the amount of 15 VOCs. ROC curves show a perfect performance (AUC = 1) for 10 metabolites including 1-butanol, 3-methyl-1-butanol and 2-ethyl-1-hexanol. DISCUSSION The emission and uptake of the aforementioned VOCs disclose potential unexplored metabolic pathways for EC that deserve to be investigated. Overall, we identified new candidate VOC potentially exploitable, upon experimental confirm in in vivo model of disease, as potential biomarkers of sepsis and pro-inflammatory clinical settings.
Collapse
Affiliation(s)
- V Longo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy.
| | - A Forleo
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - S Capone
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - E Scoditti
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - M A Carluccio
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy
| | - P Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, Lecce, Italy
| | - M Massaro
- National Research Council of Italy, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
11
|
Wirtz LM, Kreuer S, Volk T, Hüppe T. Moderne Atemgasanalysen. Med Klin Intensivmed Notfmed 2019; 114:655-660. [DOI: 10.1007/s00063-019-0544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
12
|
Volatile Decay Products in Breath During Peritonitis Shock are Attenuated by Enteral Blockade of Pancreatic Digestive Proteases. Shock 2018; 48:571-575. [PMID: 28498300 PMCID: PMC5626116 DOI: 10.1097/shk.0000000000000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is a need to develop markers for early detection of organ failure in shock that can be noninvasively measured at point of care. We explore here the use of volatile organic compounds (VOCs) in expired air in a rat peritonitis shock model. Expired breath samples were collected into Tedlar gas bags and analyzed by standardized gas chromatography. The gas chromatograms were digitally analyzed for presence of peak amounts over a range of Kovach indices. Following the induction of peritonitis, selected volatile compounds were detected within about 1 h, which remained at elevated amounts over a 6 h observation period. These VOCs were not present in control animals without peritonitis. Comparisons with know VOCs indicate that they include 1,4-diaminobutane and trimethylamine N-oxide. When pancreatic digestive proteases were blocked with tranexamic acid in the intestine and peritoneum, a procedure that serves to reduce organ failure in shock, the amounts of VOCs in the breath decreased spontaneously to control values without peritonitis. These results indicate that peritonitis shock is accompanied by development of volatile organic compounds that may be generated by digestive enzymes in the small intestine. VOCs may serve as indicators for detection of early forms of autodigestion by digestive proteases.
Collapse
|
13
|
Bos LDJ. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:33. [PMID: 29430450 DOI: 10.21037/atm.2018.01.17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a complication of critical illness that is characterized by acute onset, protein rich, pulmonary edema. There is no treatment for ARDS, other than the reduction of additional ventilator induced lung injury. Prediction or earlier recognition of ARDS could result in preventive measurements and might decrease mortality and morbidity. Exhaled breath contains volatile organic compounds (VOCs), a collection of hundreds of small molecules linked to several physiological and pathophysiological processes. Analysis of exhaled breath through gas-chromatography and mass-spectrometry (GC-MS) has resulted in an accurate diagnosis of ARDS in several studies. Most identified markers are linked to lipid peroxidation. Octane is one of the few markers that was validated as a marker of ARDS and is pathophysiologically likely to be increased in ARDS. None of the currently studied breath analysis methods is directly applicable in clinical practice. Two steps have to be taken before any breath test can be allowed into the intensive care unit. External validation in a multi-center study is a prerequisite for any of the candidate breath markers and the breath test should outperform clinical prediction scores. Second, the technology for breath analysis should be adapted so that it is available at a decentralized lab inside the intensive care unit and can be operated by trained nurses, in order to reduce the analysis time. In conclusion, exhaled analysis might be used for the early diagnosis and prediction of ARDS in the near future but several obstacles have to be taken in the coming years. Most of the candidate markers can be linked to lipid peroxidation. Only octane has been validated in a temporal external validation cohort and is, at this moment, the top-ranking breath biomarker for ARDS.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Department of Respiratory Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Iroh Tam PY, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res 2017; 82:574-583. [PMID: 28574980 DOI: 10.1038/pr.2017.134] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Progress has been made in the reduction of morbidity and mortality from neonatal sepsis. However, diagnosis continues to rely primarily on conventional microbiologic techniques, which can be inaccurate. The objective of this review is to provide the clinician with an overview of the current information available on diagnosing this condition. We review currently available diagnostic approaches for documenting neonatal sepsis and also describe novel approaches for diagnosing infection in neonates who are under development and investigation. Substantial progress has been made with molecular approaches and further development of non-culture-based methods offer promise. The potential ability to incorporate antimicrobial resistance gene testing in addition to pathogen identification may provide a venue to incorporate a predominantly molecular platform into a larger program of neonatal care.
Collapse
|
15
|
Detection of Sepsis in Preterm Infants by Fecal Volatile Organic Compounds Analysis: A Proof of Principle Study. J Pediatr Gastroenterol Nutr 2017; 65:e47-e52. [PMID: 27846067 DOI: 10.1097/mpg.0000000000001471] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Several studies associated altered gut microbiota composition in preterm infants with late-onset sepsis (LOS), up to days before clinical onset of sepsis. Microbiota analysis as early diagnostic biomarker is, however, in clinical practice currently not feasible because of logistic aspects and high costs. Therefore, we hypothesized that analysis of fecal volatile organic compounds (VOCs) may serve as noninvasive biomarker to predict LOS at a preclinical stage, because VOC reflect the composition and activity of intestinal microbial communities. METHODS In a prospective multicenter study, fecal samples were collected daily from infants with a gestational age of <30 weeks. VOC signatures of fecal samples from infants with LOS, collected up to 5 days before diagnosis, were analyzed by means of an electronic nose technology (Cyranose 320) and compared to matched controls. RESULTS Fecal VOC profiles of infants with LOS (n = 36) could be discriminated from controls (n = 40) at 3 days (area under the curve [±95% confidence interval], P value, sensitivity, specificity; 70.2 [52.2-88.3], 0.033, 57.1%, 61.5%), 2 days (77.7 [62.7-92.7], 0.050, 75.0%, 70.8%), and 1 day (70.4 [49.6-91.3], 0.037, 64.3%, 64.3%) before the onset of LOS. CONCLUSIONS Fecal VOC profiles of preterm infants with LOS could be discriminated from matched controls, up to 3 days before clinical onset of the disease, underlining the hypothesis that intestinal microbiota may play an etiological role in LOS. Notably, VOC profiling is clinically feasible and the potential of this technique in the early detection of LOS needs to be confirmed in future studies.
Collapse
|
16
|
Ashrafi M, Bates M, Baguneid M, Alonso-Rasgado T, Rautemaa-Richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen 2017; 25:574-590. [DOI: 10.1111/wrr.12563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | | | - Mohamed Baguneid
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| | - Riina Rautemaa-Richardson
- University Hospital South Manchester NHS Foundation Trust, Wythenshawe Hospital; Manchester United Kingdom
- Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Institute of Inflammation and Repair, Centre for Dermatological Research, University of Manchester, Manchester; United Kingdom
- Bioengineering Group, School of Materials; University of Manchester, Manchester; United Kingdom
| |
Collapse
|
17
|
Siegel AP, Daneshkhah A, Hardin DS, Shrestha S, Varahramyan K, Agarwal M. Analyzing breath samples of hypoglycemic events in type 1 diabetes patients: towards developing an alternative to diabetes alert dogs. J Breath Res 2017; 11:026007. [PMID: 28569238 DOI: 10.1088/1752-7163/aa6ac6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diabetes is a disease that involves dysregulation of metabolic processes. Patients with type 1 diabetes (T1D) require insulin injections and measured food intake to maintain clinical stability, manually tracking their results by measuring blood glucose levels. Low blood glucose levels, hypoglycemia, can be extremely dangerous and can result in seizures, coma, or even death. Canines trained as diabetes alert dogs (DADs) have demonstrated the ability to detect hypoglycemia from breath, which led us to hypothesize that hypoglycemia, a metabolic dysregulation leading to low blood glucose levels, could be identified through analyzing volatile organic compounds (VOCs) contained within breath. We hoped to replicate the canines' detection ability and success by analytically using gas chromatography/mass spectrometry of VOCs in 128 breath samples collected from 52 youths with T1D at two different diabetes camps. We used different tests for significance including Ranksum, Student's T-test, and difference between means, and found a subset of 56 traces of potential metabolites. Principle component and linear discriminant analysis (LDA) confirmed a hypoglycemic signature likely resides within this group. Supervised machine learning combined with LDA narrowed the list of likely components to seven. The technique of leave one out cross validation demonstrated the model thus developed has a sensitivity of 91% (95% confidence interval (CI) [57.1, 94.7]) and a specificity of 84% (95% CI [73.0, 92.7]) at identifying hypoglycemia. Confidence intervals were obtained by bootstrapping. These results demonstrate that it is possible to differentiate breath samples obtained during hypoglycemic events from all other breath samples by analytical means and could lead to developing a simple analytical monitoring device as an alternative to using DADs.
Collapse
Affiliation(s)
- Amanda P Siegel
- Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, IN, United States of America. Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, IN, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
Peters AL, Gerritsen MG, Brinkman P, Zwinderman KAH, Vlaar APJ, Bos LD. Volatile organic compounds in exhaled breath are independent of systemic inflammatory syndrome caused by intravenous lipopolysaccharide infusion in humans: results from an experiment in healthy volunteers. J Breath Res 2017; 11:026003. [PMID: 28397711 DOI: 10.1088/1752-7163/aa6545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic inflammatory response syndrome (SIRS) is observed during critical illness in most patients. It is defined by a clinical definition. The composition of volatile organic compounds (VOCs) in exhaled breath may change during SIRS and may thus serve as a diagnostic tool. We investigated whether exhaled breath VOCs can serve as biomarker for SIRS in a human model of endotoxemia. Eighteen healthy volunteers received 2 ng Eschericia coli lipopolysaccharide (LPS) kg-1 body weight intravenously. Venous blood and exhaled breath were collected before infusion of LPS and every 2 h thereafter, up to 8 h after infusion. The interleukin (IL)-6 concentration was measured in plasma. VOCs in the exhaled breath were measured by gas chromatography and mass spectrometry. A mixed effects model was fitted to examine the relation between the measured compounds in exhaled breath and time after LPS infusion or IL-6 levels in plasma. Partially-least squares discriminant analysis (PLS-DA) was used to investigate whether we could discriminate between samples collected before and after LPS infusion. The exhaled concentrations of 3-methyl-pentane, 4-methyl-pentanol, 1-hexanol, 2,4-dimethyl-heptane, decane and one unknown compound changed after LPS infusion. However, the false-discovery rate was 43% for the total set of 52 compounds that were present in all samples. Of these VOCs only the unknown compound was associated with systemic levels of IL-6. The PLS-DA algorithm resulted in a moderate discriminatory accuracy. SIRS induced by endotoxemia in human volunteers resulted in minor changes in exhaled VOCs. We therefore conclude that LPS infusion in healthy volunteers does not induce metabolic effects that can be detected through VOC analysis of the exhaled breath. This trial is registered at the Dutch Trial Register: NTR4455.
Collapse
Affiliation(s)
- Anna L Peters
- Department of Intensive Care Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Breath testing has enormous potential in the medical diagnostic field. The underlying complexity and perceived availability of adequate specimens, combined with a lack of knowledge of the metabolic pathways that give rise to compounds that are sources of analytes detectable in breath, has greatly slowed development. These real obstacles have recently been largely overcome in the use of breath testing to identify patients with cystic fibrosis associated Pseudomonas aeruginosa infection and tuberculosis. This review summarizes progress made in the characterization of microbial volatiles produced by major lower respiratory tract bacterial pathogens, and their potential use as diagnostic markers in patient breath testing.
Collapse
Affiliation(s)
- James E Graham
- Department of Microbiology and Immunology, and Department of Biology, University of Louisville, Louisville, KY, USA; E-mail:
| |
Collapse
|
20
|
Szymańska E, Davies AN, Buydens LMC. Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 2016; 141:5689-5708. [DOI: 10.1039/c6an01008c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This is the first comprehensive review on chemometric techniques used in ion mobility spectrometry data analysis.
Collapse
Affiliation(s)
- Ewa Szymańska
- Radboud University
- Institute for Molecules and Materials
- 6500 GL Nijmegen
- The Netherlands
- TI-COAST
| | - Antony N. Davies
- School of Applied Sciences
- Faculty of Computing
- Engineering and Science
- University of South Wales
- UK
| | | |
Collapse
|
21
|
Fink T, Albrecht FW, Maurer F, Kleber A, Hüppe T, Schnauber K, Wolf B, Baumbach JI, Volk T, Kreuer S. Exhalation pattern changes during fasting and low dose glucose treatment in rats. Anal Bioanal Chem 2015; 407:3763-73. [DOI: 10.1007/s00216-015-8602-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 12/30/2022]
|
22
|
Albrecht FW, Hüppe T, Fink T, Maurer F, Wolf A, Wolf B, Volk T, Baumbach JI, Kreuer S. Influence of the respirator on volatile organic compounds: an animal study in rats over 24 hours. J Breath Res 2015; 9:016007. [DOI: 10.1088/1752-7155/9/1/016007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Sun M, Zhao X, Yin H, Wang Z, Jiang C, Liu W, Chen Z, Yuan Y, Li Y, Wang C. Study of breath acetone and its correlations with blood glucose and blood beta-hydroxybutyrate using an animal model with lab-developed type 1 diabetic rats. RSC Adv 2015. [DOI: 10.1039/c5ra07084h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report for the first time a study of breath acetone and its correlations with blood glucose (BG) and blood β-hydroxybutyrate (BHB) using an animal model of rats.
Collapse
|
24
|
Bos LDJ, Schultz MJ, Sterk PJ. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm Med 2014; 14:72. [PMID: 24767549 PMCID: PMC4021554 DOI: 10.1186/1471-2466-14-72] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/09/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is a common, devastating complication of critical illness that is characterized by pulmonary injury and inflammation. The clinical diagnosis may be improved by means of objective biological markers. Electronic nose (eNose) technology can rapidly and non-invasively provide breath prints, which are profiles of volatile metabolites in the exhaled breath. We hypothesized that breath prints could facilitate accurate diagnosis of ARDS in intubated and ventilated intensive care unit (ICU) patients. METHODS Prospective single-center cohort study with training and temporal external validation cohort. Breath of newly intubated and mechanically ventilated ICU-patients was analyzed using an electronic nose within 24 hours after admission. ARDS was diagnosed and classified by the Berlin clinical consensus definition. The eNose was trained to recognize ARDS in a training cohort and the diagnostic performance was evaluated in a temporal external validation cohort. RESULTS In the training cohort (40 patients with ARDS versus 66 controls) the diagnostic model for ARDS showed a moderate discrimination, with an area under the receiver-operator characteristic curve (AUC-ROC) of 0.72 (95%-confidence interval (CI): 0.63-0.82). In the external validation cohort (18 patients with ARDS versus 26 controls) the AUC-ROC was 0.71 [95%-CI: 0.54 - 0.87]. Restricting discrimination to patients with moderate or severe ARDS versus controls resulted in an AUC-ROC of 0.80 [95%-CI: 0.70 - 0.90]. The exhaled breath profile from patients with cardiopulmonary edema and pneumonia was different from that of patients with moderate/severe ARDS. CONCLUSIONS An electronic nose can rapidly and non-invasively discriminate between patients with and without ARDS with modest accuracy. Diagnostic accuracy increased when only moderate and severe ARDS patients were considered. This implicates that breath analysis may allow for rapid, bedside detection of ARDS, especially if our findings are reproduced using continuous exhaled breath profiling. TRIAL REGISTRATION NTR2750, registered 11 February 2011.
Collapse
Affiliation(s)
- Lieuwe DJ Bos
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, G3–228, 1105 AZ Amsterdam, The Netherlands
- Department of Respiratory Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, G3–228, 1105 AZ Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
MIMA—a software for analyte identification in MCC/IMS chromatograms by mapping accompanying GC/MS measurements. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12127-014-0149-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
|
27
|
Wolf A, Baumbach JI, Kleber A, Maurer F, Maddula S, Favrod P, Jang M, Fink T, Volk T, Kreuer S. Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements. J Breath Res 2014; 8:016006. [DOI: 10.1088/1752-7155/8/1/016006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Ellis CK, Stahl RS, Nol P, Waters WR, Palmer MV, Rhyan JC, VerCauteren KC, McCollum M, Salman MD. A pilot study exploring the use of breath analysis to differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis. PLoS One 2014; 9:e89280. [PMID: 24586655 PMCID: PMC3933422 DOI: 10.1371/journal.pone.0089280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023] Open
Abstract
Bovine tuberculosis, caused by Mycobacterium bovis, is a zoonotic disease of international public health importance. Ante-mortem surveillance is essential for control; however, current surveillance tests are hampered by limitations affecting ease of use or quality of results. There is an emerging interest in human and veterinary medicine in diagnosing disease via identification of volatile organic compounds produced by pathogens and host-pathogen interactions. The objective of this pilot study was to explore application of existing human breath collection and analysis methodologies to cattle as a means to identify M. bovis infection through detection of unique volatile organic compounds or changes in the volatile organic compound profiles present in breath. Breath samples from 23 male Holstein calves (7 non-infected and 16 M. bovis-infected) were collected onto commercially available sorbent cartridges using a mask system at 90 days post-inoculation with M. bovis. Samples were analyzed using gas chromatography-mass spectrometry, and chromatographic data were analyzed using standard analytical chemical and metabolomic analyses, principle components analysis, and a linear discriminant algorithm. The findings provide proof of concept that breath-derived volatile organic compound analysis can be used to differentiate between healthy and M. bovis-infected cattle.
Collapse
Affiliation(s)
- Christine K. Ellis
- Animal Population Health Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Randal S. Stahl
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Pauline Nol
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Wildlife Livestock Disease Investigations Team, Fort Collins, Colorado, United States of America
| | - W. Ray Waters
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Mitchell V. Palmer
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Jack C. Rhyan
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Wildlife Livestock Disease Investigations Team, Fort Collins, Colorado, United States of America
| | - Kurt C. VerCauteren
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Matthew McCollum
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Wildlife Livestock Disease Investigations Team, Fort Collins, Colorado, United States of America
| | - M. D. Salman
- Animal Population Health Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
29
|
|
30
|
Barbour AG, Hirsch CM, Ghalyanchi Langeroudi A, Meinardi S, Lewis ERG, Estabragh AS, Blake DR. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection. PLoS One 2013; 8:e69802. [PMID: 23936104 PMCID: PMC3729689 DOI: 10.1371/journal.pone.0069802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs) in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼107 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO) was elevated in samples from infected mice, with a mean (95% confidence limits) effect size of 4.2 (2.8–5.6), when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i) provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii) encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in clinical management.
Collapse
Affiliation(s)
- Alan G Barbour
- Departments of Medicine and Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, USA.
| | | | | | | | | | | | | |
Collapse
|