1
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of genetic polymorphisms associated with interindividual variability of vitamin A concentration in adipose tissue of healthy male adults. J Nutr 2024:S0022-3166(24)01112-X. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), i.e. mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology which includes fat mobilization and catabolism, energy balance and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. Hence, this study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, i.e. at fast and 8h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 SNPs in or near 27 candidate genes were included for univariate analysis. Partial least squares regression (PLS) was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r=-0.184, p=0.28). Interindividual variability of adipose tissue RET concentration was high (CV=62%). Twenty-nine SNPs were significantly (p<0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near PPARG, RXRA, STRA6, CD36, FFAR4, ALDH1A1, MGLL, DGAT2, and PKD1L2. CONCLUSION A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. CLINICAL TRIAL REGISTRY ClinicalTrials.gov registration number NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Institut Universitaire de France (IUF)
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
2
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Borel P. Characterization of the interindividual variability of lutein and zeaxanthin concentrations in the adipose tissue of healthy male adults and identification of combinations of genetic variants associated with it. Food Funct 2024; 15:9995-10006. [PMID: 39279719 DOI: 10.1039/d4fo03087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Lutein (L) and zeaxanthin (Z) are involved in visual function and could prevent age-related macular degeneration and chronic diseases and improve cognitive performances. Adipose tissue is the main storage site for these xanthophylls (Xanth). The factors affecting their concentrations in this tissue remain poorly understood but in animal models, genetic variations in apolipoprotein E and β-carotene oxygenase 2 have been associated with adipose tissue L concentration. Therefore, the aims of this study were to better characterize the interindividual variability of adipose tissue Xanth concentration and to identify single nucleotide polymorphisms (SNPs) associated with it. Periumbilical subcutaneous adipose tissue samples were collected on 6 occasions in 42 healthy adult males and L and Z concentrations were measured by HPLC. Participants had their whole genome genotyped and the associations of 3589 SNPs in 49 candidate genes with the concentrations of L and Z were measured. Mean L and Z concentrations were 281 ± 27 and 150 ± 14 nmol g-1 proteins, respectively. There was no significant correlation between plasma and adipose tissue Xanth concentrations, although the correlation for L approached significance (Pearson's r = 0.276, p = 0.077). Following univariate filtering, 109 and 97 SNPs were then entered into a partial least squares regression analysis to identify the combination of SNPs that explained best adipose tissue concentration of L and Z, respectively. A combination of 7 SNPs in ELOVL5, PPARG, ISX and ABCA1, explained 58% of the variability in adipose tissue L concentration while 11 SNPs located in or near PPARG, ABCA1, ELOVL5, CXCL8, IRS1, ISX, MC4R explained 53% of the variance in adipose tissue Z concentration. This suggests that some genetic variations influence the concentrations of these Xanth in adipose tissue and could therefore indirectly influence the health effects of these compounds. Clinical Trial Registry: https://ClinicalTrials.gov registration number NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Institut Universitaire de France (IUF), France
| | - Beatrice Gleize
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Marion Nowicki
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | - Patrick Borel
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
3
|
Zumaraga MP, Borel P, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Desmarchelier C. Genetic Factors Contributing to Interindividual Variability of α-Tocopherol Levels in Subcutaneous Adipose Tissue among Healthy Adult Males. Nutrients 2024; 16:2556. [PMID: 39125437 PMCID: PMC11314220 DOI: 10.3390/nu16152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In humans, α-tocopherol (α-TOC) is mainly stored in adipose tissue, where it participates in preventing damages induced by inflammation and reactive oxygen species. Factors, including genetic ones, that explain adipose tissue α-TOC concentration remain poorly understood. This study, therefore, aimed to characterize the interindividual variability of adipose tissue α-TOC concentration in healthy individuals and to identify single nucleotide polymorphisms (SNPs) associated with it. The study used a randomized cross-over design with 42 healthy adult males. α-TOC concentration was measured in fasting plasma and periumbilical adipose tissue samples, both at fast and 8 h after consumption of three standard meals. Partial least squares (PLS) regression was performed to identify SNPs associated with the interindividual variability of adipose tissue α-TOC concentration. Adipose tissue α-TOC concentration was not associated with fasting plasma concentration (Pearson's r = 0.24, 95% CI: [-0.08, 0.51]). There was a high interindividual variability of adipose tissue α-TOC concentration (CV = 61%). A PLS regression model comprising 10 SNPs in five genes (PPARG, ABCA1, BUD13, CD36, and MGLL) explained 60% (adjusted R2) of the variability of this concentration. The interindividual variability of adipose tissue α-TOC concentration in humans is due, at least partly, to SNPs in genes involved in α-TOC and triglyceride metabolism.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
- Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City 1631, Philippines
| | - Patrick Borel
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Beatrice Gleize
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Marion Nowicki
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, 75017 Paris, France;
| | - Jean-François Landrier
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
| | - Charles Desmarchelier
- Center for CardioVascular and Nutrition Research (C2VN), Aix Marseille Univ, INSERM, INRAE, 13005 Marseille, France; (M.P.Z.); (P.B.); (B.G.); (M.N.); (J.-F.L.)
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
4
|
Ganugi P, Fiorini A, Tabaglio V, Capra F, Zengin G, Bonini P, Caffi T, Puglisi E, Trevisan M, Lucini L. The Functional Profile and Antioxidant Capacity of Tomato Fruits Are Modulated by the Interaction between Microbial Biostimulants, Soil Properties, and Soil Nitrogen Status. Antioxidants (Basel) 2023; 12:antiox12020520. [PMID: 36830078 PMCID: PMC9951999 DOI: 10.3390/antiox12020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Federico Capra
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya Campus, 8300 Konya, Turkey
| | | | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence:
| |
Collapse
|
5
|
Zumaraga MP, Borel P, Bott R, Nowicki M, Lairon D, Desmarchelier C. The Interindividual Variability of Phytofluene Bioavailability is Associated with a Combination of Single Nucleotide Polymorphisms. Mol Nutr Food Res 2023; 67:e2200580. [PMID: 36349532 PMCID: PMC10078114 DOI: 10.1002/mnfr.202200580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE Phytofluene is a colorless carotenoid with potential health benefits that displays a higher bioavailability compared to carotenoids such as lutein, β-carotene or lycopene. Several studies suggest its bioavailability displays an elevated interindividual variability. The aim of this work is to investigate whether a combination of SNPs is associated with this variability. METHODS AND RESULTS Thirty-seven healthy adult males consume a test meal that provides phytofluene from a tomato puree. Phytofluene concentrations are measured at fast and in chylomicrons at regular time intervals after meal intake. Identification of the combination of SNPs that best explained the interindividual variability of the phytofluene response is assessed by partial least squares regression. There is a large interindividual variability in the phytofluene response, with CV = 88%. Phytofluene bioavailability is positively correlated with fasting plasma phytofluene concentration (r = 0.57; p = 2 × 10-4 ). A robust partial least squares regression model comprising 14 SNPs near or within 11 genes (ABCA1-rs2487059, rs2515629, and rs4149316, APOC1-rs445925, CD36-rs3211881, ELOVL5-rs6941533, FABP1-rs10185660, FADS3-rs1000778, ISX-rs130461, and rs17748559, LIPC-rs17240713, LPL-rs7005359, LYPLAL1-rs1351472, SETD7-rs11936429) explains 51% (adjusted R2 ) of the interindividual variability in phytofluene bioavailability. CONCLUSIONS This study reports a combination of SNPs that is associated with a significant part of the interindividual variability of phytofluene bioavailability in a healthy male adult population.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City, NCR 1631, Philippines
| | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Romain Bott
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Denis Lairon
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.201801134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry Sharif University of Technology Tehran Iran
| | - Roma Tauler
- Department of Environmental Chemistry IDAEA-CSIC 08034 Barcelona Spain
| |
Collapse
|
7
|
Status and Dietary Intake of Phytoene and Phytofluene in Spanish Adults and the Effect of a Four-Week Dietary Intervention with Lutein-Rich Fruits or Vegetables. Nutrients 2022; 14:nu14142922. [PMID: 35889879 PMCID: PMC9319977 DOI: 10.3390/nu14142922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
Phytoene (PT) and phytofluene (PTF) are colourless carotenoids presents in the human diet and in blood, faeces and tissues and are biologically active. However, there is very little data on these carotenoids. This study aims to assess PT and PTF concentrations in serum from healthy Spanish normolipemic subjects (n = 101, 45-65 years) and the effect of a fruit and vegetable dietary intervention (4 weeks, n = 29) on PT and PTF concentration in serum and faeces and dietary intake. Serum and faecal concentrations were analysed by HPLC and dietary intake by 3 × 24 h recalls. PT showed higher concentrations than PTF in serum, faeces and in the dietary intake. Considering both studies, PT and PTF concentrations in serum were 0.16 ± 0.07 and 0.05 ± 0.04 µmol/L, respectively, in faeces 17.7 ± 20.3 and 6.5 ± 7.9 µg/g, respectively, and in dietary intake the median was 2.4 and 0.6 mg/p/day, respectively. Carrots and tomatoes were the major dietary contributors of these carotenoids. The dietary intervention did not cause significant variations in the PT and PTF intake or serum concentrations, but a lower concentration in faeces was observed for the fruit group (PT: p = 0.024; PTF isomer-3: p = 0.034). These data highlight the need for further research on the activities of these carotenoids in humans.
Collapse
|
8
|
Carazo A, Macáková K, Matoušová K, Krčmová LK, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021; 13:1703. [PMID: 34069881 PMCID: PMC8157347 DOI: 10.3390/nu13051703] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; (K.M.); (L.K.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michele Protti
- The Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum–University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic;
| |
Collapse
|
9
|
Qi FF, Tao LM, Dai YM, Zhang BM, Wang X, Yu Y. Optimization and application of high-throughput supported liquid extraction for simultaneous determination of carotenoids and fat-soluble vitamins in serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122672. [PMID: 33984631 DOI: 10.1016/j.jchromb.2021.122672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
The demand for analysis of carotenoids (CAR) and fat-soluble vitamins (FSV) is continuously expanding, but currently used sample preparation methods either require complicated extraction procedure or large sample volume, let alone the reliability of the results. This study aimed to develop a fast, high-efficient, and high-throughput method based on supported liquid extraction (SLE) for the simultaneous extraction of FSV and CAR from human serum before using high-performance liquid chromatography-diode array detector (HPLC-DAD) analysis. The optimization of SLE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD) and included serum-water-extraction solvent ratio and eluent volume. Under optimal conditions, the proposed method gives acceptable limits of detection (LOD) (0.005-0.3 μg/mL), good recovery (89.6-110.9%) as well as relative standard deviation (RSD) of less than 10.1% by consuming lower serum sample (100 μL) and less sample preparation time (2 min per sample). Compared with liquid-phase extraction (LLE), the SLE delivers rapid extraction with higher recovery, better reproducibility, and lower matrix effect for CAR and FSV analysis. The method has been successfully applied to quantify CAR and FSV levels in serum of healthy individuals and age-related macular degeneration (AMD) patients, demonstrating the feasibility of the proposed method for epidemiology and routine applications.
Collapse
Affiliation(s)
- Fei-Fei Qi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Li-Mei Tao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Yi-Ming Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China
| | - Bao-Ming Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China; Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shanxi 710004, PR China
| | - Xin Wang
- Chemical Engineering Institute, Northwest University for Nationalities, Lanzhou, Gansu 730000, PR China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, PR China.
| |
Collapse
|
10
|
Yu J, Gleize B, Zhang L, Caris-Veyrat C, Renard CMGC. Impact of onions in tomato-based sauces on isomerization and bioaccessibility of colorless carotenes: phytoene and phytofluene. Food Funct 2020; 11:5122-5132. [PMID: 32432278 DOI: 10.1039/d0fo00505c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Onions as an interesting ingredient have been proved to promote Z-isomerization of lycopene and increase bioaccessibility of total-lycopene. Phytoene (PT) and phytofluene (PTF), the precursors of lycopene, are colorless carotenes, which are attracting much attention and are also abundant in tomatoes. Therefore, onions might also affect the distribution and bioaccessibility of PT and PTF isomers during heating tomato (hot-break and cold-break purees)-onion-extra virgin olive oil (EVOO) sauces. The addition of onions (or diallyl disulfide present in onions) into tomato purees did not cause degradation of PT or PTF; however it favored E/Z-isomerization of PT and PTF by reducing the proportions of their natural Z-isomers (Z-15-PT and Z2,3-PTF) and decreased the bioaccessibility of total-PT and total-PTF. Simultaneously, a complex picture was obtained for the effect of onions on the bioaccessibility of individual PT and PTF isomers, depending on the precise isomer. Bioaccessibility of PT and PTF isomers in tomato-based sauces decreased in the order: 15-Z-PT > all-E-PT; Z2,3-PTF > all-E-PTF > Z4 or Z5-PTF; total-PT > total-PTF. E-isomerization of PT and PTF enhanced by onions during heating tomato-onion purees decreased their bioaccessibility.
Collapse
Affiliation(s)
- Jiahao Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China and State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China. and INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France.
| | - Béatrice Gleize
- INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France.
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | | | | |
Collapse
|
11
|
Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. Anal Chim Acta 2018; 1032:40-47. [DOI: 10.1016/j.aca.2018.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/22/2022]
|
12
|
Macular carotenoids in lipid food matrices: DOE-based high energy extraction of egg yolk xanthophylls and quantification through a validated APCI(+) LC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:160-171. [PMID: 30173082 DOI: 10.1016/j.jchromb.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023]
Abstract
Lutein and zeaxanthin exhibit significant biological activities therefore their dietary intake through carotenoid-rich foods and supplements is strongly recommended as preventive approach. Hence their extraction from natural substrates targets to their commercial exploitation as nutraceuticals and ocular pharmaceuticals. Since carotenoids' bioavailability is higher in fat-containing substrates, egg yolk is considered an ideal food matrix. DOE-based optimization of novel high energy extraction practices achieves efficient recovery of xanthophylls from lipid sources. In this research, 23 full factorial and Box-Behnken designs (BBD) were applied for optimizing ultrasound- (UAE) and microwave-assisted extraction (MAE) variables (i.e. extraction solvent, temperature, time, US or MW power and solvent/material ratio). LC-MS/MS results pointed out the precedence of UAE in lutein and zeaxanthin extraction, where higher yields were obtained with 1:1 n-hexane-acetone as solvent mixture at 19 min, 600 W and 35 mL g-1. UAE carotenoid content was higher than MAE due to the different mechanisms laying behind the two processes and due to more complete granule rupture caused by higher US power. Evaluating the current results, DOE-based UAE analytical methodology stands out as an auspicious and sustainable alternative for commercial-based extraction of lipidic bioactive compounds for food and drug industrial applications.
Collapse
|
13
|
Pérez-Gálvez A, Sánchez-García A, Garrido-Fernández J, Ríos J. MS tools for a systematic approach in survey for carotenoids and their common metabolites. Arch Biochem Biophys 2018; 650:85-92. [DOI: 10.1016/j.abb.2018.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
|
14
|
Tauler R, Parastar H. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2018; 61:e201801134. [DOI: 10.1002/anie.201801134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Roma Tauler
- IDAEA-CSIC Environmental Chemistry Jordi Girona 18-26 08034 Barcelona SPAIN
| | | |
Collapse
|
15
|
Schex R, Lieb VM, Jiménez VM, Esquivel P, Schweiggert RM, Carle R, Steingass CB. HPLC-DAD-APCI/ESI-MS n analysis of carotenoids and α-tocopherol in Costa Rican Acrocomia aculeata fruits of varying maturity stages. Food Res Int 2018; 105:645-653. [DOI: 10.1016/j.foodres.2017.11.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 11/16/2022]
|
16
|
Abate-Pella D, Freund DM, Slovin JP, Hegeman AD, Cohen JD. An improved method for fast and selective separation of carotenoids by LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1067:34-37. [PMID: 28985484 DOI: 10.1016/j.jchromb.2017.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022]
Abstract
Carotenoids are a large class of compounds that are biosynthesized by condensation of isoprene units in plants, fungi, bacteria, and some animals. They are characteristically highly conjugated through double bonds, which lead to many isomers as well susceptibility to oxidation and other chemical modifications. Carotenoids are important because of their potent antioxidant activity and are the pigments responsible for color in a wide variety of foods. Human consumption is correlated to many health benefits including prevention of cancer, cardiovascular disease, and age-related disease. Extreme hydrophobicity, poor stability, and low concentration in biological samples make these compounds difficult to analyze and difficult to develop analytical methods for aimed towards identification and quantification. Examples in the literature frequently report the use of exotic stationary phases, solvents, and additives, such as ethyl acetate, dichloromethane, and methyl tert-butyl ether that are incompatible with liquid chromatography mass spectrometry (LC-MS). In order to address these issues, we implemented the use of LC-MS friendly conditions using a low-hydrophobicity cyano-propyl column (Agilent Zorbax SB-CN). We successfully differentiated between isomeric carotenoids by optimizing two gradient methods and using a mixture of 11 standards and LC-MS in positive ionization mode. Three complex biological samples from strawberry leaf, chicken feed supplement, and the photosynthetic bacterium Chloroflexus aurantiacus were analyzed and several carotenoids were resolved in these diverse backgrounds. Our results show this methodology is a significant improvement over other alternatives for analyzing carotenoids because of its ease of use, rapid analysis time, high selectivity, and, most importantly, its compatibility with typical LC-MS conditions.
Collapse
Affiliation(s)
- Daniel Abate-Pella
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, USA
| | - Dana M Freund
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, USA.
| | - Janet P Slovin
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA/ARS, Beltsville, MD, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | - Jerry D Cohen
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
17
|
|
18
|
Fu X, Zhou Y, Zeng L, Dong F, Mei X, Liao Y, Watanabe N, Yang Z. Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Adv 2017. [DOI: 10.1039/c7ra00766c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The progress in the successful techniques used for studying metabolites involved in the metabolic routes of plant volatiles is summarized.
Collapse
Affiliation(s)
- Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Fang Dong
- Guangdong Food and Drug Vocational College
- Guangzhou 510520
- China
| | - Xin Mei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Naoharu Watanabe
- Graduate School of Science and Technology
- Shizuoka University
- Hamamatsu 432-8561
- Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
19
|
Ho NH, Inbaraj BS, Chen BH. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability. Sci Rep 2016; 6:25426. [PMID: 27150134 PMCID: PMC4858739 DOI: 10.1038/srep25426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8'-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of Capryol(TM)90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system.
Collapse
Affiliation(s)
- Nai-Hsing Ho
- Department of Food Science, Fu Jen University, Taipei 242, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen University, Taipei 242, Taiwan
| |
Collapse
|
20
|
Gentili A, Caretti F, Ventura S, Pérez-Fernández V, Venditti A, Curini R. Screening of Carotenoids in Tomato Fruits by Using Liquid Chromatography with Diode Array-Linear Ion Trap Mass Spectrometry Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7428-7439. [PMID: 26257083 DOI: 10.1021/acs.jafc.5b02910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents an analytical strategy for a large-scale screening of carotenoids in tomato fruits by exploiting the potentialities of the triple quadrupole-linear ion trap hybrid mass spectrometer (QqQLIT). The method involves separation on C30 reversed-phase column and identification by means of diode array detection (DAD) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The authentic standards of six model compounds were used to optimize the separative conditions and to predict the chromatographic behavior of untargeted carotenoids. An information dependent acquisition (IDA) was performed with (i) enhanced-mass scan (EMS) as the survey scan, (ii) enhanced-resolution (ER) scan to obtain the exact mass of the precursor ions (16-35 ppm), and (iii) enhanced product ion (EPI) scan as dependent scan to obtain structural information. LC-DAD-multiple reaction monitoring (MRM) chromatograms were also acquired for the identification of targeted carotenoids occurring at low concentrations; for the first time, the relative abundance between the MRM transitions (ion ratio) was used as an extra tool for the MS distinction of structural isomers and the related families of geometrical isomers. The whole analytical strategy was high-throughput, because a great number of experimental data could be acquired with few analytical steps, and cost-effective, because only few standards were used; when applied to characterize some tomato varieties ('Tangerine', 'Pachino', 'Datterino', and 'Camone') and passata of 'San Marzano' tomatoes, our method succeeded in identifying up to 44 carotenoids in the 'Tangerine'" variety.
Collapse
Affiliation(s)
- Alessandra Gentili
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Fulvia Caretti
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Salvatore Ventura
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Virginia Pérez-Fernández
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Alessandro Venditti
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| | - Roberta Curini
- Department of Chemistry and ‡Department of Environmental Biology, University of Rome "La Sapienza" , Piazzale Aldo Moro No. 5, P.O. Box 34, Posta 62, 00185 Roma, Italy
| |
Collapse
|
21
|
Huang RFS, Wei YJ, Inbaraj BS, Chen BH. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int J Nanomedicine 2015; 10:2823-46. [PMID: 25914533 PMCID: PMC4399598 DOI: 10.2147/ijn.s79107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lycopene (LP), an important functional compound in tomatoes, and gold nanoparticles (AN), have received considerable attention as potential candidates for cancer therapy. However, the extreme instability and poor bioavailability of LP limits its in vivo application. This study intends to develop a nanoemulsion system incorporating both LP and AN, and to study the possible synergistic effects on the inhibition of the HT-29 colon cancer cell line. LP-nanogold nanoemulsion containing Tween 80 as an emulsifier was prepared, followed by characterization using transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, ultraviolet spectroscopy, and zeta potential analysis. The particle size as determined by TEM and DLS was 21.3±3.7 nm and 25.0±4.2 nm for nanoemulsion and 4.7±1.1 nm and 3.3±0.6 nm for AN, while the zeta potential of nanoemulsion and AN was -32.2±1.8 mV and -48.5±2.7 mV, respectively. Compared with the control treatment, both the combo (AN 10 ppm plus LP 12 μM) and nanoemulsion (AN 0.16 ppm plus LP 0.4 μM) treatments resulted in a five- and 15-fold rise in early apoptotic cells of HT-29, respectively. Also, the nanoemulsion significantly reduced the expressions of procaspases 8, 3, and 9, as well as PARP-1 and Bcl-2, while Bax expression was enhanced. A fivefold decline in the migration capability of HT-29 cells was observed for this nanoemulsion when compared to control, with the invasion-associated markers being significantly reversed through the upregulation of the epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP)-2, and active MMP-9 expressions. The TEM images revealed that numerous nanoemulsion-filled vacuoles invaded cytosol and converged into the mitochondria, resulting in an abnormally elongated morphology with reduced cristae and matrix contents, demonstrating a possible passive targeting effect. The nanoemulsion containing vacuoles were engulfed and internalized by the nuclear membrane envelop for subsequent invasion into the nucleoli. Taken together, LP-nanogold nanoemulsion could provide synergistic effects at AN and LP doses 250 and 120 times lower than that in the combo treatment, respectively, demonstrating the potential of nanoemulsion developed in this study for a possible application in colon cancer therapy.
Collapse
Affiliation(s)
- Rwei-Fen S Huang
- Graduate Institute of Nutrition and Food Science, Fu Jen University, Taipei, Taiwan ; Department of Nutritional Science, Fu Jen University, Taipei, Taiwan
| | - Yi-Jun Wei
- Graduate Institute of Nutrition and Food Science, Fu Jen University, Taipei, Taiwan ; Department of Nutritional Science, Fu Jen University, Taipei, Taiwan
| | | | - Bing-Huei Chen
- Graduate Institute of Nutrition and Food Science, Fu Jen University, Taipei, Taiwan ; Department of Food Science, Fu Jen University, Taipei, Taiwan ; Graduate Institute of Medicine, Fu Jen University, Taipei, Taiwan
| |
Collapse
|
22
|
Singh A, Ahmad S, Ahmad A. Green extraction methods and environmental applications of carotenoids-a review. RSC Adv 2015. [DOI: 10.1039/c5ra10243j] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers and discusses various aspects of carotenoids including their chemistry, classification, biosynthesis, extraction methods (conventional and non-conventional), analytical techniques and biological roles in living beings.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
- India
| | - Anees Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
23
|
Gupta P, Sreelakshmi Y, Sharma R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. PLANT METHODS 2015; 11:5. [PMID: 25688283 PMCID: PMC4329677 DOI: 10.1186/s13007-015-0051-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND The dietary carotenoids serve as precursor for vitamin A and prevent several chronic-degenerative diseases. The carotenoid profiling is necessary to understand their importance on human health. However, the available high-performance liquid chromatography (HPLC) methods to resolve the major carotenoids require longer analysis times and do not adequately resolve the violaxanthin and neoxanthin. RESULTS A fast and sensitive HPLC method was developed using a C30 column at 20°C with a gradient consisting of methanol, methyl-tert-butyl ether and water. A total of 15 major carotenoids, including 14 all-trans forms and one cis form were resolved within 20 min. The method also distinctly resolved violaxanthin and neoxanthin present in green tissues. Additionally this method also resolved geometrical isomers of the carotenoids. CONCLUSION The HPLC coupled with C30 column efficiently resolved fifteen carotenoids and their isomers in shorter runtime of 20 min. Application of this method to diverse matrices such as tomato fruits and leaves, Arabidopsis leaves and green pepper fruits showed the versatility and robustness of the method. The method would be useful for high throughput analysis of large number of samples.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
24
|
Chen YJ, Inbaraj BS, Pu YS, Chen BH. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability. NANOTECHNOLOGY 2014; 25:155102. [PMID: 24651082 DOI: 10.1088/0957-4484/25/15/155102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.
Collapse
Affiliation(s)
- Yi Jyun Chen
- Department of Food Science, Fu Jen University, Taipei 242, Taiwan
| | | | | | | |
Collapse
|
25
|
|
26
|
Parastar H. Mutual information concept for evaluation of separation quality in hyphenated chromatographic measurements. Analyst 2014; 139:2574-82. [DOI: 10.1039/c3an02027d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|