1
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
2
|
Sun C, Pan L, Zhang L, Huang J, Yao D, Wang CZ, Zhang Y, Jiang N, Chen L, Yuan CS. A biomimetic fluorescent nanosensor based on imprinted polymers modified with carbon dots for sensitive detection of alpha-fetoprotein in clinical samples. Analyst 2019; 144:6760-6772. [DOI: 10.1039/c9an01065c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A biomimetic fluorescent nanosensor based on molecularly imprinted polymers modified with carbon dots (CDs@MIPs) has been prepared for rapid, selective and sensitive detection of alpha-fetoprotein (AFP) in clinical samples.
Collapse
Affiliation(s)
- Chenghong Sun
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
- Management Center of Family Planning Drugs and Instruments of Sichuan Province
| | - Linli Pan
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Lei Zhang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Jiaojiao Huang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
- Department of Pharmacy
| | - Dandan Yao
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research
- and Department of Anesthesia & Critical Care
- University of Chicago
- Chicago
- USA
| | - Yu Zhang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Nan Jiang
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Lina Chen
- School of Pharmacy
- Nanjing Medical University
- Nanjing
- China
| | - Chun-su Yuan
- Tang Center for Herbal Medicine Research
- and Department of Anesthesia & Critical Care
- University of Chicago
- Chicago
- USA
| |
Collapse
|
3
|
Wohlrab P, Kraft F, Tretter V, Ullrich R, Markstaller K, Klein KU. Recent advances in understanding acute respiratory distress syndrome. F1000Res 2018; 7. [PMID: 29568488 PMCID: PMC5840611 DOI: 10.12688/f1000research.11148.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
4
|
Hartmann EK, Ziebart A, Thomas R, Liu T, Schad A, Tews M, Moosmann B, Kamuf J, Duenges B, Thal SC, David M. Inhalation therapy with the synthetic TIP-like peptide AP318 attenuates pulmonary inflammation in a porcine sepsis model. BMC Pulm Med 2015; 15:7. [PMID: 25879802 PMCID: PMC4346123 DOI: 10.1186/s12890-015-0002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The lectin-like domain of TNF-α can be mimicked by synthetic TIP peptides and represents an innovative pharmacologic option to treat edematous respiratory failure. TIP inhalation was shown to reduce pulmonary edema and improve gas exchange. In addition to its edema resolution effect, TIP peptides may exert some anti-inflammatory properties. The present study therefore investigates the influence of the inhaled TIP peptide AP318 on intrapulmonary inflammatory response in a porcine model of systemic sepsis. METHODS In a randomized-blinded setting lung injury was induced in 18 pigs by lipopolysaccharide-infusion and a second hit with a short period of ventilator-induced lung stress, followed by a six-hour observation period. The animals received either two inhalations with the peptide (AP318, 2×1 mg kg(-1)) or vehicle. Post-mortem pulmonary expression of inflammatory and mechanotransduction markers were determined by real-time polymerase chain reaction (IL-1β, IL-6, TNF-α, COX-2, iNOS, amphiregulin, and tenascin-c). Furthermore, regional histopathological lung injury, edema formation and systemic inflammation were quantified. RESULTS Despite similar systemic response to lipopolysaccharide infusion in both groups, pulmonary inflammation (IL-6, TNF-α, COX-2, tenascin-c) was significantly mitigated by AP318. Furthermore, a Western blot analysis shows a significantly lower of COX-2 protein level. The present sepsis model caused minor lung edema formation and moderate gas exchange impairment. Six hours after onset pathologic scoring showed no improvement, while gas exchange parameters and pulmonary edema formation were similar in the two groups. CONCLUSION In summary, AP318 significantly attenuated intrapulmonary inflammatory response even without the presence or resolution of severe pulmonary edema in a porcine model of systemic sepsis-associated lung injury. These findings suggest an anti-inflammatory mechanism of the lectin-like domain beyond mere edema reabsorption in endotoxemic lung injury in vivo.
Collapse
Affiliation(s)
- Erik K Hartmann
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Alexander Ziebart
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Rainer Thomas
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Tanghua Liu
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Arno Schad
- Institute of Pathology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Martha Tews
- Institute of Pathobiochemistry, Medical Center of the Johannes, Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Bernd Moosmann
- Institute of Pathobiochemistry, Medical Center of the Johannes, Gutenberg-University, Duesbergweg 6, 55128, Mainz, Germany.
| | - Jens Kamuf
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Bastian Duenges
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Matthias David
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Schwameis R, Eder S, Pietschmann H, Fischer B, Mascher H, Tzotzos S, Fischer H, Lucas R, Zeitlinger M, Hermann R. A FIM study to assess safety and exposure of inhaled single doses of AP301-A specific ENaC channel activator for the treatment of acute lung injury. J Clin Pharmacol 2014; 54:341-50. [PMID: 24515273 PMCID: PMC4160070 DOI: 10.1002/jcph.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/01/2013] [Indexed: 11/05/2022]
Abstract
AP301 is an activator of ENaC-mediated Na(+) uptake for the treatment of pulmonary permeability edema in acute respiratory distress syndrome (ARDS). The purpose of this "first-in-man" study was to examine local and systemic safety and systemic exposure of ascending single doses of AP301, when inhaled by healthy male subjects. In a double-blind, placebo-controlled study, 48 healthy male subjects were randomized to 6 ascending dose groups (single doses up to 120 mg) of 8 subjects each (3:1 randomization of AP301: placebo). Serial assessments included spirometry, exhaled nitric oxide (eNO), vital signs, ECG, safety laboratory, adverse events (AE), and blood samples for the quantification of AP301 in plasma. Descriptive statistics was applied. All 48 subjects received treatment, and completed the study as per protocol. No serious, local (e.g., hoarseness, cough, bronchospasm), or dose-limiting AEs were noted. None of the assessments indicated notable dose or time-related alterations of safety outcomes. Observed AP301 systemic exposure levels were very low, with mean Cmax values of <2.5 ng/mL in the highest dose groups. Inhaled AP301 single doses up to 120 mg were safe and well tolerated by healthy male subjects. Distribution of inhaled AP301 was largely confined to the lung, as indicated by very low AP301 systemic exposure levels.
Collapse
Affiliation(s)
- Richard Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Eder
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA, USA
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Robert Hermann
- Clinical Research Appliance, Heinrich-Vingerhut-Weg 3, D-63571, Gelnhausen, Germany
| |
Collapse
|