1
|
Stobernack T, Dommershausen N, Alcolea-Rodríguez V, Ledwith R, Bañares MA, Haase A, Pink M, Dumit VI. Advancing Nanomaterial Toxicology Screening Through Efficient and Cost-Effective Quantitative Proteomics. SMALL METHODS 2024:e2400420. [PMID: 38813751 DOI: 10.1002/smtd.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Proteomic investigations yield high-dimensional datasets, yet their application to large-scale toxicological assessments is hindered by reproducibility challenges due to fluctuating measurement conditions. To address these limitations, this study introduces an advanced tandem mass tag (TMT) labeling protocol. Although labeling approaches shorten data acquisition time by multiplexing samples compared to traditional label-free quantification (LFQ) methods in general, the associated costs may surge significantly with large sample sets, for example, in toxicological screenings. However, the introduced advanced protocol offers an efficient, cost-effective alternative, reducing TMT reagent usage (by a factor of ten) and requiring minimal biological material (1 µg), while demonstrating increased reproducibility compared to LFQ. To demonstrate its effectiveness, the advanced protocol is employed to assess the toxicity of nine benchmark nanomaterials (NMs) on A549 lung epithelial cells. While LFQ measurements identify 3300 proteins, they proved inadequate to reveal NM toxicity. Conversely, despite detecting 2600 proteins, the TMT protocol demonstrates superior sensitivity by uncovering alterations induced by NM treatment. In contrast to previous studies, the introduced advanced protocol allows simultaneous and straightforward assessment of multiple test substances, enabling prioritization, ranking, and grouping for hazard evaluation. Additionally, it fosters the development of New Approach Methodologies (NAMs), contributing to innovative methodologies in toxicological research.
Collapse
Affiliation(s)
- Tobias Stobernack
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Nils Dommershausen
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Víctor Alcolea-Rodríguez
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
- Spanish National Research Council - Institute of Catalysis and Petrochemistry (ICP-CSIC), Spectroscopy and Industrial Catalysis group, Marie Curie, 2, Madrid, 28049, Spain
| | - Rico Ledwith
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Miguel A Bañares
- Spanish National Research Council - Institute of Catalysis and Petrochemistry (ICP-CSIC), Spectroscopy and Industrial Catalysis group, Marie Curie, 2, Madrid, 28049, Spain
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Mario Pink
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Verónica I Dumit
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Taverna D, Gaspari M. A critical comparison of three MS-based approaches for quantitative proteomics analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4669. [PMID: 33128495 DOI: 10.1002/jms.4669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
MS-based proteomics is expanding its role as a routine tool for biological discovery. Nevertheless, the task of accurately and precisely quantifying thousands of analytes in a single experiment remains challenging. In this study, the diagnostic accuracy of three popular data-dependent methods for protein relative quantification (label-free [LF], dimethyl labelling [DML] and tandem mass tags [TMT]) has been assessed using a mixed species proteome (three species) and five experimental replicates per condition. Data were produced using a quadrupole-Orbitrap mass spectrometer and analysed using a single platform (the MaxQuant/Perseus software suite). The whole comparative analysis was repeated three times over a period of 6 months, in order to assess the consistency of the reported findings. As expected, label-based methods reproducibly provided a lower false positives rate, whereas TMT and LF performed similarly, and significantly better than DML, in terms of proteome coverage using the same instrument time. Although parameters like proteome coverage and precision were consistent in between replicates, other parameters like sensitivity, intended as the capacity of correctly classifying true positives (regulated proteins), were found to be less reproducible, especially at challenging fold-changes (1.5). Collectively, data suggest that an increased interest in data reproducibility would be desirable in the quantitative proteomics field.
Collapse
Affiliation(s)
- Domenico Taverna
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Shen PT, Lin YR, Chen BH, Huang MF, Cheng CW, Shiue YL, Liang SS. A standard addition method to quantify histamine by reductive amination and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:412-418. [PMID: 31006258 DOI: 10.1177/1469066719838966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histamine is an organic nitrogenous compound that acts as a neurotransmitter in the uterus, spinal cord, and brain and is involved in local immune responses. In this study, we developed a fast and simple derivatization method based on reductive amination that can be used to quantify histamine by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Histamine isotope analogs were synthesized via reductive amination. Histamine was modified with H2-formaldehyde to form N-dimethylated histamine to act as a standard or with D2-formaldehyde to form N-dimethylated histamine-d4 to act as an internal standard. Using this method, we achieved a limit of detection of 3.6 ng/mL, a limit of quantification of 7.9 ng/mL, and a linear calibration curve with a coefficient of determination (R2) of 0.9987. Furthermore, the intra-day relative standard deviations ranged from 0.9% to 3.7% and the inter-day relative standard deviations ranged from 2.0% to 17.6%. After derivatization, N-dimethylated histamine showed 382.5% signal enhancement compared to unmodified histamine in mass spectrometry detection. To demonstrate the applicability of this method for biological samples, we utilized standard addition method to quantify histamine in fetal bovine serum and achieved a recovery of 86.7%.
Collapse
Affiliation(s)
- Po-Tsun Shen
- 1 Health and Technology Center, College of Health Care and Management, Chung Shan Medical University, Taichung
| | - Yi-Reng Lin
- 2 Department of Biotechnology, Fooyin University, Kaohsiung
| | - Bing-Hung Chen
- 3 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung
- 4 Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung
| | - Mei-Fang Huang
- 3 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung
| | - Chieh-Wen Cheng
- 5 College of Future, National Yunlin University of Science and Technology, Yunlin
| | - Yow-Ling Shiue
- 4 Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung
| | - Shih-Shin Liang
- 3 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung
- 4 Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung
- 6 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
4
|
Hu X, Wang H, Li K, Wu Y, Liu Z, Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Sci Rep 2017; 7:16130. [PMID: 29170427 PMCID: PMC5700959 DOI: 10.1038/s41598-017-15985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
Heterosis refers to the phenomenon in which hybrid progeny show superior performance relative to their parents. Early maize ear development shows strong heterosis in ear architecture traits and greatly affects grain yield. To explore the underlying molecular mechanisms, genome-wide proteomics of immature ears of maize hybrid ZD909 and its parents were analyzed using tandem mass tag (TMT) technology. A total of 9,713 proteins were identified in all three genotypes. Among them, 3,752 (38.6%) proteins were differentially expressed between ZD909 and its parents. Multiple modes of protein action were discovered in the hybrid, while dominance expression patterns accounted for 63.6% of the total differentially expressed proteins (DEPs). Protein pathway enrichment analysis revealed that high parent dominance proteins mainly participated in carbon metabolism and nitrogen assimilation processes. Our results suggested that the dominant expression of favorable alleles related to C/N metabolism in the hybrid may be essential for ZD909 ear growth and heterosis formation. Integrated analysis of proteomic and quantitative trait locus (QTL) data further support our DEP identification and provide useful information for the discovery of genes associated with ear development. Our study provides comprehensive insight into the molecular mechanisms underlying heterosis in immature maize ears from a proteomic perspective.
Collapse
Affiliation(s)
- Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Crop Molecular Breeding, Beijing, 100081, China.
| |
Collapse
|
5
|
Xie C, Yan TM, Chen JM, Li XY, Zou J, Zhu LJ, Lu LL, Wang Y, Zhou FY, Liu ZQ, Hu M. LC-MS/MS quantification of sulfotransferases is better than conventional immunogenic methods in determining human liver SULT activities: implication in precision medicine. Sci Rep 2017. [PMID: 28634336 PMCID: PMC5478605 DOI: 10.1038/s41598-017-04202-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study aims to determine whether enzyme activities are correlated with protein amounts and mRNA expression levels of five major human sulfotransferase (SULT) enzymes in 10 matched pericarcinomatous and hepatocellular carcinoma liver samples. The MRM UHPLC-MS/MS method, Western blot and RT-PCR were used along with SULT activity measurement using probe substrates. The LC-MS/MS method was specific for all five tested SULTs, whereas Western blot was specific for only two isoforms. The activities of SULT1A1, SULT1B1, SULT1E1 and SULT2A1 in 9 of 10 samples showed a significant decrease in tumor tissues relative to matched pericarcinomatous tissues, whereas the activities of SULT1A3 in 7 of 10 samples increased. The turnover numbers of SULTs did not change, except for SULT1A1. A generally high degree of correlations was observed between SULT activities and protein amounts (r2 ≥ 0.59 except one), whereas a low degree of correlations was observed between SULT activities and mRNA expression levels (r2 ≤ 0.48 except one). HCC reduced the SULT activities via impaired protein amounts. LC-MS/MS quantification of SULTs is highly reliable measurement of SULT activities, and may be adopted for implementing precision medicine with respect to drugs mainly metabolized by SULTs in healthy and HCC patients.
Collapse
Affiliation(s)
- Cong Xie
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Tong-Meng Yan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Mei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiao-Yan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juan Zou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Li-Jun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Fu-Yuan Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Zhong-Qiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res 2017; 16:1410-1424. [PMID: 28217993 DOI: 10.1021/acs.jproteome.6b00645] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.
Collapse
Affiliation(s)
- Mhd Rami Al Shweiki
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Domenika Thieme
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Diana Trutschel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen , Stockumer Straße. 12, 58453 Witten, Germany.,Martin-Luther-University Halle-Wittenberg , Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Lind AL, Emami Khoonsari P, Sjödin M, Katila L, Wetterhall M, Gordh T, Kultima K. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis. Neuromodulation 2017; 19:549-62. [PMID: 27513633 DOI: 10.1111/ner.12473] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Electrical neuromodulation by spinal cord stimulation (SCS) is a well-established method for treatment of neuropathic pain. However, the mechanism behind the pain relieving effect in patients remains largely unknown. In this study, we target the human cerebrospinal fluid (CSF) proteome, a little investigated aspect of SCS mechanism of action. METHODS Two different proteomic mass spectrometry protocols were used to analyze the CSF of 14 SCS responsive neuropathic pain patients. Each patient acted as his or her own control and protein content was compared when the stimulator was turned off for 48 hours, and after the stimulator had been used as normal for three weeks. RESULTS Eighty-six proteins were statistically significantly altered in the CSF of neuropathic pain patients using SCS, when comparing the stimulator off condition to the stimulator on condition. The top 12 of the altered proteins are involved in neuroprotection (clusterin, gelsolin, mimecan, angiotensinogen, secretogranin-1, amyloid beta A4 protein), synaptic plasticity/learning/memory (gelsolin, apolipoprotein C1, apolipoprotein E, contactin-1, neural cell adhesion molecule L1-like protein), nociceptive signaling (neurosecretory protein VGF), and immune regulation (dickkopf-related protein 3). CONCLUSION Previously unknown effects of SCS on levels of proteins involved in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity are demonstrated. These findings, in the CSF of neuropathic pain patients, expand the picture of SCS effects on the neurochemical environment of the human spinal cord. An improved understanding of SCS mechanism may lead to new tracks of investigation and improved treatment strategies for neuropathic pain.
Collapse
Affiliation(s)
- Anne-Li Lind
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Marcus Sjödin
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Lenka Katila
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala//GE Healthcare, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Dowle AA, Wilson J, Thomas JR. Comparing the Diagnostic Classification Accuracy of iTRAQ, Peak-Area, Spectral-Counting, and emPAI Methods for Relative Quantification in Expression Proteomics. J Proteome Res 2016; 15:3550-3562. [PMID: 27546623 DOI: 10.1021/acs.jproteome.6b00308] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diagnostic classification accuracy is critical in expression proteomics to ensure that as many true differences as possible are identified with acceptable false-positive rates. We present a comparison of the diagnostic accuracy of iTRAQ with three label-free methods, peak area, spectral counting, and emPAI, for relative quantification using a spiked proteome standard. We provide the first validation of emPAI for intersample relative quantification and find clear differences among the four quantification approaches that could be considered when designing an experiment. Spectral counting was observed to perform surprisingly well in all regards. Peak area performed best for smaller fold differences and was shown to be capable of discerning a 1.1-fold difference with acceptable specificity and sensitivity. The performance of iTRAQ was dramatically worse than the label-free methods with low abundance proteins. Using the iTRAQ data set for validation, we also demonstrate a novel iTRAQ analysis regime that avoids the use of ratios in significance testing and outperforms a common commercial alternative.
Collapse
Affiliation(s)
- Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York , York YO10 5DD, United Kingdom
| | - Julie Wilson
- Departments of Mathematics and Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Jerry R Thomas
- Bioscience Technology Facility, Department of Biology, University of York , York YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Tuma Z, Kuncova J, Mares J, Grundmanova M, Matejovic M. Proteomic approaches to the study of renal mitochondria. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:173-82. [DOI: 10.5507/bp.2016.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
|
10
|
Valdés A, Artemenko KA, Bergquist J, García-Cañas V, Cifuentes A. Comprehensive Proteomic Study of the Antiproliferative Activity of a Polyphenol-Enriched Rosemary Extract on Colon Cancer Cells Using Nanoliquid Chromatography–Orbitrap MS/MS. J Proteome Res 2016; 15:1971-85. [DOI: 10.1021/acs.jproteome.6b00154] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alberto Valdés
- Laboratory
of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Konstantin A. Artemenko
- Analytical
Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical
Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Virginia García-Cañas
- Laboratory
of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory
of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
11
|
Zhang DM, Feng LX, Liu M, Jin WH, Luo J, Nie AY, Zhou Y, Li Y, Wu WY, Jiang BH, Yang M, Hu LH, Guo DA, Liu X. Possible target-related proteins and signal network of bufalin in A549 cells suggested by both iTRAQ-based and label-free proteomic analysis. Proteomics 2016; 16:935-45. [DOI: 10.1002/pmic.201500418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Dong-Mei Zhang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
- Department of Pharmacy; Lanzhou General Hospital of Lanzhou Military Command of Chinese PLA; Lanzhou P. R. China
| | - Li-Xing Feng
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - Miao Liu
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | | | - Ji Luo
- AB Sciex; Shanghai P. R. China
| | - Ai-Ying Nie
- Thermo Fisher Scientific; Shanghai P. R. China
| | - Yue Zhou
- Thermo Fisher Scientific; Shanghai P. R. China
| | - Yin Li
- Thomson Reuters; Shanghai P. R. China
| | - Wan-Ying Wu
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - Bao-Hong Jiang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - Min Yang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - Li-Hong Hu
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - De-An Guo
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| | - Xuan Liu
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai P. R. China
| |
Collapse
|
12
|
Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 2016; 1428:193-201. [DOI: 10.1016/j.chroma.2015.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022]
|
13
|
Tsai DC, Liu MC, Lin YR, Huang MF, Liang SS. A novel reductive amination method with isotopic formaldehydes for the preparation of internal standard and standards for determining organosulfur compounds in garlic. Food Chem 2015; 197:692-8. [PMID: 26617005 DOI: 10.1016/j.foodchem.2015.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/24/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Garlic (Allium sativum) is a long-cultivated plant that is widely utilized in cooking and has been employed as a medicine for over 4000 years. In this study, we fabricated standards and internal standards (ISs) for absolute quantification via reductive amination with isotopic formaldehydes. Garlic has four abundant organosulfur compounds (OSCs): S-allylcysteine, S-allylcysteinine sulfoxide, S-methylcysteine, and S-ethylcysteine are abundant in garlic. OSCs with primary amine groups were reacted with isotopic formaldehydes to synthesize ISs and standards. Cooked and uncooked garlic samples were compared, and we utilized tandem mass spectrometry equipped with a selective reaction monitoring technique to absolutely quantify the four organosulfur compounds.
Collapse
Affiliation(s)
- De-Cheng Tsai
- Division of Urology, Ten Chan General Hospital, Taoyuan, Taiwan
| | - Meng-Chieh Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Mei-Fang Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Research, Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Latosinska A, Vougas K, Makridakis M, Klein J, Mullen W, Abbas M, Stravodimos K, Katafigiotis I, Merseburger AS, Zoidakis J, Mischak H, Vlahou A, Jankowski V. Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis. PLoS One 2015; 10:e0137048. [PMID: 26331617 PMCID: PMC4557910 DOI: 10.1371/journal.pone.0137048] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
High resolution proteomics approaches have been successfully utilized for the comprehensive characterization of the cell proteome. However, in the case of quantitative proteomics an open question still remains, which quantification strategy is best suited for identification of biologically relevant changes, especially in clinical specimens. In this study, a thorough comparison of a label-free approach (intensity-based) and 8-plex iTRAQ was conducted as applied to the analysis of tumor tissue samples from non-muscle invasive and muscle-invasive bladder cancer. For the latter, two acquisition strategies were tested including analysis of unfractionated and fractioned iTRAQ-labeled peptides. To reduce variability, aliquots of the same protein extract were used as starting material, whereas to obtain representative results per method further sample processing and MS analysis were conducted according to routinely applied protocols. Considering only multiple-peptide identifications, LC-MS/MS analysis resulted in the identification of 910, 1092 and 332 proteins by label-free, fractionated and unfractionated iTRAQ, respectively. The label-free strategy provided higher protein sequence coverage compared to both iTRAQ experiments. Even though pre-fraction of the iTRAQ labeled peptides allowed for a higher number of identifications, this was not accompanied by a respective increase in the number of differentially expressed changes detected. Validity of the proteomics output related to protein identification and differential expression was determined by comparison to existing data in the field (Protein Atlas and published data on the disease). All methods predicted changes which to a large extent agreed with published data, with label-free providing a higher number of significant changes than iTRAQ. Conclusively, both label-free and iTRAQ (when combined to peptide fractionation) provide high proteome coverage and apparently valid predictions in terms of differential expression, nevertheless label-free provides higher sequence coverage and ultimately detects a higher number of differentially expressed proteins. The risk for receiving false associations still exists, particularly when analyzing highly heterogeneous biological samples, raising the need for the analysis of higher sample numbers and/or application of adjustment for multiple testing.
Collapse
Affiliation(s)
- Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantinos Vougas
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Mahmoud Abbas
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Ioannis Katafigiotis
- Department of Urology, Medical School of Athens, Laikon Hospital, Athens, Greece
| | | | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vera Jankowski
- RWTH-Aachen, Institute for Molecular Cardiovascular Research (IMCAR), Aachen, Germany
- * E-mail:
| |
Collapse
|
15
|
Artemenko K, Mi J, Bergquist J. Mass-spectrometry-based characterization of oxidations in proteins. Free Radic Res 2015; 49:477-93. [DOI: 10.3109/10715762.2015.1023795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Hölttä M, Minthon L, Hansson O, Holmén-Larsson J, Pike I, Ward M, Kuhn K, Rüetschi U, Zetterberg H, Blennow K, Gobom J. An Integrated Workflow for Multiplex CSF Proteomics and Peptidomics—Identification of Candidate Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease. J Proteome Res 2014; 14:654-63. [DOI: 10.1021/pr501076j] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mikko Hölttä
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Lennart Minthon
- Clinical
Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 221 00 Lund, Sweden
| | - Oskar Hansson
- Clinical
Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 221 00 Lund, Sweden
| | - Jessica Holmén-Larsson
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Ian Pike
- Proteome
Sciences
PLC, KT11 3EP London, United Kingdom
| | - Malcolm Ward
- Proteome
Sciences
PLC, KT11 3EP London, United Kingdom
| | - Karsten Kuhn
- Proteome Science R&D GmbH&CoKG, 60438 Frankfurt am Main, Germany
| | - Ulla Rüetschi
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Kaj Blennow
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Johan Gobom
- Clinical
Neurochemistry Laboratory, Institute of Neuroscience and Physiology,
Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| |
Collapse
|
17
|
Musunuri S, Kultima K, Richard BC, Ingelsson M, Lannfelt L, Bergquist J, Shevchenko G. Micellar extraction possesses a new advantage for the analysis of Alzheimer's disease brain proteome. Anal Bioanal Chem 2014; 407:1041-57. [PMID: 25416231 DOI: 10.1007/s00216-014-8320-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
Integral membrane proteins (MPs), such as transporters, receptors, and ion channels, are of great interest because of their participation in various vital cellular functions including cell-cell interactions, ion transport, and signal transduction. However, studies of MPs are complicated because of their hydrophobic nature, heterogeneity, and low abundance. Cloud-point extraction (CPE) with the non-ionic surfactant Triton X-114 was performed to simultaneously extract and phase separate hydrophobic and hydrophilic proteins from Alzheimer's disease (AD) and unaffected control brain tissue. Quantitative proteomics analysis of temporal neocortex samples of AD patients and controls was performed using a shotgun approach based on stable isotope dimethyl labeling (DML) quantification technique followed by nanoLC-MS/MS analysis. A total of 1096 unique proteins were identified and quantified, with 40.3 % (211/524) predicted as integral MPs with at least one transmembrane domain (TMD) found in the detergent phase, and 10 % (80/798) in the detergent-depleted phase. Among these, 62 proteins were shown to be significantly altered (p-value <0.05), in AD versus control samples. In the detergent fraction, we found 10 hydrophobic transmembrane proteins containing up to 14 putative TMDs that were significantly up- or down-regulated in AD compared with control brains. Changes in four of these proteins, alpha-enolase (ENOA), lysosome-associated membrane glycoprotein 1 (LAMP1), 14-3-3 protein gamma (1433G), and sarcoplasmic/endoplasmic reticulum calcium ATPase2 (AT2A2) were validated by immunoblotting. Our results emphasize that separating hydrophobic MPs in CPE contributes to an increased understanding of the underlying molecular mechanisms in AD. Such knowledge can become useful for the development of novel disease biomarkers.
Collapse
Affiliation(s)
- Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Artemenko K, Horáková J, Steinberger B, Besenfelder U, Brem G, Bergquist J, Mayrhofer C. A proteomic approach to monitor the dynamic response of the female oviductal epithelial cell surface to male gametes. J Proteomics 2014; 113:1-14. [PMID: 25281772 DOI: 10.1016/j.jprot.2014.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Sophisticated strategies to analyze cell surface proteins are indispensable to study fundamental biological processes, such as the response of cells to environmental changes or cell-cell communication. Herein, we describe a refined mass spectrometry-based approach for the specific characterization and quantitation of cell surface proteins expressed in the female reproductive tract. The strategy is based on in situ biotinylation of rabbit oviducts, affinity enrichment of surface exposed biotin tagged proteins and dimethyl labeling of the obtained tryptic peptides followed by LC-MS/MS analysis. This approach proved to be sensitive enough to analyze small sample amounts (<1μg) and allowed further to trace the dynamic composition of the surface proteome of the oviductal epithelium in response to male gametes. The relative protein expression ratios of 175 proteins were quantified. Thirty-one of them were found to be altered over time, namely immediately, 1h and 2h after insemination compared to the time-matched control groups. Functional analysis demonstrated that structural reorganization of the oviductal epithelial cell surface was involved in the early response of the female organ to semen. In summary, this study outlines a workflow that is capable to monitor alterations in the female oviduct that are related to key reproductive processes in vivo. BIOLOGICAL SIGNIFICANCE The proper interaction between the female reproductive tract, in particular, the oviduct and the male gametes, is fundamental to fertilization and embryonic development under physiological conditions. Thereby the oviductal epithelial cell surface proteins play an important role. Besides their direct interaction with male gametes, these molecules participate in signal transduction and, thus, are involved in the mandatory cellular response of the oviductal epithelium. In this study we present a refined LC-MS/MS based workflow that is capable to quantitatively analyze the expression of oviductal epithelial cell surface proteins in response to insemination in vivo. A special focus was on the very early interaction between the female organ and the male gametes. At first, this study clearly revealed an immediate response of the surface proteome to semen, which was modulated over time. The described methodology can be applied for studies of further distinct biological events in the oviduct and therefore contribute to a deeper insight into the formation of new life.
Collapse
Affiliation(s)
- Konstantin Artemenko
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Jana Horáková
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Birgit Steinberger
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| | - Urban Besenfelder
- Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jonas Bergquist
- Institute of Analytical Chemistry, Department of Chemistry - Biomedical Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Corina Mayrhofer
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; Institute of Biotechnology in Animal Production, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences, Vienna, Tulln, Austria
| |
Collapse
|
19
|
Accessing microenvironment compartments in formalin-fixed paraffin-embedded tissues by protein expression analysis. Bioanalysis 2014; 5:2647-59. [PMID: 24180505 DOI: 10.4155/bio.13.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Formalin-fixed paraffin-embedded (FFPE) samples are an outstanding source of new information regarding disease evolvements. Current research on new biomarkers and diseases features has recently invested resources in FFPE-related projects. RESULTS In order to initiate clinical protein-expression studies using minute amount of biological material, a workflow based on the combination of filter-assisted sample preparation with MS analysis and label-free quantification was developed. Xenograft lung tumor tissue was investigated as a model system. The workflow was optimized and characterized in terms of its reproducibility from a quantitative and qualitative point of view. We proposed a modification of the original filter-assisted sample preparation protocol to improve reproducibility and highlight its potential for the investigation of hydrophobic proteins. CONCLUSIONS Altogether the presented workflow allows analysis of FFPE samples with improvements in the analytical time and performance, and we show its application for lung cancer xenograft tissue samples.
Collapse
|
20
|
Exploiting the proteomics revolution in biotechnology: from disease and antibody targets to optimizing bioprocess development. Curr Opin Biotechnol 2014; 30:80-6. [PMID: 24997444 DOI: 10.1016/j.copbio.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 11/24/2022]
Abstract
Recent advancements in proteomics have enabled the generation of high-quality data sets useful for applications ranging from target and monoclonal antibody (mAB) discovery to bioprocess optimization. Comparative proteomics approaches have recently been used to identify novel disease targets in oncology and other disease conditions. Proteomics has also been applied as a new avenue for mAb discovery. Finally, CHO and Escherichia coli cells represent the dominant production hosts for biopharmaceutical development, yet the physiology of these cells types has yet to be fully established. Proteomics approaches can provide new insights into these cell types, aiding in recombinant protein production, cell growth regulation, and medium formulation. Optimization of sample preparations and protein database developments are enhancing the quantity and accuracy of proteomic results. In these ways, innovations in proteomics are enriching biotechnology and bioprocessing research across a wide spectrum of applications.
Collapse
|
21
|
Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G. Quantification of the brain proteome in Alzheimer's disease using multiplexed mass spectrometry. J Proteome Res 2014; 13:2056-68. [PMID: 24606058 DOI: 10.1021/pr401202d] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have compared the brain proteome in the temporal neocortex between Alzheimer's disease (AD) patients and non-AD individuals by using shotgun mass spectrometry based on a stable isotope dimethyl labeling. A total of 827 unique proteins were identified and quantitated. Of these, 227 proteins were found in at least 9 out of 10 AD/control pairs and were further subjected to statistical analysis. A total of 69 proteins showed different levels (p-value < 0.05) in AD versus control brain samples. Of these proteins, 37 were increased and 32 were decreased as compared to the non-AD subjects. Twenty-three proteins comprise novel proteins that have not previously been reported as related to AD, e.g., neuronal-specific septin-3, septin-2, septin-5, dihydropteridine reductase, and clathrin heavy chain 1. The proteins with altered levels in the AD brain represent a wide variety of pathways suggested to be involved in the disease pathogenesis, including energy metabolism, glycolysis, oxidative stress, apoptosis, signal transduction, and synaptic functioning. Apart from leading to new insights into the molecular mechanisms in AD, the findings provide us with possible novel candidates for future diagnostic and prognostic disease markers.
Collapse
Affiliation(s)
- Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC and ‡Department Public Health/Geriatrics, Uppsala University , Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ko KH, Han NY, Kwon CI, Lee HK, Park JM, Kim EH, Hahm KB. Recent advances in molecular imaging of premalignant gastrointestinal lesions and future application for early detection of barrett esophagus. Clin Endosc 2014; 47:7-14. [PMID: 24570878 PMCID: PMC3928495 DOI: 10.5946/ce.2014.47.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
Recent advances in optical molecular imaging allow identification of morphologic and biochemical changes in tissues associated with gastrointestinal (GI) premalignant lesions earlier and in real-time. This focused review series introduces high-resolution imaging modalities that are being evaluated preclinically and clinically for the detection of early GI cancers, especially Barrett esophagus and esophageal adenocarcinoma. Although narrow band imaging, autofluorescence imaging, and chromoendoscopy are currently applied for this purpose in the clinic, further adoptions of probe-based confocal laser endomicroscopy, high-resolution microendoscopy, optical coherence tomography, and metabolomic imaging, as well as imaging mass spectrometry, will lead to detection at the earliest and will guide predictions of the clinical course in the near future in a manner that is beyond current advancements in optical imaging. In this review article, the readers will be introduced to sufficient information regarding this matter with which to enjoy this new era of high technology and to confront science in the field of molecular medical imaging.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Na Young Han
- Gachon University College of Pharmacy, Incheon, Korea
| | - Chang Il Kwon
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hoo Keun Lee
- Gachon University College of Pharmacy, Incheon, Korea
| | - Jong Min Park
- Cancer Prevention Research Center, CHA University, Seoul, Korea
| | - Eun Hee Kim
- Cancer Prevention Research Center, CHA University, Seoul, Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|