1
|
Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS, Ha KT. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:807. [PMID: 38255882 PMCID: PMC10815680 DOI: 10.3390/ijms25020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Shibo Wei
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| |
Collapse
|
2
|
Singh KB, Hahm ER, Singh SV. Leelamine suppresses cMyc expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34660908 DOI: 10.20517/2394-4722.2021.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim Leelamine (LLM) inhibits growth of human prostate cancer cells but the underlying mechanism is not fully understood. The present study was undertaken to determine the effect of LLM on cMyc, which is overexpressed in a subset of human prostate cancers. Methods The effect of LLM on cMyc expression and activity was determined by western blotting/confocal microscopy and luciferase reporter assay, respectively. A transgenic mouse model of prostate cancer (Hi-Myc) was used to determine chemopreventive efficacy of LLM. Results Exposure of androgen sensitive (LNCaP) and castration-resistant (22Rv1) human prostate cancer cells to LLM resulted in downregulation of protein and mRNA levels of cMyc. Overexpression of cMyc partially attenuated LLM-mediated inhibition of colony formation, cell viability, and cell migration in 22Rv1 and/or PC-3 cells. LLM treatment decreased protein levels of cMyc targets (e.g., lactate dehydrogenase), however, overexpression of cMyc did not attenuate these effects. A trend for a decrease in expression level of cMyc protein was discernible in 22Rv1 xenografts from LLM-treated mice compared with control mice. The LLM treatment (10 mg/kg body weight, 5 times/week) was well-tolerated by Hi-Myc transgenic mice. The incidence of high-grade prostatic intraepithelial neoplasia, adenocarcinoma in situ, and microinvasion was lower in LLM-treated Hi-Myc mice but the difference was not statistically significant. Conclusion The present study reveals that LLM inhibits cMyc expression in human prostate cancer cells in vitro but concentrations higher than 10 mg/kg may be required to achieve chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Singh KB, Hahm ER, Pore SK, Singh SV. Leelamine Is a Novel Lipogenesis Inhibitor in Prostate Cancer Cells In Vitro and In Vivo. Mol Cancer Ther 2019; 18:1800-1810. [PMID: 31395683 DOI: 10.1158/1535-7163.mct-19-0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
Increased de novo synthesis of fatty acids is implicated in the pathogenesis of human prostate cancer, but a safe and effective clinical inhibitor of this metabolic pathway is still lacking. We have shown previously that leelamine (LLM) suppresses transcriptional activity of androgen receptor, which is known to regulate fatty acid synthesis. Therefore, the current study was designed to investigate the effect of LLM on fatty acid synthesis. Exposure of 22Rv1, LNCaP, and PC-3 prostate cancer cells, but not RWPE-1 normal prostate epithelial cell line, to LLM resulted in a decrease in intracellular levels of neutral lipids or total free fatty acids. LLM was superior to another fatty acid synthesis inhibitor (cerulenin) for suppression of total free fatty acid levels. LLM treatment downregulated protein and/or mRNA expression of key fatty acid synthesis enzymes, including ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase, and sterol regulatory element-binding protein 1 (SREBP1) in each cell line. Consistent with these in vitro findings, we also observed a significant decrease in ATP citrate lyase and SREBP1 protein expression as well as number of neutral lipid droplets in vivo in 22Rv1 tumor sections of LLM-treated mice when compared with that of controls. LLM-mediated suppression of intracellular levels of total free fatty acids and neutral lipids was partly attenuated by overexpression of SREBP1. In conclusion, these results indicate that LLM is a novel inhibitor of SREBP1-regulated fatty acid/lipid synthesis in prostate cancer cells that is not affected by androgen receptor status.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Subrata K Pore
- Department of Pharmacology & Chemical Biology, and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Development of a Validated UHPLC-ESI (-)-HRMS Methodology for the Simultaneous Quantitative Determination of Hesperidin, Hesperetin, Naringin, and Naringenin in Chicken Plasma. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01420-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Singh KB, Ji X, Singh SV. Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. Mol Cancer Ther 2018; 17:2079-2090. [PMID: 30030299 DOI: 10.1158/1535-7163.mct-18-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023]
Abstract
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy remains challenging. CRPC is driven by aberrant activation of androgen receptor (AR) through mechanisms ranging from its amplification, mutation, post-translational modification, and expression of splice variants (e.g., AR-V7). Herein, we present experimental evidence for therapeutic vulnerability of CRPC to a novel phytochemical, leelamine (LLM), derived from pine tree bark. Exposure of human prostate cancer cell lines LNCaP (an androgen-responsive cell line with mutant AR), C4-2B (an androgen-insensitive variant of LNCaP), and 22Rv1 (a CRPC cell line with expression of AR-Vs), and a murine prostate cancer cell line Myc-CaP to plasma achievable concentrations of LLM resulted in ligand-dependent (LNCaP) and ligand-independent (22Rv1) growth inhibition in vitro that was accompanied by downregulation of mRNA and/or protein levels of full-length AR as well as its splice variants, including AR-V7. LLM treatment resulted in apoptosis induction in the absence and presence of R1881. In silico modeling followed by luciferase reporter assay revealed a critical role for noncovalent interaction of LLM with Y739 in AR activity inhibition. Substitution of the amine group with an isothiocyanate functional moiety abolished AR and cell viability inhibition by LLM. Administration of LLM resulted in 22Rv1 xenograft growth suppression that was statistically insignificant but was associated with a significant decrease in Ki-67 expression, mitotic activity, expression of full-length AR and AR-V7 proteins, and secretion of PSA. This study identifies a novel chemical scaffold for the treatment of CRPC. Mol Cancer Ther; 17(10); 2079-90. ©2018 AACR.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Shrestha R, Jo JJ, Lee D, Lee T, Lee S. Characterization of in vitro and in vivo metabolism of leelamine using liquid chromatography-tandem mass spectrometry. Xenobiotica 2018; 49:577-583. [PMID: 29790809 DOI: 10.1080/00498254.2018.1480816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leelamine is a diterpene compound found in the bark of pine trees and has garnered considerable interest owing to its potent anticancer properties. The aim of the present study was to investigate the metabolic profile of leelamine in human liver microsomes (HLMs) and mice using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We found that leelamine undergoes only Phase I metabolism, which generates one metabolite that is mono-hydroxylated at the C9 carbon of the octahydrophenanthrene ring (M1) both in vitro and in vivo. The structure and metabolic pathway of M1 were determined from the MSn fragmentation obtained by collision-induced dissociation using LC-MS/MS in HLMs. Cytochrome p450 (CYP) 2D6 was found to be the dominant CYP enzyme involved in the biotransformation of leelamine to its hydroxylated metabolite, whereas CYP2C19, CYP1A1, and CYP3A4 contributed to some extent. Moreover, we identified only one metabolite M1, in the urine, but none in the feces. In conclusion, leelamine was metabolized to a mono-hydroxyl metabolite by CYP2D6 and mainly excreted in the urine.
Collapse
Affiliation(s)
- Riya Shrestha
- a BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Jung Jae Jo
- a BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - DooHyun Lee
- a BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Taeho Lee
- a BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Sangkyu Lee
- a BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
7
|
Stylos E, Chatziathanasiadou MV, Syriopoulou A, Tzakos AG. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) based bioavailability determination of the major classes of phytochemicals. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047:15-38. [DOI: 10.1016/j.jchromb.2016.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/06/2016] [Accepted: 12/18/2016] [Indexed: 12/15/2022]
|
8
|
Sehrawat A, Kim SH, Hahm ER, Arlotti JA, Eiseman J, Shiva SS, Rigatti LH, Singh SV. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation. Mol Carcinog 2016; 56:337-348. [PMID: 27149078 DOI: 10.1002/mc.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022]
Abstract
The present study is the first to report inhibition of breast cancer cell growth in vitro and in vivo and suppression of self-renewal of breast cancer stem cells (bCSC) by a pine bark component (leelamine). Except for a few recent publications in melanoma, anticancer pharmacology of this interesting phytochemical is largely elusive. Leelamine (LLM) dose-dependently inhibited viability of MDA-MB-231 (triple-negative), MCF-7 (estrogen receptor-positive), and SUM159 (triple-negative) human breast cancer cells in association with apoptotic cell death induction. To the contrary, a normal mammary epithelial cell line derived from fibrocystic breast disease and spontaneously immortalized (MCF-10A) was fully resistant to LLM-mediated cell growth inhibition and apoptosis induction. LLM also inhibited self-renewal of breast cancer stem cells. Apoptosis induction by LLM in breast cancer cells was accompanied by a modest increase in reactive oxygen species production, which was not due to inhibition of mitochondrial electron transport chain complexes. Nevertheless, ectopic expression of manganese superoxide dismutase conferred partial protection against LLM-induced cell death but only at a lower yet pharmacologically relevant concentration. Exposure of breast cancer cells to LLM resulted in (a) induction and/or activation of multidomain proapoptotic proteins Bax and Bak, (b) caspase-9 activation, and (c) cytosolic release of cytochrome c. Bax and Bak deficiency in immortalized fibroblasts conferred significant protection against cell death by LLM. Intraperitoneal administration of LLM (7.5 mg/kg; 5 times/wk) suppressed the growth of orthotopic SUM159 xenografts in mice without any toxicity. In conclusion, the present study provides critical preclinical data to warrant further investigation of LLM. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julie A Arlotti
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julie Eiseman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sruti S Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lora H Rigatti
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Validated LC--MS/MS method for determination of YH-8, a novel PKnB inhibitor, in rat plasma and its application to pharmacokinetic study. Acta Pharm Sin B 2015; 5:467-72. [PMID: 26579477 PMCID: PMC4629422 DOI: 10.1016/j.apsb.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 11/23/2022] Open
Abstract
(E)-Methyl-4-aryl-4-oxabut-2-enoate (YH-8) is a novel PKnB protein kinase inhibitor with good anti-tuberculosis activity. To evaluate its pharmacokinetics in rats, a sensitive and selective high performance liquid chromatography–tandem mass spectrometric (LC--MS/MS) method has been developed and validated for the quantification of YH-8 in rat plasma for the first time. Samples were pre-treated using a liquid--liquid extraction with ethyl acetate and the chromatographic separation was performed on a C18 column by gradient elution with methanol--water as the mobile phase. YH-8 was detected using a tandem mass spectrometer in positive selected reaction monitoring (SRM) mode. Method validation revealed good linearity over the range of 1–500 ng/mL for YH-8 with a lower limit of quantification (LLOQ) of 1 ng/mL. Intra- and inter-day precision of YH-8 assay in rat plasma samples were 2.0%–6.8%, with accuracy of the method being 100.69%–106.18%. Stability test showed that when spiked into rat plasma, YH-8 was stable for 12 h at room temperature, for up to 15 days at −70 °C, and after three freeze-thaw cycles. Extracted samples were found to be stable over 12 h in an auto-sampler. The method was successfully applied to the pharmacokinetic study of YH-8 in rats after oral administration at 100 mg/kg and 200 mg/kg.
Collapse
|
10
|
Zhang X, Li J, Ito Y, Sun W. Simultaneous quantification of five steroid saponins from Dioscorea zingiberensis C.H. Wright in rat plasma by HPLC-MS/MS and its application to the pharmacokinetic studies. Steroids 2015; 93:16-24. [PMID: 25201262 PMCID: PMC4297735 DOI: 10.1016/j.steroids.2014.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
A simple, reliable and sensitive high-performance liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) was established for simultaneous analyses of the following 5 steroid saponins in rat plasma after the single dose administration of total steroid saponins extracted from the rhizome of Dioscorea zingiberensis C.H. Wright for the first time. Protodioscin, huangjiangsu A, zingiberensis new saponin, dioscin, and gracillin were quantified using ginsenoside Rb1 as the internal standard (IS). The plasma samples were pretreated by a single step acetonitrile-mediated protein precipitation. The chromatographic separation was performed on an Inersil ODS-3 C18 column (250mm×4.6mm, 5μm) with the mobile phase composed of acetonitrile and water containing 0.1% formic acid under a gradient elution mode at 0.2mLmin(-1) using a microsplit after the eluent from the HPLC apparatus. The quantification was accomplished on a triple quadrupole tandem mass spectrometer using the multiple reaction monitoring (MRM) in the positive ionization mode. The above five analytes were stable under sample storage and preparation conditions applied in the present study. The linearity, precision, accuracy, and recoveries of the analysis confirmed the requirements for quality-control purposes. After validation, this proposed method was successfully adopted to investigate the pharmacokinetic parameters of these five analytes.
Collapse
Affiliation(s)
- Xinxin Zhang
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Jing Li
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Yoichiro Ito
- Laboratory of Bioseparation Technology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Wenji Sun
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Gowda R, Madhunapantula SV, Sharma A, Kuzu OF, Robertson GP. Nanolipolee-007, a novel nanoparticle-based drug containing leelamine for the treatment of melanoma. Mol Cancer Ther 2014; 13:2328-40. [PMID: 25082958 DOI: 10.1158/1535-7163.mct-14-0357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malignant melanoma is a difficult cancer to treat due to the rapid development of resistance to drugs targeting single proteins. One response to this observation is to identify single pharmacologic agents that, due to a unique mechanism of action, simultaneously target multiple key pathways involved in melanoma development. Leelamine has been identified as functioning in this manner but has poor bioavailability in animals and causes lethality when administered intravenously. Therefore, a nanoliposomal-based delivery system has been developed, called Nanolipolee-007, which stably loads 60% of the compound. The nanoparticle was as effective at killing melanoma cells as leelamine dissolved in DMSO and was more effective at killing cultured melanoma compared with normal cells. Mechanistically, Nanolipolee-007 inhibited PI3K/Akt, STAT3, and MAPK signaling mediated through inhibition of cholesterol transport. Nanolipolee-007 inhibited the growth of preexisting xenografted melanoma tumors by an average of 64% by decreasing cellular proliferation, reducing tumor vascularization, and increasing cellular apoptosis, with negligible toxicity. Thus, a unique clinically viable nanoparticle-based drug has been developed containing leelamine for the treatment of melanoma that acts by inhibiting the activity of major signaling pathways regulating the development of this disease.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Penn State Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - SubbaRao V Madhunapantula
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Arati Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Penn State Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Penn State Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Penn State Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
12
|
Selective induction of hepatic cytochrome P450 2B activity by leelamine in vivo, as a potent novel inducer. Arch Pharm Res 2014; 38:725-33. [DOI: 10.1007/s12272-014-0443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023]
|
13
|
Liu Q, Liao X, Xu J, Zhao J, Luo J, Kong L. Development and validation of a sensitive and selective LC-MS/MS method for the determination of trans δ-veniferin, a resveratrol dehydrodimer, in rat plasma and its application to pharmacokinetics and bioavailability studies. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:124-9. [PMID: 24735927 DOI: 10.1016/j.jchromb.2014.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
In this study, an accurate and reliable LC-MS/MS assay was firstly developed and validated for the quantitative determination of trans δ-veniferin (TVN) in rat plasma. Chlorzoxazone was used as the internal standard (IS). After one-step protein precipitation with methanol, the analyte and IS were separated on an ODS column by gradient elution with mobile phase of acetonitrile-0.2% formic acid at a flow rate of 0.3mL/min. Negative electrospray ionization was performed using multiple reactions monitoring (MRM) mode with transitions of m/z 453.0>410.9 for TVN, and m/z 168.0>132.0 for IS. Good linearity (R≥0.996) was observed over the concentration range of 5-5000ng/mL for TVN with a lower limit of quantification (LLOQ) of 5ng/mL. The mean recoveries for TVN and IS were 91.05% and 96.68%, respectively. The intra- and inter-day precisions (RSD) were no more than 10.5% and accuracies (RE) were within the range of -6.3% to 2.1%. The validated method was suitable for quantification of TVN and successfully applied to the pharmacokinetic study of TVN after oral and intravenous administration to rats. The oral absolute bioavailability of TVN was 14.2% in rat.
Collapse
Affiliation(s)
- Qingwang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China
| | - Xiaolin Liao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China
| | - Jie Zhao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, People's Republic of China.
| |
Collapse
|