1
|
Yu C, Wang L, Zheng J, Jiang X, Zhang Q, Zhang Y, Bi K, Li D, Li Q. Nanoconfinement effect based in-fiber extraction and derivatization method for ultrafast analysis of twenty amines in human urine by GC-MS: Application to cancer diagnosis biomarkers’ screening. Anal Chim Acta 2022; 1217:339985. [DOI: 10.1016/j.aca.2022.339985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
|
2
|
Zhu F, Liu H, Zhang W, Du C, Zhu H, Du X, Hu X, Lin Y. Determination of biogenic amines in alcoholic beverages using a novel fluorogenic compound as derivatizing reagent. RSC Adv 2021; 11:19541-19550. [PMID: 35479236 PMCID: PMC9033611 DOI: 10.1039/d1ra01436f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Biogenic amines (BAs) are organic nitrogenous compounds that are responsible for several biological events. If their concentration reaches the threshold level, it can cause mild to serious health problems in human. A novel bis-styrylphenyl Meldrum's acid derivative (BSMAD) was synthesized and served as a fluorescent turn-on pre-column derivatizing reagent for the quantitative analysis of BAs. A method for the determination of BA by high-performance liquid chromatography (HPLC) was established, which has a low detection limit (0.4 nmol L-1), excellent linearity (R 2 ≥ 0.9946) and repeatability (RSD ≤ 3.7% intra-day, RSD ≤ 5.8% inter-day). The proposed method was successfully applied for the determination of BAs in several alcoholic beverages, including yellow wine, red wine, cooking wine, and beer. Satisfactory recoveries were obtained in the range of 94.6-100.5%. Compared with other methods, this pre-column derivatization method using BSMAD is simple, reliable, highly sensitive, and of low interference, providing an effective method for future studies of BAs in different matrices.
Collapse
Affiliation(s)
- Fangfang Zhu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Honglong Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Wenqing Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Chuanyuan Du
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Hao Zhu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Xiaodi Du
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Xiaosong Hu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| | - Yawei Lin
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology 430070 Wuhan China
| |
Collapse
|
3
|
Ma SR, Yu JB, Fu J, Pan LB, Yu H, Han P, Zhang ZW, Peng R, Xu H, Wang Y. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules 2021; 26:molecules26051377. [PMID: 33806510 PMCID: PMC7961820 DOI: 10.3390/molecules26051377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
It has been reported that monoamine neurotransmitters can be produced by gut microbiota, and that several related metabolites of amino acids in these pathways are associated with nervous system (NVS) diseases. Herein, we focused on three pathways, namely, phenylalanine (Phe), tryptophan (Trp), and glutamic acid (Glu), and established an underivatized liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the quantification of nineteen monoamine neurotransmitters and related metabolites in the gut microbiota. The neurotransmitters and related metabolites included Phe, tyrosine (Tyr), l-dopa (Dopa), dopamine (DA), 3-methoxytyramine, Trp, hydroxytryptophan, 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), kynurenine (KN), kynurenic acid (KYNA), melatonin, tryptamine (TA), indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), indolyl-3-propionic acid (IPA), Glu, gamma-aminobutyric acid (GABA), and acetylcholine (Ach). A fluoro-phenyl bonded column was used for separation, and the mobile phase consisted of methanol:acetonitrile (1:1) and water, with 0.2% formic acid in both phases. The compounds exhibited symmetric peak shapes and sufficient sensitivity under a total analysis time of 8.5 min. The method was fully validated with acceptable linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The results showed that neurotransmitters, such as Dopa, DA, 5-HT, GABA, and Ach, were present in the gut microbiota. The metabolic pathway of Trp was disordered under depression, with lower levels of 5-HT, 5-HIAA, KN, KYNA, TA, ILA, IAA, IPA, and Glu, and a higher ratio of KYNA/KN. In addition, some first-line NVS drugs, such as sertraline, imipramine, and chlorpromazine, showed regulatory potential on these pathways in the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Wang
- Correspondence: ; Tel./Fax: +86-10-6316-5238
| |
Collapse
|
4
|
Fuertes I, Barata C. Characterization of neurotransmitters and related metabolites in Daphnia magna juveniles deficient in serotonin and exposed to neuroactive chemicals that affect its behavior: A targeted LC-MS/MS method. CHEMOSPHERE 2021; 263:127814. [PMID: 32822934 DOI: 10.1016/j.chemosphere.2020.127814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Neurotransmitters are endogenous metabolites that play a crucial role within an organism, at the chemical synapses. There is a growing interest in their analytical determination for understanding the neurotoxic effect of contaminants. Daphnia magna represents an excellent aquatic model for these environmental studies, due to its similarities with vertebrates in several neurotransmitters and related gene pathways and because of its wide application in ecotoxicological studies. Within this study, an accurate and sensible method of analysis of 17 neurotransmitters and related precursors and metabolites was developed. The method was validated in terms of sensitivity, reproducibility, precision, and accuracy, and also matrix effect was evaluated. As an independent probe of method validation and applicability, the method was applied to two different scenarios. First, it was used for the study of neurotransmitter levels in genetically mutated tryptophan hydrolase D. magna clones, confirming the absence of serotonin and its metabolite 5-HIAA. Additionally, the method was applied for determining the effects of chemical compounds known to affect different neurotransmitter systems and to alter Daphnia behavior. Significant changes were observed in 13 of the analyzed neurotransmitters across treatments, which were related to the neurotransmitter systems described as being affected by these neurochemicals. These two studies, which provide results on the ways in which the neurotransmitter systems in D. magna are affected, have corroborated the applicability of the presented method, of great importance due to the suitability of this organism for environmental neurotoxicity studies.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Carreño F, Helfer VE, Staudt KJ, Olivo LB, Barreto F, Herrmann AP, Rates SMK, Dalla Costa T. Quantification of neurotransmitters in microdialysate samples following quetiapine dosing to schizophrenia phenotyped rats using a validated LC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122282. [DOI: 10.1016/j.jchromb.2020.122282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/12/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
|
6
|
Direct sample preparation and simultaneous perfluoroacylation - Trimethylsilylation of biogenic monoamines along with their acidic metabolites for a single step analysis by GC-MS. Anal Chim Acta 2020; 1127:9-19. [PMID: 32800142 DOI: 10.1016/j.aca.2020.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 11/21/2022]
Abstract
The GC-MS quantification of biogenic monoamines (BMAs), together with their acidic metabolites (ACMEs), in a single step, is presented here for the first time. This novel principle is based on the exceptional reactivity of the hexamethyldisilazane (HMDS) and perfluorocarboxylic acid (PFCA) couples [1,2], resulting in the simultaneous trimethylsilylation and acylation of BMAs and ACMEs. For this basic study, tyramine (TYR), 3-methoxytyramine (3-MeTYR), dopamine (DA), epinephrine (EP), normetanephrine (NORMNE), norepinephrine (NOREP), tryptamine (T), 3,4-dihydroxyphenylalanine (L-DOPA), 5-methoxytryptamine (5-MeT), serotonin (ST), and their ACMEs, such as homovanillic acid (HVA), vanillylmandelic acid (VMA), and 5-hydroxyindoleacetic acid (5-HIAA) were selected. These three ACMEs were derived from 3-MeTYR, NORMNE and ST, respectively. The mass fragmentation properties of the fully derivatized products proved to be of stoichiometric distribution. Informative high masses were obtained: such as the molecular ions [M]+= and/or their [M-CH3]+ alternatives. The exceptions were EP and NOREP which decomposed to the same specific, abundant mass of m/z 355 representing the C7H3-tri-OTMS ions formed by the loss of their nitrogen-containing moieties. The general rule of this new principle was confirmed by using trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), or heptafluorobutyric acid (HFBA) with HMDS in parallel tests. In all three cases, derivatives of close retention properties in a stoichiometric manner were obtained. On the basis of the optimum separation characteristics between the BMA-ACME pairs, the HMDS & PFPA couple was preferred as the reagent of choice. Method validation was carried out, both with model solutions and in the presence of the urine matrices (without any preliminary extraction). Analytical performance characteristics for the model solutions like repeatability (RSD% 3.88-6.4), linearity (R2 0.991-0.999) and limit of quantitation (LOQ 8.8-103 ng/mL) were determined. Analytical performance characteristics for urine matrices were calculated by using the standard addition method applying the urine of a healthy volunteer and also analyzing urines of patients diagnosed with neurological diseases.
Collapse
|
7
|
Han SY, Hao LL, Shi X, Niu JM, Zhang B. Development and Application of a New QuEChERS Method in UHPLC-QqQ-MS/MS to Detect Seven Biogenic Amines in Chinese Wines. Foods 2019; 8:foods8110552. [PMID: 31694278 PMCID: PMC6915522 DOI: 10.3390/foods8110552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop and validate an improved, simple, and sensitive method for the simultaneous determination of seven types (cadaverine, CAD; hexylamine, HEX; histamine, HIS; phenylethylamine, PEA; putrescine, PUT; tyramine, TYR) of biogenic amines (BAs) in wine matrices. For this reason, a modified QuEChERS combined with ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) method was investigated. The optimization of UHPLC-QqQ-MS/MS separation and QuEChERS procedure was performed. Under optimum conditions, the excellent chromatographic performance of the whole separation was accomplished within 6.3 min analyzing time. Meanwhile, the recoveries ranged from 77.2% to 101.7%, while relative standard deviation (RSD) remained between 0.0% and 9.4%. The limit of detection (LOD, 0.50–1.00 µg/L) and the limit of quantification (LOQ, 1.65–3.30 µg/L) were lower than those permitted by legislation in food matrices, which demonstrated the high sensitivity and applicability of this efficient method. This validated method was also applied in a pilot study to analyze BAs in 81 wine samples from Hexi Corridor Region (Gansu Province, Northwest China), CAD, HEX, HIS, PEA, PUT, and TYR were detected to varying degrees in the samples. However, when compared with the existing standards, the BAs in all 81 wine samples did not exceed the prescribed limit value or toxic dose (2–40 mg/L). Moreover, a statistical approach was also conducted using Pearson correlation analysis, and to evaluate their concentrations in terms of wine parameters (storage time, grape variety, wine type, and basic physicochemical index). The results showed that, among the seven kinds of BAs, the concentration of HIS had a certain correlation with alcoholic degree and grape variety. In addition, the level of PEA had a certain correlation with the wine pH and wine storage time. It is worth noting that this seems to be the first report regarding the application of QuEChERS-UHPLC-QqQ-MS/MS in the analysis of BAs in wine in this region.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-0931-7631-201
| |
Collapse
|
8
|
Miller JV, LeBouf RF, Kelly KA, Michalovicz LT, Ranpara A, Locker AR, Miller DB, O'Callaghan JP. The Neuroinflammatory Phenotype in a Mouse Model of Gulf War Illness is Unrelated to Brain Regional Levels of Acetylcholine as Measured by Quantitative HILIC-UPLC-MS/MS. Toxicol Sci 2019; 165:302-313. [PMID: 29846716 DOI: 10.1093/toxsci/kfy130] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. Although inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography with ultraperformance liquid chromatography-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT + AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.
Collapse
Affiliation(s)
| | - Ryan F LeBouf
- Respiratory Health Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | | | | | - Anand Ranpara
- Respiratory Health Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505
| | | | | | | |
Collapse
|
9
|
Bongaerts J, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. Sensitive targeted methods for brain metabolomic studies in microdialysis samples. J Pharm Biomed Anal 2018; 161:192-205. [DOI: 10.1016/j.jpba.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
10
|
Olesti E, Rodríguez-Morató J, Gomez-Gomez A, Ramaekers JG, de la Torre R, Pozo OJ. Quantification of endogenous neurotransmitters and related compounds by liquid chromatography coupled to tandem mass spectrometry. Talanta 2018; 192:93-102. [PMID: 30348434 DOI: 10.1016/j.talanta.2018.09.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/27/2022]
Abstract
Neurotransmitters are signaling molecules, playing key roles in neuronal communications in the brain. Drug induced changes in neurotransmitters and other brain metabolite concentration may be used to characterize drugs according to their targeted metabolomics profile. Here, we report the development and validation of a straightforward liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of 16 endogenous small polar compounds in rat plasma and brain homogenates. The method enables the quantification of the neurotransmitters γ-aminobutyric acid, glutamate, acetylcholine and adenosine, as well as choline, glutamine, acetylcarnitine, carnitine, creatine, creatinine, valine, leucine, isoleucine, phenylalanine, tyrosine and tryptophan. After optimizing the sample preparation, chromatographic and spectrometric conditions, the method was successfully validated using the standard addition approach and a hydrophilic interaction chromatography (HILIC) with an amide column. The method was shown to be linear (r > 0.99) as all the compounds were within the ±25% values of intra and inter-day precision and accuracy acceptance. A matrix effect was corrected with the use of 10 isotopically labelled internal standards and the compound stability was evaluated for all compounds. Relevant exaltation of choline (in plasma) and creatinine (in brain) were solved with -20 °C conditions. The applicability of the method was tested by evaluating brain alterations in the concentrations of neurotransmitters and related compounds after the administration of two psychostimulant drugs of abuse (cocaine and methylenedioxypyrovalerone) to rats. A neuro-metabolic fingerprint of each drug was obtained that reflected their pharmacological profile. Altogether, this methodology presents a valuable targeted metabolomics tool for basic and clinical research studies.
Collapse
Affiliation(s)
- Eulàlia Olesti
- Integrative Pharmacology & Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology & Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain
| | - Alex Gomez-Gomez
- Integrative Pharmacology & Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Johannes G Ramaekers
- Experimental Psychopharmacology Unit, Department of Neurocognition, Faculty of Psychology, Maastricht University, Maastricht, the Netherlands
| | - Rafael de la Torre
- Integrative Pharmacology & Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain
| | - Oscar J Pozo
- Integrative Pharmacology & Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
11
|
Lee W, Park NH, Ahn TB, Chung BC, Hong J. Profiling of a wide range of neurochemicals in human urine by very-high-performance liquid chromatography-tandem mass spectrometry combined with in situ selective derivatization. J Chromatogr A 2017; 1526:47-57. [PMID: 29031967 DOI: 10.1016/j.chroma.2017.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Development of a reliable analytical method of neurochemicals in biological fluids is important to discover potential biomarkers for the diagnosis, treatment and prognosis of neurological disorders. However, neurochemical profiling of biological samples is challenging because of highly different polarities between basic and acidic neurochemicals, low physiological levels, and high matrix interference in biological samples. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method combined with in situ selective derivatization for comprehensive profiling of 20 neurochemicals in urine was developed for a wide range of neurochemicals. In situ selective derivatization greatly improved the peak capacity on a reversed-phase C18 column and sensitive mass detection in LC-ESI-MS/MS-positive ion mode due to reduction of the distinct physicochemical properties between acidic and basic neurochemicals. The MS/MS spectra of neurochemicals exhibited specific ions, such as losses of amine, methanol, or methyl formate molecules from protonated molecules, enabling selection of appropriate multiple reaction monitoring (MRM) ions for selective and sensitive detection. The developed method was validated in terms of linearity, limit of detection (LOD) and limit of quantification (LOQ), precision, accuracy, and recovery. The correlation coefficients (R2) of calibration curves were above 0.9961. The ranges of LODs and LOQs were 0.1-3.6ng/mL and 0.3-12.0ng/mL, respectively. The overall precision and accuracy were 0.52-16.74% and 82.26-118.17%, respectively. The method was successfully applied to simultaneously profile the metabolic pathways of tyrosine, tryptophan, and glutamate in Parkinson's disease patient urine (PD, n=21) and control urine (n=10). Significant differences (P≤0.01) between two groups in the activity of phenylethanolamine N-methyltransferase (PNMT) and alcohol dehydrogenase (ADH) were observed. In conclusion, this method provides reliable quantification of a wide range of neurochemicals in human urine and would be helpful for finding biomarkers related to specific neuronal diseases.
Collapse
Affiliation(s)
- Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Na Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Tae-Beom Ahn
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
12
|
Fonseca BM, Rodrigues M, Cristóvão AC, Gonçalves D, Fortuna A, Bernardino L, Falcão A, Alves G. Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1049-1050:51-59. [DOI: 10.1016/j.jchromb.2017.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
|
13
|
Shin HJ, Park NH, Lee W, Choi MH, Chung BC, Hong J. Metabolic profiling of tyrosine, tryptophan, and glutamate in human urine using gas chromatography-tandem mass spectrometry combined with single SPE cleanup. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:97-107. [PMID: 28340481 DOI: 10.1016/j.jchromb.2017.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
The tyrosine, tryptophan, and glutamate metabolic pathways play key roles on pathological state of neuronal functions and the change of their levels in biological systems reflects the progress degree of neuronal diseases. Comprehensive profiling of these metabolites is important to find new biomarkers for diagnosis or prognosis of various neuronal diseases. However, the overall profiling analysis of various neurochemicals in biological sample is confronted with several limitations due to their low concentration and physicochemical properties and the coexistence of matrices. We developed an efficient and feasible method using gas chromatography-tandem mass spectrometry (GC-MS/MS). Wide-bore mixed cation exchange (MCX) SPE process enables a rapid and effective cleanup of 20 neurochemicals even including acidic and basic neurochemicals in a single SPE cartridge by using different composition of eluents. Selective derivatization of various types of metabolites was applied to achieve highly chromatographic separation and sensitive mass detection. Appropriate selection of precursor and product transition ions used in multiple reaction-monitoring (MRM) mode based on the MS/MS fragmentations of the derivatized neurochemicals could be significantly minimized the matrix effects and enhanced the reliability of quantification results. The developed method was validated in terms of linearity, limits of detection, precision, accuracy, and matrix effects. The intra- and inter-assay analytical variations were less than 10%. The overall linearity for all of the targets was excellent (R2≥0.996). The detection limits ranged between 0.38 and 8.13ng/mL for the acidic neurochemicals and between 0.02 and 11.1ng/mL for the basic neurochemicals. The developed protocol will be expected to be a promising tool for the understanding of the pathological state and diagnosis of various neuronal diseases.
Collapse
Affiliation(s)
- Hyun Ju Shin
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Na Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
14
|
Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization. Anal Bioanal Chem 2017; 409:2931-2939. [PMID: 28204887 DOI: 10.1007/s00216-017-0239-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022]
Abstract
A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2 > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.
Collapse
|
15
|
Huang J, Gan N, Lv F, Cao Y, Ou C, Tang H. Environmentally friendly solid-phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples. J Sep Sci 2016; 39:4384-4390. [PMID: 27753266 DOI: 10.1002/jssc.201600893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
In this work, a facile and environmentally friendly solid-phase microextraction assay based on on-fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7-Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98-45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9-110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.
Collapse
Affiliation(s)
- Jie Huang
- Faculty of Marine Science, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fangying Lv
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yuting Cao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Changrong Ou
- Faculty of Marine Science, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Haiqing Tang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
16
|
Aigner M, Kalcher K, Macheroux P, Lienhart WD, Wallner S, Edmondson D, Ortner A. Determination of Total Monoamines in Rat Brain via Nanotubes Based Human Monoamine Oxidase B Biosensor. ELECTROANAL 2016. [DOI: 10.1002/elan.201600326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maximilian Aigner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry; University of Graz; 8010 Graz Austria
| | - Kurt Kalcher
- Institute of Chemistry; University of Graz; 8010 Graz Austria
| | - Peter Macheroux
- Institute of Biochemistry; Technical University of Graz; 8010 Graz Austria
| | | | - Silvia Wallner
- Institute of Biochemistry; Technical University of Graz; 8010 Graz Austria
| | - Dale Edmondson
- Department of Biochemistry; Emory University; Atlanta GA 30322 USA
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry; University of Graz; 8010 Graz Austria
| |
Collapse
|
17
|
He L, Ren J, Shi Z, Xu Z. Separation of Key Biogenic Amines by Capillary Electrophoresis and Determination of Possible Indicators of Sport Fatigue in Athlete's Urine. J Chromatogr Sci 2016; 54:1428-34. [DOI: 10.1093/chromsci/bmw065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/23/2022]
|
18
|
Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression. Clin Chim Acta 2015; 453:174-81. [PMID: 26712273 DOI: 10.1016/j.cca.2015.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
Analysis of neurotransmitters and their metabolites is useful for the diagnosis of central nervous system diseases. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with protein precipitation was developed to monitor levels of adrenaline (AD), noradrenaline (NA), glutamic acid (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in rat brain tissue. Isoprenaline was used as an internal standard (IS). Neurotransmitters and metabolites were eluted with a reverse phase column under gradient conditions through a mobile phase consisting of 0.2% formic acid water solution/acetonitrile. The compounds were detected and quantified by LC-MS/MS with positive or negative electrospray ionization, which operates in multiple-reaction monitoring mode. The method was linear or polynomial (R(2)>0.99) for AD, NA, Glu, GABA, DA, 5-HT, 5-HIAA, and MHPG in the range of 0.25-200, 0.5-200, 250-20,000, 250-20,000, 0.25-200, 10-3000, 1-50, and 1-50ng/mL, respectively. The validation assays for accuracy and precision, matrix effect, extraction recovery, stability and carry-over of the samples for neurotransmitters and metabolites were consistent with the requirements of regulatory agencies. The method enables rapid quantification of neurotransmitters and their metabolites and has been applied in the nuclear factor (erythroid 2-derived)-like 2 (Nrf2) knockout mouse model of depression.
Collapse
|
19
|
Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2015; 1395:79-87. [DOI: 10.1016/j.chroma.2015.03.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
|
20
|
Yang X, Hu Y, Li G, Zhang Z. Acrylamide-functionalized graphene micro-solid-phase extraction coupled to high-performance liquid chromatography for the online analysis of trace monoamine acidic metabolites in biological samples. J Sep Sci 2015; 38:1380-7. [PMID: 25655072 DOI: 10.1002/jssc.201401432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022]
Abstract
Monoamine acidic metabolites in biological samples are essential biomarkers for the diagnosis of neurological disorders. In this work, acrylamide-functionalized graphene adsorbent was successfully synthesized by a chemical functionalization method and was packed in a homemade polyether ether ketone micro column as a micro-solid-phase extraction unit. This micro-solid-phase extraction unit was directly coupled to high-performance liquid chromatography to form an online system for the separation and analysis of three monoamine acidic metabolites including homovanillic acid, 5-hydroxyindole-3-acetic acid, and 3,4-dihydroxyphenylacetic acid in human urine and plasma. The online system showed high stability, permeability, and adsorption capacity toward target metabolites. The saturated extraction amount of this online system was 213.1, 107.0, and 153.4 ng for homovanillic acid, 5-hydroxyindole-3-acetic acid, and 3,4-dihydroxyphenylacetic acid, respectively. Excellent detection limits were achieved in the range of 0.08-0.25 μg/L with good linearity and reproducibility. It was interesting that three targets in urine and plasma could be actually quantified to be 0.94-3.93 μg/L in plasma and 7.15-19.38 μg/L in urine. Good recoveries were achieved as 84.8-101.4% for urine and 77.8-95.1% for plasma with the intra- and interday relative standard deviations less than 9.3 and 10.3%, respectively. This method shows great potential for online analysis of trace monoamine acidic metabolites in biological samples.
Collapse
Affiliation(s)
- Xiaoting Yang
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|