1
|
Cajka T, Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O. Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics. Int J Mol Sci 2023; 24:ijms24031987. [PMID: 36768308 PMCID: PMC9916776 DOI: 10.3390/ijms24031987] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for the untargeted profiling of biological samples. A multiplatform LC-MS-based approach is needed to screen polar metabolites and lipids comprehensively. Different mobile phase modifiers were tested to improve the electrospray ionization process during metabolomic and lipidomic profiling. For polar metabolites, hydrophilic interaction LC using a mobile phase with 10 mM ammonium formate/0.125% formic acid provided the best performance for amino acids, biogenic amines, sugars, nucleotides, acylcarnitines, and sugar phosphate, while reversed-phase LC (RPLC) with 0.1% formic acid outperformed for organic acids. For lipids, RPLC using a mobile phase with 10 mM ammonium formate or 10 mM ammonium formate with 0.1% formic acid permitted the high signal intensity of various lipid classes ionized in ESI(+) and robust retention times. For ESI(-), the mobile phase with 10 mM ammonium acetate with 0.1% acetic acid represented a reasonable compromise regarding the signal intensity of the detected lipids and the stability of retention times compared to 10 mM ammonium acetate alone or 0.02% acetic acid. Collectively, we show that untargeted methods should be evaluated not only on the total number of features but also based on common metabolites detected by a specific platform along with the long-term stability of retention times.
Collapse
|
2
|
Gao S, Wang X, Huang J, Zhu Y, Zhang R, He J, Abliz Z. Development and validation of a sensitive and reliable targeted metabolomics method for the quantification of cardiovascular disease-related biomarkers in plasma using ultrahigh-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9292. [PMID: 35266203 DOI: 10.1002/rcm.9292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Cardiovascular disease, as a multifactorial disease caused by genetics and environment, has emerged as a leading cause of mortality. The discovery of metabolic biomarkers for the clinical diagnosis, early warning and elucidation of the molecular pathogenesis of cardiovascular disease, using metabolomics, has attracted broad interest. Therefore, this work aimed to develop a sensitive and reliable targeted metabolomics method for the quantification of cardiovascular disease-related biomarkers in plasma. METHODS The method was developed and validated using ultrahigh-performance liquid chromatography augmented with tandem mass spectrometry (UHPLC/MS/MS). The LC conditions and MS parameters were optimized using selected reaction monitoring scanning mode to high-throughput and sensitive separation, and could detect 20 metabolic biomarkers in a single experiment. And the linearity, selectivity, accuracy, precision, stability and recovery of the developed method were assessed according to the Bioanalytical Method Validation guidelines of the United States Food and Drug Administration. RESULTS These quantified metabolic biomarkers are involved in pathways such as aromatic amino acid catabolism (e.g. phenylalanine, tryptophan, tyrosine), trimethylamine N-oxide (TMAO) biosynthesis (e.g. TMAO, choline, carnitine, betaine) and histidine metabolism (e.g. histidine), among others. All analytes exhibited excellent linearities with coefficients of determination greater than 0.99. Accuracies deviated by less than 15% for medium- and high-concentration samples and less than 20% for low-concentration samples, with intra- and inter-day precisions of 1.12-14.12% and 0.30-13.74%, respectively. Recoveries and stabilities also met the analysis requirements of biological samples. CONCLUSIONS The targeted metabolomics method was shown to have a powerful ability to accurately analyze metabolic biomarkers, thereby providing valuable information for large-scale biomarker validation and clarifying the potential material basis of cardiovascular disease for clinical diagnosis or early warning.
Collapse
Affiliation(s)
- Shanshan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NMPA Key Laboratory of Safety Research and Evaluation of Innovative Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for Imaging and Systems Biology and School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, China
| |
Collapse
|
3
|
Klassen A, Faccio AT, Picossi CRC, Derogis PBMC, Dos Santos Ferreira CE, Lopes AS, Sussulini A, Cruz ECS, Bastos RT, Fontoura SC, Neto AMF, Tavares MFM, Izar MC, Fonseca FAH. Evaluation of two highly effective lipid-lowering therapies in subjects with acute myocardial infarction. Sci Rep 2021; 11:15973. [PMID: 34354179 PMCID: PMC8342504 DOI: 10.1038/s41598-021-95455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
For cardiovascular disease prevention, statins alone or combined with ezetimibe have been recommended to achieve low-density lipoprotein cholesterol targets, but their effects on other lipids are less reported. This study was designed to examine lipid changes in subjects with ST-segment elevation myocardial infarction (STEMI) after two highly effective lipid-lowering therapies. Twenty patients with STEMI were randomized to be treated with rosuvastatin 20 mg QD or simvastatin 40 mg combined with ezetimibe 10 mg QD for 30 days. Fasting blood samples were collected on the first day (D1) and after 30 days (D30). Lipidomic analysis was performed using the Lipidyzer platform. Similar classic lipid profile was obtained in both groups of lipid-lowering therapies. However, differences with the lipidomic analysis were observed between D30 and D1 for most of the analyzed classes. Differences were noted with lipid-lowering therapies for lipids such as FA, LPC, PC, PE, CE, Cer, and SM, notably in patients treated with rosuvastatin. Correlation studies between classic lipid profiles and lipidomic results showed different information. These findings seem relevant, due to the involvement of these lipid classes in crucial mechanisms of atherosclerosis, and may account for residual cardiovascular risk. Randomized clinical trial: ClinicalTrials.gov, NCT02428374, registered on 28/09/2014.
Collapse
Affiliation(s)
- Aline Klassen
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Andrea Tedesco Faccio
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Carolina Raissa Costa Picossi
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | - Aline Soriano Lopes
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Elisa Castañeda Santa Cruz
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rafaela Tudela Bastos
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | | | | | - Marina Franco Maggi Tavares
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Maria Cristina Izar
- Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Rua Loefgren 1350, São Paulo, SP, CEP 04040-001, Brazil
| | | |
Collapse
|
4
|
Methods of Lipidomic Analysis: Extraction, Derivatization, Separation, and Identification of Lipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791982 DOI: 10.1007/978-3-030-51652-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Lipidomics refers to the large-scale study of pathways and networks of cellular lipids in biological systems. A lipidomic analysis often involves the identification and quantification of the thousands of cellular lipid molecular species within a complex biological sample and therefore requires a well optimized method for lipid profiling. In this chapter, the methods for lipidomic analysis, including sample collection and preparation, lipid derivatization and separation, mass spectrometric identification of lipids, data processing and interpretation, and quality control, are overviewed.
Collapse
|
5
|
Addepalli RV, Mullangi R. A concise review on lipidomics analysis in biological samples. ADMET AND DMPK 2020; 9:1-22. [PMID: 35299875 PMCID: PMC8923307 DOI: 10.5599/admet.913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid classes, including their molecular species. The analysis of the biological tissues and fluids are challenging due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This review documents the overview of lipidomics workflow, beginning from the approaches of sample preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility spectroscopy technologies to deal with the vast number of structural isomers, different imaging techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after reviewing the power of each technique with examples..
Collapse
Affiliation(s)
| | - Ramesh Mullangi
- Laxai Life Sciences Pvt Ltd, MN Park, Genome Valley, Shamirpet, Hyderabad-500 078, India
| |
Collapse
|
6
|
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020; 219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
|
7
|
Kim J, Kang SC, Yoon NE, Kim Y, Choi J, Park N, Jung H, Jung BH, Ju JH. Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis. Stem Cell Res Ther 2019; 10:319. [PMID: 31730022 PMCID: PMC6858676 DOI: 10.1186/s13287-019-1408-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/17/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Metabolomics is the systemic study of the unique fingerprints of metabolites involved in cellular processes and biochemical reactions. The metabolomic approach is useful in diagnosing and predicting the development of rheumatoid arthritis (RA) and osteoarthritis (OA) and is emerging as a useful tool for identifying disease biomarkers. The aim of this study was to compare the metabolic blueprint of fibroblast-like synoviocyte (FLS) cells and induced pluripotent stem cells (iPSCs) derived from RA and OA patients. Methods Somatic cells of RA patients (n = 3) and OA patients (n = 3) were isolated, transduced with a lentiviral plasmid, and reprogrammed into iPSCs displaying pluripotency. Metabolic profiling of RA and OA patient–derived FLS cells and iPSCs was performed using liquid chromatography/mass spectrometry and statistical analysis. After normalization by the sum of the peak intensities through LC/MS, 37 metabolites were detected across RA and OA patients. Results The metabolites of RA and OA were distinguishable according to the PLS-DA analysis. LysoPC (20:4), 4-methoxychalcone, phosphorylcholine, and nicotinamide (NAM) were significantly higher in RA iPSCs than in OA iPSCs (p < 0.05). The NMNAT-3 enzyme, which catalyzes an important step in the biosynthesis of NAD+ from adenosine triphosphate, was also upregulated in RA iPSCs. Interestingly, the proliferation of RA iPSCs was significantly greater than OA iPSC proliferation (p < 0.05). NAM played a critical role in the proliferation of RA iPSCs but not in OA iPSCs. When iPSCs were treated with 100 nM of the NAM inhibitor tannic acid (TA), the proliferation of RA iPSCs was significantly reduced (p < 0.001). Conclusions The metabolites of RA and OA FLS cells and RA and OA iPSCs were all clearly distinguishable from each other. NAM played a critical role in the proliferation of RA iPSCs but not in OA iPSCs. TA effectively inhibited the expression of NAM in RA iPSCs and is a possible effective treatment for RA patients.
Collapse
Affiliation(s)
- Juryun Kim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | | | - Na Eun Yoon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yena Kim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Jinhyeok Choi
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Narae Park
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Hyerin Jung
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
8
|
Oh HA, Lee H, Park SY, Lim Y, Kwon O, Kim JY, Kim D, Jung BH. Analysis of plasma metabolic profiling and evaluation of the effect of the intake of Angelica keiskei using metabolomics and lipidomics. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112058. [PMID: 31283957 DOI: 10.1016/j.jep.2019.112058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica keiskei contains many bioactive components with anti-oxidative and anti-inflammatory effects. It is also effective for the treatment of diabetes mellitus, hypertension, and arteriosclerosis, but the relationships between these effects and the active components in the herb have not been studied. AIM OF THE STUDY We aimed to confirm the effects of Angelica keiskei on humans. MATERIALS AND METHODS A metabolomics and lipidomics study was performed using human plasma samples from 20 subjects after the intake of Angelica keiskei, and the components of Angelica keiskei in the plasma were profiled. UPLC-Orbitrap-MS was used to analyze the plasma and plant extracts, and multivariate analysis and correlation studies between the exogenous components from plant and endogenous metabolite in plasma were performed. RESULTS The levels of the 14 metabolites including kynurenic acid, prostaglandin E1, chenodeoxycholic acid, lysoPC (18:1), lysoPC (18:2), lysoPC (20:3), lysoPC (20:4), lysoPC (22:6), PC (34:1), PC (34:2), PC (38:3), PC (38:4), PC (38:6) and PC (40:7) in the plasma were changed. By monitoring the components originating from Angelica keiskei in plasma, five components including 5-methoxypsoralen, 8-methoxypsoralen, 4-hydroxyderricin, xanthoangelol B and xanthoangelol F were detected and they reduced the levels of bile acids and fatty acids. CONCLUSIONS The levels of the metabolites, including bile acids, amino acids, glycerophospholipids and fatty acids, in the plasma were changed, and 14 significantly changed metabolites were closely related to the preventive effect against liver diseases, type 2 diabetes, anemia, obesity, atherosclerosis, depression and anti-inflammatory effects. The five components of Angelica keiskei were related the modulatory activity of reducing the levels of bile acids and fatty acids.
Collapse
Affiliation(s)
- Hyun-A Oh
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Lee G, Hasan M, Kwon OS, Jung BH. Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice via Metabolomics and Lipidomics. Neuroscience 2019; 416:74-87. [DOI: 10.1016/j.neuroscience.2019.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
10
|
Regulation of endogenic metabolites by rosuvastatin in hyperlipidemia patients: An integration of metabolomics and lipidomics. Chem Phys Lipids 2018; 214:69-83. [DOI: 10.1016/j.chemphyslip.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/13/2023]
|
11
|
Zheng SJ, Liu SJ, Zhu QF, Guo N, Wang YL, Yuan BF, Feng YQ. Establishment of Liquid Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Anal Chem 2018; 90:8412-8420. [DOI: 10.1021/acs.analchem.8b00901] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shu-Jian Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Shi-Jie Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Quan-Fei Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ning Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ya-Lan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
12
|
A four parameter optimization and troubleshooting of a RPLC – charged aerosol detection stability indicating method for determination of S-lysophosphatidylcholines in a phospholipid formulation. J Pharm Biomed Anal 2018; 155:288-297. [DOI: 10.1016/j.jpba.2018.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 11/21/2022]
|
13
|
A Pilot Study on Characteristics of Metabolomics and Lipidomics according to Sasang Constitution. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9214960. [PMID: 30002718 PMCID: PMC5998192 DOI: 10.1155/2018/9214960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/16/2018] [Accepted: 05/12/2018] [Indexed: 12/28/2022]
Abstract
Although classification of an individual's Sasang constitution is a key step in the prescription of traditional Korean medicine, the classifying process is complex and not objective. Identification of metabolic-based biomarkers could allow the development of a reliable and sensitive classification technique and even therapeutic management. Our pilot study investigated whether metabolites in plasma are characteristic of Sasang constitutions. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabolic analysis was conducted against 15 Soyangin (SY), 15 Taeeumin (TE), and 18 Soeumin (SE) individuals, as classified according to the Questionnaire for Sasang Constitution Classification II (QSCC II) and specialist diagnosis. Metabolomics data showed that the TE group was significantly separated from the SY and SE groups. Nine canonical pathways related to constitution; phenylalanine metabolism, aminoacyl-tRNA, tyrosine, and tryptophan biosynthesis were activated in the TE group as compared with the other groups. Similar to the results of the metabolomics analysis, the TE group was also significantly separated from the other two groups by lipidomic analysis. On the other hand, the intensity of lipid metabolites was higher in the SY group than in the other groups. Our findings suggest that the combined analysis of metabolomics and lipidomics can provide useful information for characteristics of Sasang constitutions.
Collapse
|
14
|
Satomi Y, Hirayama M, Kobayashi H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:93-100. [PMID: 28850891 DOI: 10.1016/j.jchromb.2017.08.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
In the past decade, various lipidomics methodologies have been developed using mass spectrometry based analytical technologies, enabling wide coverage lipid detection in a quantitative manner. Hence, lipidomics has become a widely-accepted approach for biomarker discovery and mechanism elucidation in both medical and biology research fields; however, there are still technical challenges. In this study, focusing on the sample preparation procedure, a single step deproteinization by a water-soluble organic solvent, such as methanol (MeOH), ethanol (EtOH), isopropanol (IPA) or acetonitrile (ACN), was evaluated and proved to be satisfactory for lipidomics analysis. Moreover, during this investigation ACN deproteinization was revealed to not be an effective method for lipid extraction because lipid decomposition was observed during the protein precipitation process through lipase activation, potentially due to the insufficient protein denaturation. Therefore, excluding ACN, protein precipitation by alcohol was evaluated as the lipid extraction reagent. Moreover, adding the MTBE-MeOH (mMM) method, one of the major liquid-liquid extraction methods for shotgun lipidomics, these four approaches were compared. Lipids were extracted from mouse plasma by these four methods and used for exhaustive lipid profiling by liquid chromatography mass spectrometry (LC/MS) analysis. Comparison of these four methods revealed that alcohol based protein precipitation was a useful sample preparation procedure for LC/MS based lipidomics analysis. Whereas MeOH extraction was appropriate for hydrophilic lipid species, IPA was effective for hydrophobic lipids such as triacylglycerols (TG). In practice, EtOH extraction is thought to be the best approach to cover wide range of lipid species using a simple preparation procedure.
Collapse
Affiliation(s)
- Yoshinori Satomi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan.
| | - Megumi Hirayama
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroyuki Kobayashi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan.
| |
Collapse
|
15
|
Ferchaud-Roucher V, Croyal M, Moyon T, Zair Y, Krempf M, Ouguerram K. Plasma Lipidome Analysis by Liquid Chromatography-High Resolution Mass Spectrometry and Ion Mobility of Hypertriglyceridemic Patients on Extended-Release Nicotinic Acid: a Pilot Study. Cardiovasc Drugs Ther 2017; 31:269-279. [DOI: 10.1007/s10557-017-6737-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Nishizawa S, Sumi H, Satoh Y, Yamamoto Y, Kitazawa S, Honda K, Araki H, Kakoi K, Imamura K, Sasaki M, Miyahisa I, Satomi Y, Nishigaki R, Hirayama M, Aoyama K, Maezaki H, Hara T. In vitro and in vivo antitumor activities of T-3764518, a novel and orally available small molecule stearoyl-CoA desaturase 1 inhibitor. Eur J Pharmacol 2017; 807:21-31. [PMID: 28442322 DOI: 10.1016/j.ejphar.2017.03.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/18/2023]
Abstract
Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl-CoA desaturase-1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T-3764518, a novel and orally available small molecule inhibitor of SCD1. T-3764518 inhibited stearoyl-CoA desaturase-catalyzed conversion of stearoyl-CoA to oleoyl-CoA in colorectal cancer HCT-116 cells and their growth. Further, it slowed tumor growth in an HCT-116 and a mesothelioma MSTO-211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T-3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT-116 xenografts. Treatment-associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain-binding protein expression in HCT-116 cells. These T-3764518-induced changes led to an increase in cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T-3764518, indicating that these outcomes were not attributable to off-target effects. These results indicate that T-3764518 is a promising new anticancer drug candidate.
Collapse
Affiliation(s)
- Satoru Nishizawa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hiroyuki Sumi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yoshihiko Satoh
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yukiko Yamamoto
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Satoshi Kitazawa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kohei Honda
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hideo Araki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kazuyo Kakoi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Keisuke Imamura
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masako Sasaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ikuo Miyahisa
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yoshinori Satomi
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ryuuichi Nishigaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Megumi Hirayama
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Kazunobu Aoyama
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hironobu Maezaki
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Takahito Hara
- Oncology Dug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
17
|
Rush MD, van Breemen RB. Role of ammonium in the ionization of phosphatidylcholines during electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:264-268. [PMID: 27862466 PMCID: PMC5253255 DOI: 10.1002/rcm.7788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 05/09/2023]
Abstract
RATIONALE Electrospray mass spectrometry methods for the analysis of phosphatidylcholines (PCs) routinely include ammonium acetate or ammonium formate in the mobile phase. In an effort to justify and optimize the use of these additives, we investigated possible functions of ammonium compounds in the ionization of PCs. METHODS Because PCs contain a quaternary amine, the role of ammonium in neutralizing the negatively charged phosphate group was investigated by using deuterated ammonium acetate, adjusting the pH, varying the organic solvent composition, and by comparing the additives ammonium acetate, ammonium formate and ammonium bicarbonate. Seven PC standards were measured ranging from lyso 1-palmitoyl-sn-glycero-3-phosphocholine to 1,2-dieicosapentaenoyl-sn-glycero-3-phosphocholine as well as a mixture of PCs in a krill oil dietary supplement. RESULTS Under all conditions tested, aqueous acetonitrile provided more abundant formation of protonated PCs than did aqueous methanol. Regardless of the mobile phase composition and electrospray ion source parameters, no [M + NH4 ]+ ions were detected. Adding deuterated ammonium acetate to the mobile phase failed to form deuterated PCs, indicating that ammonium is not the source of the proton that neutralizes the phosphate negative charge. Instead, water was the source of the proton as deuterated water resulted in the formation of [M + D]+ ions. Addition of organic acids, ammonium formate, ammonium acetate, or ammonium bicarbonate to the mobile phase did not enhance and in most cases suppressed PC ionization. CONCLUSIONS Ammonium compounds and organic acids can suppress ionization of PCs when using an aqueous acetonitrile mobile phase during electrospray. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michael D Rush
- Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, 833 South Wood St., Chicago, IL, 60612, USA
| | - Richard B van Breemen
- Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, 833 South Wood St., Chicago, IL, 60612, USA
| |
Collapse
|
18
|
Rankin NJ, Preiss D, Welsh P, Sattar N. Applying metabolomics to cardiometabolic intervention studies and trials: past experiences and a roadmap for the future. Int J Epidemiol 2016; 45:1351-1371. [PMID: 27789671 PMCID: PMC5100629 DOI: 10.1093/ije/dyw271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Metabolomics and lipidomics are emerging methods for detailed phenotyping of small molecules in samples. It is hoped that such data will: (i) enhance baseline prediction of patient response to pharmacotherapies (beneficial or adverse); (ii) reveal changes in metabolites shortly after initiation of therapy that may predict patient response, including adverse effects, before routine biomarkers are altered; and( iii) give new insights into mechanisms of drug action, particularly where the results of a trial of a new agent were unexpected, and thus help future drug development. In these ways, metabolomics could enhance research findings from intervention studies. This narrative review provides an overview of metabolomics and lipidomics in early clinical intervention studies for investigation of mechanisms of drug action and prediction of drug response (both desired and undesired). We highlight early examples from drug intervention studies associated with cardiometabolic disease. Despite the strengths of such studies, particularly the use of state-of-the-art technologies and advanced statistical methods, currently published studies in the metabolomics arena are largely underpowered and should be considered as hypothesis-generating. In order for metabolomics to meaningfully improve stratified medicine approaches to patient treatment, there is a need for higher quality studies, with better exploitation of biobanks from randomized clinical trials i.e. with large sample size, adjudicated outcomes, standardized procedures, validation cohorts, comparison witth routine biochemistry and both active and control/placebo arms. On the basis of this review, and based on our research experience using clinically established biomarkers, we propose steps to more speedily advance this area of research towards potential clinical impact.
Collapse
Affiliation(s)
- Naomi J Rankin
- BHF Glasgow Cardiovascular Research Centre
- Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - David Preiss
- Clinical Trials Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, UK
| | - Paul Welsh
- BHF Glasgow Cardiovascular Research Centre
| | | |
Collapse
|
19
|
Abstract
Lipidomic analysis aims at comprehensive characterization of molecular lipids in biological systems. Due to the central role of lipid metabolism in many devastating diseases, lipidomics is being increasingly applied in biomedical research. Over the past years, advances in analytical techniques and bioinformatics enabled increasingly comprehensive and accurate coverage of lipids both in tissues and biofluids, yet many challenges remain. This review highlights recent progress in the domain of analytical lipidomics, with main emphasis on non-targeted methodologies for large scale clinical applications, as well as discusses some of the key challenges and opportunities in this field.
Collapse
|
20
|
Lee WJ, Weng SH, Su NW. Individual Phosphatidylcholine Species Analysis by RP-HPLC-ELSD for Determination of Polyenylphosphatidylcholine in Lecithins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3851-3858. [PMID: 25834917 DOI: 10.1021/acs.jafc.5b01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyenylphosphatidylcholine (PPC), a subgroup of the bioactive agents in phosphatidylcholine (PC), has been indicated to possess liver-protective effects. This study aimed to investigate a promising and feasible method to determine PC molecular species with a reverse phase (RP) high-performance liquid chromatograph (HPLC) equipped with an evaporative light scattering detector (ELSD). Chromatography was achieved using a C30 column and an isocratic mobile phase consisting of acetonitrile/methanol/triethylamine (40/58/2, v/v/v) at a flow rate of 1 mL/min, and ELSD detection was performed using 80 °C for the drift tube and an air flow rate of 1.8 L/min. To identify individual peaks on the chromatogram, MALDI-TOF-MS was employed for initial detection, and then the results were used to investigate the relationship between the retention time and fatty acyl chains of each PC molecule. A linear correlation was observed between the retention time and theoretical carbon number (TCN) of individual PC species. The compositions of PC molecular species in soybean and sunflower lecithins were similar to each other, and the major PC molecular species were 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (LLPC), 1-oleoyl-2-linoleoyl-sn-glycero-3-phosphocholine (OLPC), and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC). The contents of LLPC in soybean PC and sunflower PC were 40.6% and 64.3%, respectively.
Collapse
Affiliation(s)
- Wei-Ju Lee
- †Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shun-Hsiang Weng
- ‡Department of Food Science and Nutrition, Meiho University, Pingtung County 91202, Taiwan
| | - Nan-Wei Su
- †Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
21
|
García-Sánchez C, Posadas-Romero C, Posadas-Sánchez R, Carreón-Torres E, Rodríguez-Pérez JM, Juárez-Rojas JG, Martínez-Sánchez C, Fragoso JM, González-Pacheco H, Vargas-Alarcón G, Pérez-Méndez Ó. Low concentrations of phospholipids and plasma HDL cholesterol subclasses in asymptomatic subjects with high coronary calcium scores. Atherosclerosis 2015; 238:250-5. [DOI: 10.1016/j.atherosclerosis.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/28/2014] [Accepted: 12/02/2014] [Indexed: 12/28/2022]
|
22
|
Skov K, Hadrup N, Smedsgaard J, Frandsen H. LC–MS analysis of the plasma metabolome—A novel sample preparation strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 978-979:83-8. [DOI: 10.1016/j.jchromb.2014.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 01/28/2023]
|
23
|
Analysis of serum phospholipid profiles by liquid chromatography–tandem mass spectrometry in high resolution mode for evaluation of atherosclerotic patients. J Chromatogr A 2014; 1371:154-62. [DOI: 10.1016/j.chroma.2014.10.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/31/2022]
|
24
|
Yin P, Xu G. Current state-of-the-art of nontargeted metabolomics based on liquid chromatography-mass spectrometry with special emphasis in clinical applications. J Chromatogr A 2014; 1374:1-13. [PMID: 25444251 DOI: 10.1016/j.chroma.2014.11.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/21/2022]
Abstract
Metabolomics, as a part of systems biology, has been widely applied in different fields of life science by studying the endogenous metabolites. The development and applications of liquid chromatography (LC) coupled with high resolution mass spectrometry (MS) greatly improve the achievable data quality in non-targeted metabolic profiling. However, there are still some emerging challenges to be covered in LC-MS based metabolomics. Here, recent approaches about sample collection and preparation, instrumental analysis, and data handling of LC-MS based metabolomics are summarized, especially in the analysis of clinical samples. Emphasis is put on the improvement of analytical techniques including the combination of different LC columns, isotope coded derivatization methods, pseudo-targeted LC-MS method, new data analysis algorithms and structural identification of important metabolites.
Collapse
Affiliation(s)
- Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Zhao YY, Wu SP, Liu S, Zhang Y, Lin RC. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem Biol Interact 2014; 220:181-92. [PMID: 25014415 DOI: 10.1016/j.cbi.2014.06.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/31/2014] [Accepted: 06/30/2014] [Indexed: 11/15/2022]
Abstract
Lipidomics, the comprehensive illumination of lipid-based information in biology systems, involves in identifying lipids and profiling lipids and lipid-derived mediators. The development of lipidomics enables the characterization of lipid species and detailed lipid profiling in body fluid, tissue or cell, and allows for a wider understanding of the biological roles of lipid networks. Lipidomic research has been greatly facilitated by recent advances in ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and involved in lipid extraction, lipid identification and data analysis supporting applications from qualitative and quantitative assessment of multiple lipid species. UPLC technique, different mass spectrometry technique, lipid extraction and data analysis in lipidomics are reviewed. Afterwards, examples are provided on the use of UPLC-MS for finding lipid biomarkers in disease, drug, food, nutrition and plant fields. We also discuss the UPLC-MS-based lipidomics for the future perspectives and their potential problems.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, PR China; Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92868, USA.
| | - Shao-Ping Wu
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Shuman Liu
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92868, USA
| | - Yongmin Zhang
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Beijing 100029, PR China.
| |
Collapse
|
26
|
Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z. Mass spectrometry methodology in lipid analysis. Int J Mol Sci 2014; 15:10492-507. [PMID: 24921707 PMCID: PMC4100164 DOI: 10.3390/ijms150610492] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022] Open
Abstract
Lipidomics is an emerging field, where the structures, functions and dynamic changes of lipids in cells, tissues or body fluids are investigated. Due to the vital roles of lipids in human physiological and pathological processes, lipidomics is attracting more and more attentions. However, because of the diversity and complexity of lipids, lipid analysis is still full of challenges. The recent development of methods for lipid extraction and analysis and the combination with bioinformatics technology greatly push forward the study of lipidomics. Among them, mass spectrometry (MS) is the most important technology for lipid analysis. In this review, the methodology based on MS for lipid analysis was introduced. It is believed that along with the rapid development of MS and its further applications to lipid analysis, more functional lipids will be identified as biomarkers and therapeutic targets and for the study of the mechanisms of disease.
Collapse
Affiliation(s)
- Lin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jian'an Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Shaoxiang Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| |
Collapse
|