1
|
Riscado M, Carapito R, Maia CJ, Pichon C, Freire MG, Sponchioni M, Sousa F. A new approach for extracellular RNA recovery from Rhodovulum sulfidophilum. Anal Biochem 2025; 696:115681. [PMID: 39326545 DOI: 10.1016/j.ab.2024.115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The development of RNA-based drugs is highly pursued due to the possibility of creating viable and effective therapies. However, their translation to clinical practice strongly depends on efficient technologies to produce substantial levels of these biomolecules, with high purity and high quality. RNAs are commonly produced by chemical or enzymatic methods, displaying these limitations. In this sense, recombinant production arises as a promising, cost-effective method, allowing large-scale production of RNA. Rhodovulum sulfidophilum (R. sulfidophilum), a marine purple bacterium, offers the advantage of RNA secretion into the extracellular medium, which contains low levels of RNases and other impurities. Therefore, RNA recovery can be simplified compared to standard extraction protocols involving cell lysis, resulting in a more clarified sample and an improved downstream process. In this work, R. sulfidophilum was transformed with a plasmid DNA encoding pre-miR-29b-1, which is known to be involved in the Alzheimer's disease pathway. After production, the pre-miR-29b-1 was recovered through different extraction methods to verify the most advantageous one. A protocol for extracellular RNA recovery was then established, revealing to be a simpler and less time-consuming method, reducing around 16 h in execution time and the quantity of reagents needed when compared to other established methods. The new strategy brings the additional advantage of eliminating the toxic organic compounds routinely used in intracellular RNA extractions. Overall, the optimized process described here, using isopropanol as the precipitation agent, offers a greener, safer, and faster alternative for recombinant RNA recovery and concentration, with an extracellular RNA recovery of 7 μg/mL and target pre-miRNA-29b-1 recovery of 0.7 μg/L of medium.
Collapse
Affiliation(s)
- Micaela Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Rita Carapito
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Chantal Pichon
- Inserm UMS 55 ART ARNm, LI2RSO, and University of Orléans, F-45100, Orléans, France; Institut Universitaire de France, 1 rue Descartes, F-75035, Paris, France
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20131, Milano, Italy
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
2
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Carapito R, Bernardo SC, Pereira MM, Neves MC, Freire MG, Sousa F. Multimodal ionic liquid-based chromatographic supports for an effective RNA purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Almeida C, Pedro AQ, Tavares APM, Neves MC, Freire MG. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front Bioeng Biotechnol 2023; 11:1037436. [PMID: 36824351 PMCID: PMC9941158 DOI: 10.3389/fbioe.2023.1037436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
Collapse
Affiliation(s)
- Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
5
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
6
|
Carapito R, Valente JFA, Queiroz JA, Sousa F. Arginine-Affinity Chromatography for Nucleic Acid (DNA and RNA) Isolation. Methods Mol Biol 2022; 2466:135-144. [PMID: 35585316 DOI: 10.1007/978-1-0716-2176-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapy has been emerging as a new strategy with great potential for the treatment of numerous diseases, especially those caused by gene defects. In this context, biotechnology plays a critical role on establishing suitable processes for biopharmaceuticals manufacturing, while the purification step still imposes a major burden. Affinity chromatography using amino acids as specific ligands has been successfully applied for plasmid DNA purification. In this protocol, we describe the process for nucleic acids production and extraction, as well as the chromatographic matrix synthesis for separation between DNA and RNA. This novel arginine-macroporous support presents excellent binding capacity and great robustness for nucleic acids isolation.
Collapse
Affiliation(s)
- Rita Carapito
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana F A Valente
- CDRSP-IPLEIRIA - Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, Marinha Grande, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
7
|
Efficient Isolation of Bacterial RNAs Using Silica-Based Materials Modified with Ionic Liquids. Life (Basel) 2021; 11:life11101090. [PMID: 34685465 PMCID: PMC8536996 DOI: 10.3390/life11101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
High quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs. The investigated chloride-based SILs comprise the following cations: 1-methyl-3-propylimidazolium, triethylpropylammonium, dimethylbutylpropylammonium, and trioctylpropylammonium. All SILs were synthesized by us and characterized by solid-state 13C Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), elemental analysis, and zeta potential measurements, confirming the successful covalent attachment of each IL cation with no relevant changes in the morphology of materials. Their innovative application as chromatographic supports for the isolation of recombinant RNA was then evaluated. Adsorption kinetics of transfer RNA (tRNA) on the modified silica-based materials were investigated at 25 °C. Irrespective to the immobilized IL, the adsorption experimental data are better described by a pseudo first-order model, and maximum tRNA binding capacities of circa 16 µmol of tRNA/g of material were achieved with silica modified with 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Furthermore, the multimodal character displayed by SILs was explored towards the purification of tRNA from Escherichia coli lysates, which in addition to tRNA contain ribosomal RNA and genomic DNA. The best performance on the tRNA isolation was achieved with SILs comprising 1-methyl-3-propylimidazolium chloride and dimethylbutylpropylammonium chloride. Overall, the IL modified silica-based materials represent a more efficient, sustainable, and cost-effective technology for the purification of bacterial RNAs, paving the way for their use in the purification of distinct biomolecules or nucleic acids from other sources.
Collapse
|
8
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
9
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals (Basel) 2020; 13:ph13100314. [PMID: 33076502 PMCID: PMC7602608 DOI: 10.3390/ph13100314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of brain therapeutics is largely hampered by the presence of the blood–brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer’s disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.
Collapse
|
11
|
Purification of supercoiled p53-encoding plasmid using an arginine-modified macroporous support. J Chromatogr A 2020; 1618:460890. [DOI: 10.1016/j.chroma.2020.460890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
|
12
|
Abstract
Small-molecule and protein/antibody drugs mainly act on genome-derived proteins to exert pharmacological effects. RNA based therapies hold the promise to expand the range of druggable targets from proteins to RNAs and the genome, as evidenced by several RNA drugs approved for clinical practice and many others under active trials. While chemo-engineered RNA mimics have found their success in marketed drugs and continue dominating basic research and drug development, these molecules are usually conjugated with extensive and various modifications. This makes them completely different from cellular RNAs transcribed from the genome that usually consist of unmodified ribonucleotides or just contain a few posttranscriptional modifications. The use of synthetic RNA mimics for RNA research and drug development is also in contrast with the ultimate success of protein research and therapy utilizing biologic or recombinant proteins produced and folded in living cells instead of polypeptides or proteins synthesized in vitro. Indeed, efforts have been made recently to develop RNA bioengineering technologies for cost-effective and large-scale production of biologic RNA molecules that may better capture the structures, functions, and safety profiles of natural RNAs. In this article, we provide an overview on RNA therapeutics for the treatment of human diseases via RNA interference mechanisms. By illustrating the structural differences between natural RNAs and chemo-engineered RNA mimics, we focus on discussion of a novel class of bioengineered/biologic RNA agents produced through fermentation and their potential applications to RNA research and drug development.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Chao Jian
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Allan H Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Pedro AQ, Pereira P, Quental MJ, Carvalho AP, Santos SM, Queiroz JA, Sousa F, Freire MG. Cholinium-based Good's buffers ionic liquids as remarkable stabilizers and recyclable preservation media for recombinant small RNAs. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:16645-16656. [PMID: 30949418 PMCID: PMC6443033 DOI: 10.1021/acssuschemeng.8b03900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA is a biopolymer of high relevance in the biopharmaceuticals field and in fundamental and applied research; however, the preservation of the RNA stability is still a remarkable challenge. Herein, we demonstrate the enhanced potential of aqueous solutions of self-buffering cholinium-based Good's buffers ionic liquids (GB-ILs), at 20 and 50 % (w/w), as alternative preservation media of recombinant small RNAs. The thermal stability of RNA is highly enhanced by GB-ILs, with an increase of 14 °C in the biopolymer melting temperature - the highest increase observed up to date with ILs. Most GB-ILs investigated improve the stability of RNA at least up to 30-days, both at 25 °C and at 4 °C, without requiring the typical samples freezing. Molecular dynamics simulations were applied to better understand the molecular-level mechanisms responsible for the observed RNA improved stability. The number of IL cations surrounding the RNA chain is similar, yet with differences found for the IL anions, which are responsible for the overall charge of the biopolymer first solvation sphere. No cytotoxicity of the studied solutions containing RNA and ILs at 20 % (w/w) was observed onto two distinct human cell lines, reinforcing their potential to act as preservation media when foreseeing biopharmaceutical applications. Finally, RNA was successfully recovered from the ILs aqueous solutions, without changes in its structural integrity, and the ILs successfully recycled and reused.
Collapse
Affiliation(s)
- Augusto Q. Pedro
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- CICS-UBI – Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria J. Quental
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - André P. Carvalho
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio M. Santos
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João A. Queiroz
- CICS-UBI – Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI – Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Corresponding Authors: ; Tel: +351-234-401422; Fax: +351-234-370084; ; Tel: +351-275-329074
| | - Mara G. Freire
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Corresponding Authors: ; Tel: +351-234-401422; Fax: +351-234-370084; ; Tel: +351-275-329074
| |
Collapse
|
14
|
Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:1-7. [DOI: 10.1016/j.jchromb.2018.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
|
15
|
RNA purification from Escherichia coli cells using boronated nanoparticles. Colloids Surf B Biointerfaces 2018; 162:146-153. [DOI: 10.1016/j.colsurfb.2017.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/22/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022]
|
16
|
Pereira P, Pedro AQ, Queiroz JA, Figueiras AR, Sousa F. New insights for therapeutic recombinant human miRNAs heterologous production: Rhodovolum sulfidophilum vs Escherichia coli. Bioengineered 2017; 8:670-677. [PMID: 28282262 DOI: 10.1080/21655979.2017.1284710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA interference-based technologies have emerged as an attractive and effective therapeutic option with potential application in diverse human diseases. These tools rely on the development of efficient strategies to obtain homogeneous non-coding RNA samples with adequate integrity and purity, thus avoiding non-targeted gene-silencing and related side-effects that impair their application onto pre-clinical practice. These RNAs have been preferentially obtained by in vitro transcription using DNA templates or via chemical synthesis. As an alternative to overcome the limitations presented by these methods, in vivo recombinant production of RNA biomolecules has become the focus in RNA synthesis research. Therefore, using pre-miR-29b as a model, here it is evaluated the time-course profile of Escherichia coli and Rhodovolum sulfidophilum microfactories to produce this microRNA. As the presence of major host contaminants arising from the biosynthesis process may have important implications in the subsequent downstream processing, it is also evaluated the production of genomic DNA and host total proteins. Considering the rapidly growing interest on these innovative biopharmaceuticals, novel, more cost-effective, simple and easily scaled-up technologies are highly desirable. As microRNA recombinant expression fulfills those requirements, it may take the leading edge in the methodologies currently available to obtain microRNAs for clinical or structural studies.
Collapse
Affiliation(s)
- Patrícia Pereira
- a CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique , Covilhã , Portugal
| | - Augusto Q Pedro
- a CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique , Covilhã , Portugal
| | - João A Queiroz
- a CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique , Covilhã , Portugal
| | - Ana R Figueiras
- b Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba , Coimbra , Portugal.,c REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal
| | - Fani Sousa
- a CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique , Covilhã , Portugal
| |
Collapse
|
17
|
Pereira P, Queiroz JA, Figueiras A, Sousa F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27882692 DOI: 10.1002/wrna.1409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs)-based therapy has recently emerged as a promising strategy in the treatments of neurodegenerative diseases. Thus, in this review, the most recent and important challenges and advances on the development of miRNA therapeutics for brain targeting are discussed. In particular, this review highlights current knowledge and progress in the field of manufacturing, recovery, isolation, purification, and analysis of these therapeutic oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis is presented in what concerns to the current challenges that have to be addressed to ensure their specificity and efficacy. Overall, it is intended to provide a perspective on the future of miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. WIREs RNA 2017, 8:e1409. doi: 10.1002/wrna.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrícia Pereira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Figueiras
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Coimbra, Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
18
|
|
19
|
Köse K, Erol K, Özgür E, Uzun L, Denizli A. PolyAdenine cryogels for fast and effective RNA purification. Colloids Surf B Biointerfaces 2016; 146:678-86. [PMID: 27434154 DOI: 10.1016/j.colsurfb.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/24/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022]
Abstract
Cryogels are used effectively for many diverse applications in a variety of fields. The isolation or purification of RNA, one of the potential utilizations for cryogels, is crucial due to their vital roles such as encoding, decoding, transcription and translation, and gene expression. RNA principally exists within every living thing, but their tendency to denaturation easily is still the most challenging issue. Herein, we aimed to develop adenine incorporated polymeric cryogels as an alternative sorbent for cost-friendly and fast RNA purification with high capacity. For this goal, we synthesized the polymerizable derivative of adenine called as adenine methacrylate (AdeM) through the substitution reaction between adenine and methacryloyl chloride. Then, 2-hydroxyethyl methacrylate (HEMA)-based cryogels were prepared in a partially frozen aqueous medium by copolymerization of monomers, AdeM, and HEMA. The cryogels were characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area measurements, thermogravimetric analysis (TGA), and swelling tests. RNA adsorption experiments were performed via batch system while varying different conditions including pH, initial RNA concentration, temperature, and interaction time. We achieved high RNA adsorption capacity of cryogels, with the swelling ratio around 510%, as 11.86mg/g. The cryogels might be reused at least five times without significant decrease in adsorption capacity.
Collapse
Affiliation(s)
- Kazım Köse
- Hacettepe University, Department of Chemistry, Ankara, Turkey; Hitit University, Scientific Technical Research and Application Center, Çorum, Turkey
| | - Kadir Erol
- Hacettepe University, Department of Chemistry, Ankara, Turkey; Hitit University, Department of Chemistry, Çorum, Turkey
| | - Erdoğan Özgür
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
20
|
Köse K, Uzun L. PolyGuanine methacrylate cryogels for ribonucleic acid purification. J Sep Sci 2016; 39:1998-2005. [PMID: 27004613 DOI: 10.1002/jssc.201600199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/10/2022]
Abstract
The isolation and purification of ribonucleic acid have attracted attention recently for the understanding of the functions in detail because of the necessity for the treatment of genetic diseases. In this study, guanine-incorporated polymeric cryogels were developed to obtain highly purified ribonucleic acid. The satisfactory purification performance was achieved with the guanine-incorporated poly (2-hydroxyethyl methacrylate-guanine methacrylate) cryogels. The most crucial advantages to use guanine as a functional monomer are to obtain a real natural interaction between guanine on the polymeric material and cytosine on the ribonucleic acid. Moreover, using cryogel with a highly porous structure and high swelling ratio provide advantages of getting more water within the structure to get more analyte to interact. The characterization of cryogels has proved the success of the synthesis and the perfect natural interaction to be taken place between the ligand (guanine methacrylate) and the cytosine in the ribonucleic acid molecules. Although the pores within the structure of cryogels are small, they provide efficient and fast adsorption. The chromatographic separation performance was investigated for different conditions (pH, temperature etc.). The desorption ratio and reusability were also analyzed at the end of the five adsorption-desorption cycles with no significant changes.
Collapse
Affiliation(s)
- Kazım Köse
- Department of Chemistry, Hacettepe University, Ankara, Turkey.,Scientific Technical Research and Application Center, Hitit University, Çorum, Turkey
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Savane TS, Kumar S, Janakiraman VN, Kamalanathan AS, Vijayalakshmi MA. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:129-136. [DOI: 10.1016/j.jchromb.2015.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022]
|
22
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|
23
|
Pereira P, Pedro AQ, Tomás J, Maia CJ, Queiroz JA, Figueiras A, Sousa F. Advances in time course extracellular production of human pre-miR-29b from Rhodovulum sulfidophilum. Appl Microbiol Biotechnol 2016; 100:3723-34. [DOI: 10.1007/s00253-016-7350-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 02/08/2023]
|
24
|
Pereira PA, Tomás JF, Queiroz JA, Figueiras AR, Sousa F. Recombinant pre-miR-29b for Alzheimer´s disease therapeutics. Sci Rep 2016; 6:19946. [PMID: 26818210 PMCID: PMC4730146 DOI: 10.1038/srep19946] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are arising as the next generation of diagnostic and therapeutic tools for gene silencing. Studies demonstrated that the miR-29 expression is decreased in Alzheimer’s disease (AD) patients displaying high levels of human β-secretase (hBACE1). Recent advances toward an effective therapy for AD intend to employ miR-29 to suppress hBACE1 expression and subsequent Amyloid-β (Aβ) peptide. However, delivery of mature miRNA has demonstrated modest efficacy in vitro; therefore, the preparation of highly pure and biologically active pre-miRNA arises as one of the most important challenges in the development of these therapeutic strategies. Recently, we described a new strategy based arginine-affinity chromatography to specifically purify the recombinant pre-miR-29b. Following this strategy, the purified pre-miR-29b was successfully encapsulated into polyplexes that were further delivered in cytoplasm. It was verified that Chitosan/pre-miR-29b and Polyethylenimine/pre-miR-29b systems efficiently delivered pre-miR-29b to N2a695 cells, thus reducing the hBACE1 protein expression (around 78% and 86%, respectively) and Aβ42 levels (approximately 44% and 47%, respectively). Furthermore, pre-miR-29b downregulates the hBACE1 mRNA expression in 80%. Overall, it was demonstrated that the recombinant pre-miR-29b using polyplexes allowed to decrease the hBACE1 and Aβ42 expression levels, improving the currently available methodologies of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Patrícia A Pereira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Joana F Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Ana R Figueiras
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.,CNC - Center of Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, 3004-517, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
25
|
Purification of Membrane-Bound Catechol-O-Methyltransferase by Arginine-Affinity Chromatography. Chromatographia 2015. [DOI: 10.1007/s10337-015-2970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D, Pan S. DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Mol Med Rep 2015; 12:1435-42. [PMID: 25815896 DOI: 10.3892/mmr.2015.3531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in the aged population, presents an increasing clinical challenge in terms of diagnosis and treatment. Neurodegeneration is one of the hallmarks of AD, which consequently induces cognitive impairment. Brain-derived neurotrophic factor (BDNF), a neuroprotective factor, has been implicated in neuronal survival and proliferation. The epigenetic mechanism of BDNF methylation may be responsible for the reduced expression of BDNF in patients with AD. DNA methyltransferase may contribute to the methylation of BDNF, which is involved in neuroprotection in AD. In addition, epigenetic modifications, including a combination of microRNAs (miRNAs/miRs) and DNA methylation, have been suggested as regulatory mechanisms in the control of neuronal survival. In the present study, the expression of miR-29c was determined in the cerebrospinal fluid (CSF) of patients with AD and of healthy control individuals. A marked decrease in the expression of miR-29c was observed in the AD group compared with the normal control group, accompanied by a decreased in the expression of BDNF. Additionally, a significant increase in the expression of DNA methyltransferase 3 (DNMT3) was observed in the CSF from the patients with AD. Correlation analysis revealed that the expression of miR-29c was positively correlated with BDNF and negatively correlated with DNMT3 protein in the CSF of patients with AD. In addition, the regulatory association between miR-29c, DNMT3 and BDNF were also examined in vitro. It was demonstrated that miR-29c directly targeted DNMT3 and contributed to neuronal proliferation by regulating the expression of BDNF, at least partially, through enhancing the activity of the tyrosine receptor kinase B/extracellular signal-regulated kinase signaling pathway. In conclusion, the present study suggested that miR-29c may be a promising potential therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Guoshuai Yang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanmin Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyan Zhou
- Department of Neurology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Yidong Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Tao Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guohu Weng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dan Yu
- Department of Neurology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
27
|
Pereira P, Sousa Â, Queiroz JA, Figueiras A, Sousa F. Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support. J Chromatogr A 2014; 1368:173-82. [DOI: 10.1016/j.chroma.2014.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/14/2014] [Accepted: 09/27/2014] [Indexed: 02/08/2023]
|
28
|
Sousa Â, Pereira P, Sousa F, Queiroz JA. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications. J Chromatogr A 2014; 1366:110-9. [DOI: 10.1016/j.chroma.2014.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/01/2014] [Accepted: 09/13/2014] [Indexed: 02/02/2023]
|
29
|
Sousa A, Almeida A, Černigoj U, Sousa F, Queiroz J. Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate. J Chromatogr A 2014; 1355:125-33. [DOI: 10.1016/j.chroma.2014.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/28/2022]
|
30
|
Selective purification of supercoiled p53-encoding pDNA with l-methionine–agarose matrix. Anal Biochem 2014; 459:61-9. [DOI: 10.1016/j.ab.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
|
31
|
Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments. J Chromatogr A 2014; 1343:119-27. [DOI: 10.1016/j.chroma.2014.03.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
|