1
|
Ogawa Y, Tsugita S, Torii Y, Iwamoto H, Sato T, Kasahara J, Takeuchi M, Kuwabara T, Iiyama M, Takayanagi T, Mizuguchi H. Microdialysis-integrated HPLC system with dual-electrode detection using track-etched membrane electrodes for in vivo monitoring of dopamine dynamics. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124318. [PMID: 39299150 DOI: 10.1016/j.jchromb.2024.124318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
A capillary high-performance liquid chromatography (HPLC) system equipped with a dual-electrode detector utilizing track-etched membrane electrodes (TEMEs) was combined with a microdialysis sampling setup. The electrochemical detector benefits from the high electrolysis efficiency of TEMEs, allowing for calibration-free coulometric detection and simplifying data analysis to determine the dopamine recovery through a dialysis probe. Additionally, this system was used for in vivo monitoring of dopamine in the right striatum of a mouse brain. Temporal changes in dopamine levels, including an exponential decay immediately after the dialysis probe insertion and an excess release of dopamine induced by a high concentration of potassium ions, confirmed the system's proper operation. Furthermore, subsequent measurements following the intraperitoneal injection of mirtazapine showed no increase in dopamine levels in the right dorsal striatum. The dual-electrode system displayed characteristic dopamine detection behavior, with anodic and cathodic peak pairs indicative of reversible electrochemical reactions. This capability facilitated the identification of the dopamine peak within the complex chromatogram of the mouse brain dialysate. The consistency between dopamine collection efficiency from standard solutions and dialysate indicated the absence of interfering electroactive substances overlapping with the dopamine peak in the chromatogram. This integrated analysis system successfully tracked temporal fluctuations in dopamine concentration within the mouse brain.
Collapse
Affiliation(s)
- Yukuto Ogawa
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Sohei Tsugita
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Yuka Torii
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Hiten Iwamoto
- Faculty of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Tsukasa Sato
- Faculty of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Jiro Kasahara
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Masaki Takeuchi
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Tomohiko Kuwabara
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Masamitsu Iiyama
- Nomura Micro Science Co., Ltd., 2-9-10 Okada, Atsugi, Kanagawa 243-0021, Japan
| | - Toshio Takayanagi
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Hitoshi Mizuguchi
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan.
| |
Collapse
|
2
|
Improvement of conditions for the determination of neurotransmitters in rat brain tissue by HPLC with fluorimetric detection. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
4
|
Chen Y, Zheng Y, Yan J, Zhu C, Zeng X, Zheng S, Li W, Yao L, Xia Y, Su WW, Chen Y. Early Life Stress Induces Different Behaviors in Adolescence and Adulthood May Related With Abnormal Medial Prefrontal Cortex Excitation/Inhibition Balance. Front Neurosci 2022; 15:720286. [PMID: 35058738 PMCID: PMC8765554 DOI: 10.3389/fnins.2021.720286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Early life stress is thought to be a risk factor for emotional disorders, particularly depression and anxiety. Although the excitation/inhibition (E/I) imbalance has been implicated in neuropsychiatric disorders, whether early life stress affects the E/I balance in the medial prefrontal cortex at various developmental stages is unclear. In this study, rats exposed to maternal separation (MS) that exhibited a well-established early life stress paradigm were used to evaluate the E/I balance in adolescence (postnatal day P43-60) and adulthood (P82-100) by behavior tests, whole-cell recordings, and microdialysis coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. First, the behavioral tests revealed that MS induced both anxiety- and depressive-like behaviors in adolescent rats but only depressive-like behavior in adult rats. Second, MS increased the action potential frequency and E/I balance of synaptic transmission onto L5 pyramidal neurons in the prelimbic (PrL) brain region of adolescent rats while decreasing the action potential frequency and E/I balance in adult rats. Finally, MS increases extracellular glutamate levels and decreased the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) of pyramidal neurons in the PrL of adolescent rats. In contrast, MS decreased extracellular glutamate levels and increased the paired-pulse ratio of evoked EPSCs of pyramidal neurons in the PrL of adult rats. The present results reveal a key role of E/I balance in different MS-induced disorders may related to the altered probability of presynaptic glutamate release at different developmental stages.
Collapse
Affiliation(s)
- Yiwen Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanan Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Xiamen Xianyue Hospital, Xiamen, China
| | - Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoyi Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Wei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nat Commun 2020; 11:5465. [PMID: 33122660 PMCID: PMC7596714 DOI: 10.1038/s41467-020-19255-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Eicosapentaenoic acid (EPA), an omega-3 fatty acid, has been widely used to prevent cardiovascular disease (CVD) and treat brain diseases alone or in combination with docosahexaenoic acid (DHA). However, the impact of EPA and DHA supplementation on normal cognitive function and the molecular targets of EPA and DHA are still unknown. We show that acute administration of EPA impairs learning and memory and hippocampal LTP in adult and prepubescent mice. Similar deficits are duplicated by endogenously elevating EPA in the hippocampus in the transgenic fat-1 mouse. Furthermore, the damaging effects of EPA are mediated through enhancing GABAergic transmission via the 5-HT6R. Interestingly, DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR. We conclude that EPA exhibits an unexpected detrimental impact on cognitive functions, suggesting that caution must be exercised in omega-3 fatty acid supplementation and the combination of EPA and DHA at a natural ratio is critical for learning and memory and synaptic plasticity. Acute administration of EPA impairs learning and memory and hippocampal LTP in mice that was mediated through enhancing GABAergic transmission via the 5-HT6R. DHA can prevent EPA-induced impairments at a ratio of EPA to DHA similar to that in marine fish oil via the 5-HT2CR.
Collapse
|
6
|
El-Sherbeni AA, Stocco MR, Wadji FB, Tyndale RF. Addressing the instability issue of dopamine during microdialysis: the determination of dopamine, serotonin, methamphetamine and its metabolites in rat brain. J Chromatogr A 2020; 1627:461403. [PMID: 32823108 PMCID: PMC7484461 DOI: 10.1016/j.chroma.2020.461403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022]
Abstract
Dopamine is a catecholamine neurotransmitter that degrades rapidly in aqueous solutions; hence, its analysis following brain microdialysis is challenging. The aim of the current study was to develop and validate a new microdialysis coupled LC-MS/MS system with improved accuracy, precision, simplicity and turnaround time for dopamine, serotonin, methamphetamine, amphetamine, 4-hydroxymethamphetamine and 4-hydroxyamphetamine analysis in the brain. Dopamine degradation was studied with different stabilizing agents under different storage conditions. The modified microdialysis system was tested in vitro, and was optimized for best probe recovery, assessed by %gain. LC-MS/MS assay was developed and validated for the targeted compounds. Stabilizing agents (ascorbic acid, EDTA and acetic acid) as well as internal and cold standards were added on-line to the dialysate flow. Assay linearity range was 0.01-100 ng/mL, precision and accuracy passed criteria, and LOQ and LLOQ were 0.2 and 1.0 pg, respectively. The new microdialysis coupled LC-MS/MS system was used in Wistar rats striatum after 4 mg/kg subcutaneous methamphetamine. Methamphetamine rapidly distributed to rat striatum reaching an average ~200 ng/mL maximum, ~82.5 min post-dose. Amphetamine, followed by 4-hydroxymethamphetamine, was the most abundant metabolite. Dopamine was released following methamphetamine injection, while serotonin was not altered. In conclusion, we proposed and tested an innovative and simplified solution to improve stability, accuracy and turnover time to monitor unstable molecules, such as dopamine, by microdialysis.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marlaina R Stocco
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fariba Baghai Wadji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Zhao G, Han H, Yang J, Sun M, Cui D, Li Y, Gao Y, Zou J. Brain interstitial fluid drainage and extracellular space affected by inhalational isoflurane: in comparison with intravenous sedative dexmedetomidine and pentobarbital sodium. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1363-1379. [PMID: 32133594 DOI: 10.1007/s11427-019-1633-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/06/2020] [Indexed: 12/09/2022]
Abstract
Brain interstitial fluid drainage and extracellular space are closely related to waste clearance from the brain. Different anesthetics may cause different changes of brain interstitial fluid drainage and extracellular space but these still remain unknown. Herein, effects of the inhalational isoflurane, intravenous sedative dexmedetomidine and pentobarbital sodium on deep brain matters' interstitial fluid drainage and extracellular space and underlying mechanisms were investigated. When compared to intravenous anesthetic dexmedetomidine or pentobarbital sodium, inhalational isoflurane induced a restricted diffusion of extracellular space, a decreased extracellular space volume fraction, and an increased norepinephrine level in the caudate nucleus or thalamus with the slowdown of brain interstitial fluid drainage. A local administration of norepinephrine receptor antagonists, propranolol, atipamezole and prazosin into extracellular space increased diffusion of extracellular space and interstitial fluid drainage whilst norepinephrine decreased diffusion of extracellular space and interstitial fluid drainage. These findings suggested that restricted diffusion in brain extracellular space can cause slowdown of interstitial fluid drainage, which may contribute to the neurotoxicity following the waste accumulation in extracellular space under inhaled anesthesia per se.
Collapse
Affiliation(s)
- Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China. .,Institute of Medical Technology, Peking University, Beijing, 100191, China.
| | - Jun Yang
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China. .,Department of Neurosurgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Min Sun
- Department of Cardiology, Peking University Shougang Hospital, Beijing, 100144, China
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Jing Zou
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| |
Collapse
|
8
|
Zhang SJ, Kang K, Niu LM, Kang WJ. Electroanalysis of neurotransmitters via 3D gold nanoparticles and a graphene composite coupled with a microdialysis device. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 2018; 121:137-152. [DOI: 10.1016/j.bios.2018.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
10
|
Zheng C, Chen G, Tan Y, Zeng W, Peng Q, Wang J, Cheng C, Yang X, Nie S, Xu Y, Zhang Z, Papa SM, Ye K, Cao X. TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect. Front Cell Neurosci 2018; 12:417. [PMID: 30555300 PMCID: PMC6282053 DOI: 10.3389/fncel.2018.00417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson’s disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substantia nigra. Here, we investigated the therapeutic effect of Taltirelin, a long-acting TRH analog on 6-hydroxydopamine-lesioned hemi-Parkinsonian rat model. 1–10 mg/kg Taltirelin i.p. administration significantly improved the locomotor function and halted the electrophysiological abnormities of PD animals without inducing dyskinesia even with high-dose for 7 days treatment. Microdialysis showed that Taltirelin gently and persistently promoted DA release in the cortex and striatum, while L-DOPA induced a sharp rise of DA especially in the cortex. The DA-releasing effect of Taltirelin was alleviated by reserpine, vanoxerine (GBR12909) or AMPT, indicating a mechanism involving vesicular monoamine transporter-2 (VMAT-2), dopamine transporter (DAT) and tyrosine hydroxylase (TH). The in vivo and in vitro experiments further supported that Taltirelin affected the regulation of TH expression in striatal neurons, which was mediated by p-ERK1/2. Together, this study demonstrated that Taltirelin improved motor function of hemi-PD rats without inducing dyskinesia, thus supporting a further exploration of Taltirelin for PD treatment.
Collapse
Affiliation(s)
- Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Bongaerts J, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. Sensitive targeted methods for brain metabolomic studies in microdialysis samples. J Pharm Biomed Anal 2018; 161:192-205. [DOI: 10.1016/j.jpba.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
12
|
Zheng L, Zhao XE, Zhu S, Tao Y, Ji W, Geng Y, Wang X, Chen G, You J. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid–liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1054:64-72. [DOI: 10.1016/j.jchromb.2017.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/18/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
|
13
|
Esteban G, Van Schoors J, Sun P, Van Eeckhaut A, Marco-Contelles J, Smolders I, Unzeta M. In-vitro and in-vivo evaluation of the modulatory effects of the multitarget compound ASS234 on the monoaminergic system. J Pharm Pharmacol 2017; 69:314-324. [PMID: 28134992 DOI: 10.1111/jphp.12697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the in-vitro and in-vivo effects on monoaminergic neurotransmission of ASS234, a promising multitarget-directed ligand (MTDL), for Alzheimer's disease (AD) therapy. METHODS In vitro was explored the effect of ASS234 on the monoaminergic metabolism in SH-SY5Y and PC12 cell lines, and remaining activity of both monoamine oxidase (MAO) isoforms was assessed. The corresponding dopamine (DA), homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) and noradrenaline (NA) levels were determined by HPLC-ED. In-vivo experiments were carried out Wistar rats and intracerebral guide cannulas were implanted in the hippocampus and in the prefrontal cortex by sterotaxic coordinates. The day after microdialysis samples were collected and levels of 5-HT, DA and NA were determined by (UHPLC) with electrochemical detector. KEY FINDINGS ASS234 induced a significant increase in serotonin (5-HT) levels in SH-SY5Y cells. In PC12 cells, ASS234 increased significantly the ratio of dopamine (DA)/(HVA + DOPAC), although no apparent differences in (NA) were observed. By in-vivo microdialysis, ASS234 showed a significant increase in the extracellular levels of 5-HT and NA in hippocampus whereas in the prefrontal cortex, DA and NA also increased significantly. CONCLUSIONS This study reveals the ability of ASS234 a MTDL compound, to enhance the monoaminergic neurotransmission supporting its potential use in AD therapy.
Collapse
Affiliation(s)
- Gerard Esteban
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Jolien Van Schoors
- Department of Pharmaceutical Chemistry and Drug Analysis (FASC), Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium
| | - Ping Sun
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry and Drug Analysis (FASC), Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium
| | | | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis (FASC), Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
14
|
Gutiérrez A, Primo EN, Eguílaz M, Parrado C, Rubianes MD, Rivas GA. Quantification of neurotransmitters and metabolically related compounds at glassy carbon electrodes modified with bamboo-like carbon nanotubes dispersed in double stranded DNA. Microchem J 2017. [DOI: 10.1016/j.microc.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Van Schoors J, Viaene J, Van Wanseele Y, Smolders I, Dejaegher B, Vander Heyden Y, Van Eeckhaut A. An improved microbore UHPLC method with electrochemical detection for the simultaneous determination of low monoamine levels in in vivo brain microdialysis samples. J Pharm Biomed Anal 2016; 127:136-46. [DOI: 10.1016/j.jpba.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
|
16
|
Van Schoors J, Maes K, Van Wanseele Y, Broeckhoven K, Van Eeckhaut A. Miniaturized ultra-high performance liquid chromatography coupled to electrochemical detection: Investigation of system performance for neurochemical analysis. J Chromatogr A 2016; 1427:69-78. [DOI: 10.1016/j.chroma.2015.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 01/03/2023]
|