1
|
Koishikawa M, Furugen A, Ohyama N, Narumi K, Ishikawa S, Kobayashi M. Uptake of antiepileptic drugs in forskolin-induced differentiated BeWo cells: Alteration of gabapentin transport. Xenobiotica 2022; 52:405-412. [PMID: 35642749 DOI: 10.1080/00498254.2022.2085635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.
Collapse
Affiliation(s)
- Mai Koishikawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Nanami Ohyama
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
2
|
Mohammadian E, Rahimpour E, Foroumadi A, Alizadeh-Sani M, Hasanvand Z, Jouyban A. Derivatization of γ-Amino Butyric Acid Analogues for Their Determination in the Biological Samples and Pharmaceutical Preparations: A Comprehensive Review. Crit Rev Anal Chem 2021; 52:1727-1754. [PMID: 34096806 DOI: 10.1080/10408347.2021.1916733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
γ-Aminobutyric acid (GABA) plays an important role in regulating neuronal excitability. Four structurally related drugs to GABA including pregabalin (PGB), gabapentin (GBP), vigabatrin (VGB), and baclofen are used for the treatment of central nervous system disorders. These drugs are small aliphatic molecules having neither fluorescent nor strong absorbance in the ultraviolet/visible region; therefore, direct determination of these analytes by optical methods is difficult. Additionally, their high boiling point makes gas chromatography impossible. Accordingly, the amine or acid moiety in these drugs is derivatized in order to improve their selectivity and sensitivity during determination in the biological samples. This review focuses on derivatization based methods and their different reactions for determination of PGB, GBP, VGB, and baclofen in the biological samples and pharmaceutical preparations reported between 1980 and 2020. High-performance liquid chromatography methods coupled with different detectors are a commonly used methods for determination of GABA analogs after derivatization. These methods cover 38.89% of all developed methods for determination of GABA analogs.
Collapse
Affiliation(s)
- Esmaeil Mohammadian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Furugen A. [Transfer Mechanisms of Compounds between Mother and Fetus/Infant Aimed for Optimized Medication during Pregnancy and Breastfeeding]. YAKUGAKU ZASSHI 2020; 140:1199-1206. [PMID: 32999198 DOI: 10.1248/yakushi.20-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potential risks to the fetus or infant should be considered prior to medication during pregnancy and lactation. It is essential to evaluate the exposure levels of drugs and their related factors in addition to toxicological effects. Epilepsy is one of the most common neurological complications in pregnancy; some women continue to use antiepileptic drugs (AEDs) to control seizures. Benzodiazepines (BZDs) are widely prescribed for several women who experience symptoms such as anxiety and insomnia during the postpartum period. In this review, we describe the 1) transport mechanisms of AEDs across the placenta and the effects of these drugs on placental transporters, and 2) the transfer of BZDs into breast milk. Our findings indicated that carrier systems were involved in the uptake of gabapentin (GBP) and lamotrigine (LTG) in placental trophoblast cell lines. SLC7A5 was the main contributor to GBP transport in placental cells. LTG was transported by a carrier that was sensitive to chloroquine, imipramine, quinidine, and verapamil. Short-term exposure to 16 AEDs had no effect on folic acid uptake in placental cells. However, long-term exposure to valproic acid (VPA) affected the expression of folate carriers (FOLR1, SLC46A1). Furthermore, VPA administration changed the expression levels of various transporters in rat placenta, suggesting that sensitivity to VPA differed across gestational stages. Lastly, we developed a method for quantifying eight BZDs in human breast milk and plasma using LC/MS/MS, and successfully applied it to quantify alprazolam in breast milk and plasma donated by a lactating woman.
Collapse
Affiliation(s)
- Ayako Furugen
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
4
|
Yin S, Zhang J, Guo F, Poma G, Covaci A, Liu W. Transplacental transfer mechanism of organochlorine pesticides: An in vitro transcellular transport study. ENVIRONMENT INTERNATIONAL 2020; 135:105402. [PMID: 31869730 DOI: 10.1016/j.envint.2019.105402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent studies show that, even after being banned for agricultural applications for over 30 years, organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDXs), can still be found in various biological matrices and pose a potential hazard to the fetus in the womb. This study aimed to investigate the possible transplacental transfer mechanism of OCPs using an in vitro placental model. The results showed that for HCHs and DDXs, the placenta had a potential protection mechanism for the fetus by having higher efflux than intake active transport efficiency to transfer the xenobiotic out of the fetal circulation. No enantiomer-specific transport was observed for the chiral OCPs in vitro, hints simple diffusion played the major role in the transplacental transfer. Metabolic and transporter inhibitors were applied in the transepithelial transport experiment to evaluate the role that major transporting protein played in the active efflux process. The ATP production inhibitors were observed to have significant inhibition on transfer, proving the hypothesis that active transport participates in the transplacental transport of OCPs in humans. Multiple transporters contributed simultaneously in the active transport for the OCPs. In this study, we could confirm that the transplacental transfer of OCPs is a combination of simple diffusion and active transport. ATP-binding cassette (ABC) superfamily transporters on the placenta contribute in the active transport. These findings could improve the understanding of the mechanisms of transplacental transfer of the OCPs.
Collapse
Affiliation(s)
- Shanshan Yin
- Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianyun Zhang
- Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Preventive Medicine, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Fangjie Guo
- Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Weiping Liu
- Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Hasegawa N, Furugen A, Ono K, Koishikawa M, Miyazawa Y, Nishimura A, Umazume T, Narumi K, Kobayashi M, Iseki K. Cellular uptake properties of lamotrigine in human placental cell lines: Investigation of involvement of organic cation transporters (SLC22A1-5). Drug Metab Pharmacokinet 2020; 35:266-273. [PMID: 32303459 DOI: 10.1016/j.dmpk.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 01/11/2023]
Abstract
Lamotrigine (LTG) is an important antiepileptic drug for the treatment of seizures in pregnant women with epilepsy. However, it is not known if the transport of LTG into placental cells occurs via a carrier-mediated pathway. The aim of this study was to investigate the uptake properties of LTG into placental cell lines (BeWo and JEG-3), and to determine the involvement of organic cation transporters (OCTs, SLC22A1-3) and organic cation/carnitine transporter (OCTNs, SLC22A4-5) in the uptake process. The uptake of LTG at 37 °C was higher than that at 4 °C. OCT1 and OCTNs were detected in both cell lines. The uptake of LTG was not greatly affected by the extracellular pH, Na+-free conditions, or the presence of l-carnitine, suggesting that OCTNs were not involved. Although several potent inhibitors of OCTs (chloroquine, imipramine, quinidine, and verapamil) inhibited LTG uptake, other typical inhibitors had no effect. In addition, siRNA targeted to OCT1 had no significant effect on LTG uptake. The mRNA expression in human term placenta followed the order OCTN2 > OCT3 > OCTN1 > OCT1 ≈ OCT2. These observations suggested that LTG uptake into placental cells was carrier-mediated, but that OCTs and OCTNs were not responsible for the placental transport process.
Collapse
Affiliation(s)
- Nami Hasegawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Kanako Ono
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Mai Koishikawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Yuki Miyazawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Nishimura
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Umazume
- Department of Obstetrics, Hokkaido University Hospital, Sapporo, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| |
Collapse
|
6
|
Involvement of l-type amino acid transporter 1 in the transport of gabapentin into human placental choriocarcinoma cells. Reprod Toxicol 2017; 67:48-55. [DOI: 10.1016/j.reprotox.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
|