1
|
Bao SH, Jiang H, Zhu LY, Yao G, Han PG, Wan XK, Wang K, Song TY, Liu CJ, Wang S, Zhang ZY, Zhang DY, Meng E. A dynamic and multilocus metabolic regulation strategy using quorum-sensing-controlled bacterial small RNA. Cell Rep 2021; 36:109413. [PMID: 34289355 DOI: 10.1016/j.celrep.2021.109413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/30/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic regulation strategies have been developed to redirect metabolic fluxes to production pathways. However, it is difficult to screen out target genes that, when repressed, improve yield without affecting cell growth. Here, we report a strategy using a quorum-sensing system to control small RNA transcription, allowing cell-density-dependent repression of target genes. This strategy is shown with convenient operation, dynamic repression, and availability for simultaneous regulation of multiple genes. The parameters Ai, Am, and RA (3-oxohexanoyl-homoserine lactone [AHL] concentrations at which half of the maximum repression and the maximum repression were reached and value of the maximum repression when AHL was added manually, respectively) are defined and introduced to characterize repression curves, and the variant LuxRI58N is identified as the most suitable tuning factor for shake flask culture. Moreover, it is shown that dynamic overexpression of the Hfq chaperone is the key to combinatorial repression without disruptions on cell growth. To show a broad applicability, the production titers of pinene, pentalenene, and psilocybin are improved by 365.3%, 79.5%, and 302.9%, respectively, by applying combinatorial dynamic repression.
Collapse
Affiliation(s)
- Shao-Heng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Ling-Yun Zhu
- College of Arts and Sciences, National University of Defense Technology, Changsha, PRC
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Peng-Gang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Xiu-Kun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Tian-Yu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, PRC
| | - Chang-Jun Liu
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PRC
| | - Shan Wang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PRC
| | - Zhe-Yang Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PRC
| | - Dong-Yi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PRC; College of Arts and Sciences, National University of Defense Technology, Changsha, PRC.
| | - Er Meng
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PRC.
| |
Collapse
|
2
|
Liu J, Liu Y, Wu J, Fang H, Jin Z, Zhang D. Metabolic profiling analysis of the vitamin B 12 producer Propionibacterium freudenreichii. Microbiologyopen 2021; 10:e1199. [PMID: 34180597 PMCID: PMC8145445 DOI: 10.1002/mbo3.1199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Vitamin B12 (VB12) is an indispensable cofactor of metabolic enzymes and has been widely used in the food and pharmaceutical industries. In this study, the effects of medium composition on VB12 production by Propionibacterium freudenreichii were evaluated and optimized based on statistical experiments. The results showed that glucose, yeast extract, KH2PO4, and glycine have significant effects on VB12 production. The final titer of VB12 reached 8.32 ± 0.02 mg/L, representing a 120% increase over the non‐optimized culture medium. We employed a metabolomics approach to analyze the differences of metabolite concentrations in P. freudenreichii cells cultivated in the original medium and optimized fermentation medium. Using multivariate data analysis, we identified a range of correlated metabolites, illustrating how metabolomics can be used to explain VB12 production changes by corresponding differences in the overall cellular metabolism. The concentrations of many metabolic intermediates of glycolysis, the Wood–Werkman cycle, the TCA cycle, and amino acid metabolism were increased, which contributed to the synthesis of propionic acid and VB12 due to an improved supply of energy and precursors.
Collapse
Affiliation(s)
- Jiao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongfei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jie Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang X, Feng Y, Guo X, Wang Q, Ning S, Li Q, Wang J, Wang L, Zhao ZK. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide. Nat Commun 2021; 12:2116. [PMID: 33837188 PMCID: PMC8035330 DOI: 10.1038/s41467-021-22357-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its reduced form are indispensable cofactors in life. Diverse NAD mimics have been developed for applications in chemical and biological sciences. Nicotinamide cytosine dinucleotide (NCD) has emerged as a non-natural cofactor to mediate redox transformations, while cells are fed with chemically synthesized NCD. Here, we create NCD synthetase (NcdS) by reprograming the substrate binding pockets of nicotinic acid mononucleotide (NaMN) adenylyltransferase to favor cytidine triphosphate and nicotinamide mononucleotide over their regular substrates ATP and NaMN, respectively. Overexpression of NcdS alone in the model host Escherichia coli facilitated intracellular production of NCD, and higher NCD levels up to 5.0 mM were achieved upon further pathway regulation. Finally, the non-natural cofactor self-sufficiency was confirmed by mediating an NCD-linked metabolic circuit to convert L-malate into D-lactate. NcdS together with NCD-linked enzymes offer unique tools and opportunities for intriguing studies in chemical biology and synthetic biology.
Collapse
Affiliation(s)
- Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Yanbin Feng
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Siyang Ning
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Qing Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Junting Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lei Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian, PR China.
| |
Collapse
|
4
|
Chai M, Razmjou A, Chen V. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Perez CMT, Watanabe K, Okamura Y, Nakashimada Y, Aki T. Metabolite Profile Analysis of Aurantiochytrium limacinum SR21 Grown on Acetate-based Medium for Lipid Fermentation. J Oleo Sci 2019; 68:541-549. [PMID: 31092798 DOI: 10.5650/jos.ess19020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrids, a group of marine protists, are continuously gaining attention due to their capability in producing lipids for various biotechnological applications towards foods, medicines, chemicals, and biofuels. Although various substrates, predominantly glucose, have been used as carbon source for this microalga, it is desirable to adopt cheaper and more diversified substrate to expand their application range. In this study, we aimed to examine the ability of acetate, which can be easily generated from various resources by acetogenic microorganisms, as a substrate of Aurantiochytrium limacinum SR21. As a result of flask-scale analysis, specific growth rates (µ) of the strain SR21 grown in 3% acetate- or glucose-based medium were 0.55 and 0.98 h-1, respectively. The maximum yield of total fatty acid in acetate medium was 4.8 g/L at 48 h while that in glucose medium was 6.8 g/L at 30 h, indicating that acetate has potential as substrate. Metabolome analysis was performed to comprehensively elucidate characteristic metabolic fluctuations caused by acetate assimilation and identify targets to improve the fatty acid productivity from acetate. It was found that the use of glyoxylate cycle, which bypasses release of energy molecules such as NADH and GTP, and the inhibition of utilization of compounds from TCA cycle for anabolic reactions, may cause the slow growth in acetate which has an effect also in lipid productivity. The activity of the pentose phosphate pathway was found to be weak in acetate cultivation, thus NADPH was mainly produced in malate-pyruvate cycle. Lastly, mevalonate pathway was found to be activated in acetate cultivation which additionally competes with acetyl-CoA as starting material of fatty acid synthesis.
Collapse
Affiliation(s)
- Charose Marie Ting Perez
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Kenshi Watanabe
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| |
Collapse
|
6
|
Zhang Q, Zheng X, Wang Y, Yu J, Zhang Z, Dele-Osibanjo T, Zheng P, Sun J, Jia S, Ma Y. Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:7113-7121. [PMID: 29876603 DOI: 10.1007/s00253-018-9095-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/05/2023]
Abstract
Metabolomics has been a potential tool for strain improvement through analyzing metabolite changes in the context of different conditions. However, the availability of a universal metabolite profiling analysis is still a big challenge. In this study, we presented an optimized liquid chromatography-tandem mass spectrometry-based metabolomics methodology for Corynebacterium glutamicum, an important industrial workhorse. It was found that quenching the cellular metabolism with 5-fold volume of - 20 °C 40% methanol was highly recommended due to its lower cell damage rate and higher intracellular metabolite recovery rate. For extracting intracellular metabolites, ethanol/water (3:1, v/v) at 100 °C combined with acidic acetonitrile/water (1:1, v/v, with 0.1% formic acid) at - 20 °C achieved the unbiased metabolite profiling of C. glutamicum. The established methodology was then applied to investigate the intracellular metabolite differences between C. glutamicum ATCC 13032 and an mscCG-deleted mutant under biotin limitation condition. It was observed that in the presence of the functional L-glutamate exporter MscCG, biotin limitation led to accumulation of intracellular 2-oxoglutarate but not L-glutamate. Deletion of mscCG severely inhibited L-glutamate excretion and resulted in a dramatical increase of intracellular L-glutamate, which in turn affected the metabolite profile. The optimized metabolomics methodology holds promise for promoting studies on metabolic mechanism of C. glutamicum.
Collapse
Affiliation(s)
- Qiongqiong Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiandong Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Taiwo Dele-Osibanjo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shiru Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
7
|
Wagmann L, Maurer HH, Meyer MR. An easy and fast adenosine 5'-diphosphate quantification procedure based on hydrophilic interaction liquid chromatography-high resolution tandem mass spectrometry for determination of the in vitro adenosine 5'-triphosphatase activity of the human breast cancer resistance protein ABCG2. J Chromatogr A 2017; 1521:123-130. [PMID: 28951049 DOI: 10.1016/j.chroma.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Interactions with the human breast cancer resistance protein (hBCRP) significantly influence the pharmacokinetic properties of a drug and can even lead to drug-drug interactions. As efflux pump from the ABC superfamily, hBCRP utilized energy gained by adenosine 5'-triphosphate (ATP) hydrolysis for the transmembrane movement of its substrates, while adenosine 5'-diphosphate (ADP) and inorganic phosphate were released. The ADP liberation can be used to detect interactions with the hBCRP ATPase. An ADP quantification method based on hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution tandem mass spectrometry (HR-MS/MS) was developed and successfully validated in accordance to the criteria of the guideline on bioanalytical method validation by the European Medicines Agency. ATP and adenosine 5'-monophosphate were qualitatively included to prevent interferences. Furthermore, a setup consisting of six sample sets was evolved that allowed detection of hBCRP substrate or inhibitor properties of the test compound. The hBCRP substrate sulfasalazine and the hBCRP inhibitor orthovanadate were used as controls. To prove the applicability of the procedure, the effect of amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir on the hBCRP ATPase activity was tested. Nelfinavir, ritonavir, and saquinavir were identified as hBCRP ATPase inhibitors and none of the five HIV protease inhibitors turned out to be an hBCRP substrate. These findings were in line with a pervious publication.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, D-66421 Homburg, Saar, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, D-66421 Homburg, Saar, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, D-66421 Homburg, Saar, Germany.
| |
Collapse
|
8
|
Review of sample preparation strategies for MS-based metabolomic studies in industrial biotechnology. Anal Chim Acta 2016; 938:18-32. [DOI: 10.1016/j.aca.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
|