1
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
2
|
Zhao J, Hou L, Zhao L, Liu L, Qi J, Wang L. An environment-friendly approach using deep eutectic solvent combined with liquid-liquid microextraction based on solidification of floating organic droplets for simultaneous determination of preservatives in beverages. RSC Adv 2023; 13:7185-7192. [PMID: 36875877 PMCID: PMC9982713 DOI: 10.1039/d2ra07145b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
With the increase in environmental protection awareness, the development of strategies to reduce the use of organic solvent used during the extraction process has attracted wide attention. A simple and green ultrasound-assisted deep eutectic solvent extraction combined with liquid-liquid microextraction based on solidification of floating organic droplets method was developed and validated for the simultaneous determination of five preservatives (methyl paraben, ethyl paraben, propyl paraben, isopropyl paraben, isobutyl paraben) in beverages. Extraction conditions including the volume of DES, value of pH, and concentration of salt were statistically optimized through response surface methodology using a Box-Behnken design. Complex Green Analytical Procedure Index (ComplexGAPI) was successfully used to estimate the greenness of the developed method and compare with the previous methods. As a result, the established method was linear, precise, and accurate over the range of 0.5-20 μg mL-1. Limits of detection and limits of quantification were in the range of 0.15-0.20 μg mL-1 and 0.40-0.45 μg mL-1, respectively. The recoveries of all five preservatives ranged from 85.96% to 110.25%, with relative standard deviation less than 6.88% (intra-day) and 4.93% (inter-day). The greenness of the present method is significantly better compared with the previous reported methods. Additionally, the proposed method was successfully applied to analysis of preservatives in beverages and is a potentially promising technique for drink matrices.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China .,Zhejiang Weikang Pharmaceutical Company 15 Xinggong North Road 324100 Jiangshan Zhejiang Province P.R. China.,School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Lingjun Hou
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University 103 Wenhua Road 110016 Shenyang Liaoning Province P.R. China
| | - Liqing Liu
- Zhejiang Weikang Pharmaceutical Company 15 Xinggong North Road 324100 Jiangshan Zhejiang Province P.R. China
| | - Jianhua Qi
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China
| | - Longhu Wang
- School of Pharmacy, Zhejiang University 866 Yuhangtang Road 310058 Hangzhou Zhejiang Province P.R. China
| |
Collapse
|
3
|
Mandal S, Poi R, Hazra DK, Ansary I, Bhattacharyya S, Karmakar R. Review of extraction and detection techniques for the analysis of pesticide residues in fruits to evaluate food safety and make legislative decisions: Challenges and anticipations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123587. [PMID: 36628882 DOI: 10.1016/j.jchromb.2022.123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Fruits are vital parts of the human diet because they include necessary nutrients that the body needs. Pesticide use has increased dramatically in recent years to combat fruit pests across the world. Pesticide usage during production, on the other hand, frequently results in undesirable residues in fruits after harvest. Consumers are concerned about pesticide residues since most of the fruits are directly consumed and even recommended for the patients as dietary supplements. As a result of this worry, pesticide residues in fruits are being randomly monitored to re-assess the food safety situation and make informed legislative decisions. To assess the degree of pesticide residues in fruits, a simple and quick analytical procedure is usually required. As a result, pesticide residue detection (using various analytical techniques: GC, LC and Biosensors) becomes critical, and regulatory directives are formed to regulate their amounts via the Maximum Residue Limit (MRL). Over the previous two decades, a variety of extraction techniques and analytical methodologies for xenobiotic's efficient extraction, identification, confirmation and quantification have been developed, ranging from traditional to advanced. The goal of this review is to give readers an overview of the evolution of numerous extraction and detection methods for pesticide residue analysis in fruits. The objective is to assist analysts in better understanding how the ever-changing regulatory landscape might drive the need for new analytical methodologies to be developed in order to comply with current standards and safeguard consumers.
Collapse
Affiliation(s)
- Swagata Mandal
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India; Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Rajlakshmi Poi
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Dipak Kumar Hazra
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Inul Ansary
- Department of Chemistry, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sudip Bhattacharyya
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India
| | - Rajib Karmakar
- All India Network Project on Pesticide Residues, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
4
|
Khongkla S, Phonchai A, Nurerk P, Bunkoed O. A hierarchical composite ZnO@Carbon foam/PVA cryogel sorbent for the extraction and enrichment of parabens and synthetic phenolic antioxidant in fruit juice. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
de Oliveira Arias JL, Rocha CB, Kupski L, Barbosa SC, Primel EG. Salting-Out Induced Liquid-Liquid Microextraction: an Environmentally Friendly Approach to Preservative Determination in Food Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Wei F, Mortimer M, Cheng H, Sang N, Guo LH. Parabens as chemicals of emerging concern in the environment and humans: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146150. [PMID: 34030374 DOI: 10.1016/j.scitotenv.2021.146150] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Parabens are one of the most widely used preservatives in food, pharmaceuticals and personal care products (PCPs) because of their advantageous properties and low toxicity based on the early assessments. However, recent research indicates that parabens may act as endocrine-disrupting chemicals (EDCs) and thus, are considered as chemicals of emerging concern that have adverse human health effects. To provide the basis for future human health studies, we reviewed relevant literature, published between 2005 and 2020, regarding the levels of parabens in the consumer products (pharmaceuticals, PCPs and food), environmental matrices and humans, including susceptible populations, such as pregnant women and children. The analysis showed that paraben detection rates in consumer products, environmental compartments and human populations are high, while the levels vary greatly by country and paraben type. The concentrations of parabens reported in pregnant women (~20-120 μg/L) were an order of magnitude higher than in the general population. Paraben concentrations in food and pharmaceuticals were at the ng/g level, while the levels in PCPs reached mg/g levels. Environmental concentrations ranged from ng/L-μg/L in surface waters to tens of μg/g in wastewater and indoor dust. The levels of human exposure to parabens appear to be higher in the U.S. and EU countries than in China and India, which may change with the increasing production of parabens in the latter countries. The review provides context for future studies to connect paraben exposure levels with human health effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Soysal M. An Electrochemical Sensor Based on Molecularly Imprinted Polymer for Methyl Paraben Recognition and Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Özcan S, Levent S, Can NÖ, Kozanli M. A Novel HPLC Method for Simultaneous Determination of Methyl, Ethyl, n-propyl, Isopropyl, n-butyl, Isobutyl and Benzyl Paraben in Pharmaceuticals and Cosmetics. Comb Chem High Throughput Screen 2020; 24:352-365. [PMID: 32723231 DOI: 10.2174/1386207323999200728121657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The alkyl esters of p-hydroxybenzoic acid at the C-4 position, "the parabens," including methyl, ethyl, propyl, and butyl, are widely used as antimicrobial preservatives in foods, cosmetics, and pharmaceuticals. Official regulations on the use of these compounds make their analysis essential for the estimation of their exposure. METHODS On this basis, the presented study was realized to develop a simple, selective and cheap high-performance liquid chromatographic method for the quantitative determination of methylparaben, ethylparaben (EP), n-propyl paraben (NPP), isopropyl paraben (IPP), n-butyl paraben (NBP), isobutyl paraben (IBP) and benzyl paraben (BP) in pharmaceuticals and cosmetic products. RESULTS The chromatographic separation of the analytes was achieved under flow rate gradient elution conditions using a C18-bonded core-shell silica particle column (2.6 μm particle size, 150 × 3.0 mm from Phenomenex Co.). The samples were injected into the system as aliquots of 1.0 μL, and the compounds were detected by using a photodiode array detector set at 254 nm wavelength. With this technique, seven paraben derivatives can be determined in the concentration range of 250-2000 ng/mL. The recovery of the method is in the range of 99.95-13.84%, and the RSD is at a maximum value of 3.95%. CONCLUSION The proposed method was fully validated and successfully applied to different pharmaceutical and cosmetic samples (n=16), including syrups, suspensions, oral sprays, gels, etc. At least one paraben derivative was detected in six samples and was determined quantitatively. The maximum amount of a paraben derivative found in the analyzed samples was 321.7 ng/mL, which was MP. To the best of our knowledge, this is the first LC method, which is applicable both on pharmaceutical and cosmetic samples.
Collapse
Affiliation(s)
- Saniye Özcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Serkan Levent
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Murat Kozanli
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
9
|
Azzouz A, Colón LP, Souhail B, Ballesteros E. A multi-residue method for GC-MS determination of selected endocrine disrupting chemicals in fish and seafood from European and North African markets. ENVIRONMENTAL RESEARCH 2019; 178:108727. [PMID: 31520833 DOI: 10.1016/j.envres.2019.108727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
An integrated study was conducted to determine the presence of six types of endocrine disrupting chemicals (bisphenol A, triclosan, two alkylphenols, two phenylphenols, eleven organophosphorus pesticides and seven parabens) in the fish and seafood samples from Europe and North Africa. The proposed method involves ultrasound-assisted extraction followed by continuous solid-phase extraction prior to GC-MS analysis. Analytical quality parameters such as linearity, accuracy, precision, sensitivity and selectivity were all good. Limits of detections ranged from 0.5 to 20.0 ng/kg. The relative standard deviation was lower than 7.5% and recoveries ranged from 84 to 105%. The method was successfully used to determine the target analytes in 20 fish and seafood samples from different fish shops and supermarkets in Europe and North Africa. Analyte contents spanned the range 4.6-730 ng/kg and were all below the maximum legally allowed limits. EDCs most frequently found in the samples analysed were dichlorvos, 2-phenylphenol and nonylphenol.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain; Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Laura Palacios Colón
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S. of Linares, University of Jaén, E-23700, Linares, Jaén, Spain.
| |
Collapse
|
10
|
Fedotov PS, Malofeeva GI, Savonina EY, Spivakov BY. Solid-Phase Extraction of Organic Substances: Unconventional Methods and Approaches. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819030043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Shao B, Li H, Shen J, Wu Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu Rev Food Sci Technol 2019; 10:429-455. [DOI: 10.1146/annurev-food-032818-121233] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nontargeted workflows for chemical hazard analyses are highly desirable in the food safety and integrity fields to ensure human health. Two different analytical strategies, nontargeted metabolomics and chemical database filtering, can be used to screen unknown contaminants in food matrices. Sufficient mass and chromatographic resolutions are necessary for the detection of compounds and subsequent componentization and interpretation of candidate ions. Analytical chemistry–based technologies, including gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and capillary electrophoresis–mass spectrometry (CE-MS), combined with chemometrics analysis are being used to generate molecular formulas of compounds of interest. The construction of a chemical database plays a crucial role in nontargeted detection. This review provides an overview of the current sample preparation, analytical chemistry–based techniques, and data analysis as well as the limitations and challenges of nontargeted detection methods for analyzing complex food matrices. Improvements in sample preparation and analytical platforms may enhance the relevance of food authenticity, quality, and safety.
Collapse
Affiliation(s)
- Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
12
|
Chen J, Deng W, Li X, Wang X, Xiao Y. Hexafluoroisopropanol/Brij-35 based supramolecular solvent for liquid-phase microextraction of parabens in different matrix samples. J Chromatogr A 2019; 1591:33-43. [PMID: 30660441 DOI: 10.1016/j.chroma.2019.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
Abstract
A novel supramolecular solvent (SUPRAS) based on hexafluoroisopropanol (HFIP)/Brij-35 was proposed for liquid-phase microextraction (LPME) of parabens in water samples, pharmaceuticals and personal care products. Brij-35 is a cost-effective and non-toxic non-ionic surfactant, but it has a high cloud point (>100 °C). HFIP, with the features of strong hydrogen-bond donor, high density and powerful hydrophobicity, was used as the cloud point-reducing agent and self-assembling and density-regulating solvent of Brij-35. Upon adding HFIP into the Brij-35 aqueous solution, the cloud point of Brij-35 was decreased to below room temperature, and the SUPRAS was formed in the bottom over a wide range of HFIP and Brij-35 concentrations at room temperature. The SUPRAS was composed of Brij-35, HFIP and water, having a density larger than water, and it showed a large spherical structure of positive micellar aggregates (2-8 μm). The HFIP/ Brij-35 SUPRAS-based LPME procedure was non-thermodependent and could be performed at room temperature with centrifugation using normal centrifuge tubes, being very simple. In the extraction of six parabens, the HFIP/ Brij-35 SUPRAS-based LPME method showed short extraction time (3.3 min), low solvent consumption (0.3 mL), and large enrichment factor (26-193). The method of HFIP/ Brij-35 SUPRAS-based LPME with HPLC-DAD gave good linearity for the quantification of parabens with correlation coefficients larger than 0.9990. The limits of detection based on a signal-to-noise ratio of 3 were from 0.042 to 0.167 μg L-1. The recoveries for the spiked real samples were in the range of 90.2-112.4% with relative standard deviation less than 8.9%. Except for tap water, one or several paraben (s) were detected in all the other real samples.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenwen Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuanxuan Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
13
|
Chiesa LM, Pavlovic R, Panseri S, Arioli F. Evaluation of parabens and their metabolites in fish and fish products: a comprehensive analytical approach using LC-HRMS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2400-2413. [PMID: 30475676 DOI: 10.1080/19440049.2018.1544721] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parabens (PBs) are preservatives frequently used in cosmetics and personal care products as well as in the pharmaceutical and food industries due to their extensive defence mechanisms against multiple categories of microorganisms. Although they are considered safe when used within defined concentration limits, concern about their potential toxicity is still particularly active. Revealed as emerging pollutants, their incidence and behaviour in the aquatic environment have been studied, but there is only sporadic information when it comes to their extent and distribution in seafood. This study explores the presence of methyl- (MeP), ethyl-, propyl-, butyl-, and benzylparaben and their main degradation product 4-hydroxybenzoic acid (pHBA) in several fish species and bivalve samples with the aim to evaluate these food matrices as potentially important contamination sources of PB. Additionally, infant food containing fish was also enrolled in this survey: firstly, due to the absence of any information regarding this exceptionally important food item, and secondly, because of the necessity to estimate the PB content in the processed food. For this purpose, a fast, reliable and robust method was developed based on a simple liquid-liquid extraction followed by high-performance LC, coupled with a benchtop Q-Exactive Orbitrap high-resolution MS. The Q-Exactive parameters were carefully scheduled to achieve a balance between the optimal scan speed and selectivity, considering the limitations that are associated with generic sample preparation methodology. The method was validated through specificity, linearity, recovery, intra- and inter-day repeatability, LOD and LOQ. LOD and LOQ reached the ranges 0.65-3.5 and 2.15-11.7 ng g-1, respectively, while overall recovery ranged from 77% to 118%. The PBs were more frequently present in bivalves than in fish samples with MeP as the main PB detected. No PBs were found in infant food, but pHBA was observed in all samples.
Collapse
Affiliation(s)
- Luca Maria Chiesa
- a Department of Health, Animal Science and Food Safety , University of Milan , Milan , Italy
| | - Radmila Pavlovic
- a Department of Health, Animal Science and Food Safety , University of Milan , Milan , Italy
| | - Sara Panseri
- a Department of Health, Animal Science and Food Safety , University of Milan , Milan , Italy
| | - Francesco Arioli
- a Department of Health, Animal Science and Food Safety , University of Milan , Milan , Italy
| |
Collapse
|
14
|
Montesdeoca-Esponda S, Checchini L, Del Bubba M, Sosa-Ferrera Z, Santana-Rodriguez JJ. Analytical approaches for the determination of personal care products and evaluation of their occurrence in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:405-425. [PMID: 29579652 DOI: 10.1016/j.scitotenv.2018.03.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Contamination of the aquatic environment caused by multiple human activities may exert a negative impact on all living organisms. Several contaminants of emerging concern such as personal care products (PCPs) are continuously released into the aquatic environment where they are biologically active and persistent. This work reviews the current knowledge, provided by papers published after 2010 and indexed by SciFinder, Scopus, and Google search engines, about the determination and occurrence of PCPs in marine biota. Analytical methodologies have been critically reviewed, emphasizing the importance of green and high-throughput approaches and focusing the discussion on the complexity of the solute-matrix interaction in the extraction step, as well as the matrix effect in the instrumental determination. Finally, the worldwide distribution of PCPs is surveyed, taking into account the concentrations found in the same organism in different marine environments. Differences among various world areas have been highlighted, evidencing some critical aspects from an environmental point of view.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Leonardo Checchini
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodriguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
15
|
Miniaturized matrix solid-phase dispersion coupled with supramolecular solvent-based microextraction for the determination of paraben preservatives in cream samples. J Sep Sci 2018; 41:2750-2758. [DOI: 10.1002/jssc.201800235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/15/2023]
|
16
|
Chung SH, Ding WH. Isotope-dilution gas chromatography-mass spectrometry coupled with injection-port butylation for the determination of 4-t-octylphenol, 4-nonylphenols and bisphenol A in human urine. J Pharm Biomed Anal 2018; 149:572-576. [DOI: 10.1016/j.jpba.2017.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
|
17
|
Hui-Ting Z, Ding EM, Ding WH. Determination of parabens in human urine by optimal ultrasound-assisted emulsification microextraction and on-line acetylation gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1058:14-18. [DOI: 10.1016/j.jchromb.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
|
18
|
Determination of Six Paraben Residues in Fresh-cut Vegetables Using QuEChERS with Multi-walled Carbon Nanotubes and High-Performance Liquid Chromatography–Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0970-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|