1
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Van Kiem P, DinhHoang V, Hoang Anh NT, Phuong Anh DT, Trang DT, Tai BH. Panabipinoside A and panabipinoside B, two new oleanane triterpenoid saponins from the roots of Panax bipinnatifidus with nitric oxide inhibitory activity. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211018988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Panax bipinnatifidus belongs to the ginseng genus and it is used in traditional Vietnamese and Chinese medicine. Phytochemical studies of the roots of this plant led to the isolation of two new oleanane triterpenoid saponins, panabipinoside A and panabipinoside B, and three known compounds, ginsennoside Ro, 3- O- β-D-glucopyranosyl-(1→3)- β-glucuronopyranosyl oleanolic acid, and spinasaponin A 28- O-glucoside. Their structures are established by extensive spectroscopic analysis (IR, high-resolution electrospray ionization mass spectrometry, and nuclear magnetic resonance) and by comparison of the spectral data with those reported in the literature. The anti-inflammatory activity of the isolated compounds is evaluated by their inhibition of nitric oxide production in lipopolysaccharide stimulated RAW 264.7 cells. Compounds 2–5 showed inhibitory effects on nitric oxide production with IC50 values of 0.62 ± 0.09, 0.21 ± 0.04, 0.30 ± 0.03, and 0.45 ± 0.05 µg/mL, respectively, compared to value of 8.08 ± 0.09 µg/mL for the positive control compound, NG-monomethyl-L-arginine.
Collapse
Affiliation(s)
- Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Vu DinhHoang
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Hoang Anh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | - Do Thi Trang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
3
|
Wei MP, Qiu JD, Li L, Xie YF, Yu H, Guo YH, Yao WR. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113552. [PMID: 33152431 DOI: 10.1016/j.jep.2020.113552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sapindus mukorossi Gaertn. (S. mukorossi), known as 'mu huan zi' in Chinese folklore, belongs to the family Sapindaceae and it has been traditionally used for treating coughing and excessive salivation, removing freckle, whitening skin, etc. Evidence-based medicine also verified the antimicrobial, anti-tyrosinase and anti-acne activity of S. mukorossi extract, suggesting that it has the potential to be a pharmaceutical and cosmetic additive. AIM OF THE STUDY The present study was intended to evaluate the freckle-removing and skin-whitening activities of S. mukorossi extracts, and further analyzing the potential anti-acne mechanism. METHODS Saponin fractions were purified by using the semi-preparative high-performance liquid chromatography, and their antibacterial activity was detected against Propionibacterium acnes (P. acnes), which was the leading cause of inflamed lesions in acne vulgaris. The anti-lipase and anti-tyrosinase activities were assayed using a commercial kit, while the potential anti-acne mechanism was predicted on the basis of the network pharmacology. Active components of saponin fraction were identified by HPLC-MS analysis. Furthermore, the different toxicity level of compounds was predicted according to the quantitative structure-activity relationship, and the first application of crude extract and saponin fraction to facial masks was analyzed based on the comprehensive evaluation method. RESULTS The saponin fraction (F4) purified from the fermentation liquid-based water extract (SWF) showed the best antibacterial activity against P. acnes ATCC 6919 with the MIC of 0.06 mg/mL, which was 33-fold of its parent SWF (with the MIC of 2.0 mg/mL). Compared with SWF, the application of F4 caused greater inhibition rates on lipase and tyrosinase. Chemical constituents of F4 were evaluated, from which four oleanane-type triterpenoid saponins were detected to contribute to the above biological activities of F4. The mechanism of the four compounds on anti-acne was predicted, and seven targets such as PTGS2 and F2RL1 were obtained to be important for the treatment of acne. The four compounds were also predicted to have different levels of toxicity to various species, and they were not harmful to rats. Besides, F4 and SWF were applied to facial masks and there was no significant influence on the physicochemical properties including pH, stability, and sensory characteristics. CONCLUSION This work demonstrated that oleanane-type triterpenoid saponins were speculated to contribute to the skin-whitening, freckle-removing, and anti-acne activities of F4. These findings will facilitate the development of the S. mukorossi extract and the allied products as the new and natural anti-acne agent and cosmetic additives.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jin-Dan Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Lu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Kozachok S, Pecio Ł, Orhan IE, Deniz FSS, Marchyshyn S, Oleszek W. Reinvestigation of Herniaria glabra L. saponins and their biological activity. PHYTOCHEMISTRY 2020; 169:112162. [PMID: 31627115 DOI: 10.1016/j.phytochem.2019.112162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Twelve undescribed triterpenoid pentacyclic glycosides, medicagenic acid (3-O-β-D-glucuronopyranosyl-28-O-{[β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-4-O-acetyl-β-D-fucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 3-O-β-D-glucuronopyranosyl-28-O-{[α-L-rhamnopyranosyl-(1 → 2)]-[β-D-apiofuranosyl-(1 → 3)]-4-O-acetyl-β-D-fucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 3-O-β-D-glucuronopyranosyl-28-O-{[α-L-rhamnopyranosyl-(1 → 2)]-3,4-O-diacetyl-β-D-fucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 28-O-{[6-O-acetyl-β-D-glucopyranosyl-(1 → 2)]-[2-O-acetyl-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 28-O-{[6-O-acetyl-β-D-glucopyranosyl-(1 → 2)]-[3-O-acetyl-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 28-O-{[6-O-acetyl-β-D-glucopyranosyl-(1 → 2)]-[4-O-acetyl-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 28-O-{[6-O-acetyl-β-D-glucopyranosyl-(1 → 2)]-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid, 28-O-{[β-D-glucopyranosyl-(1 → 2)]-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-12-ene-23,28-dioic acid), zanhic acid (3-O-β-D-glucuronopyranosyl-28-O-{[β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-4-O-acetyl-β-D-fucopyranosyl-(1→)}2β,3β,16α-trihydroxyolean-12-ene-23,28-dioic acid, 3-O-β-D-glucuronopyranosyl-28-O-{[β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-β-D-fucopyranosyl-(1→)}-2β,3β,16α-trihydroxyolean-12-ene-23,28-dioic acid), 29-hydroxy-medicagenic acid (3-O-β-D-glucuronopyranosyl-28-O-{[β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-4-O-acetyl-β-D-fucopyranosyl-(1→)}-2β,3β,29β-trihydroxyolean-12-ene-23,28-dioic acid) and herniaric acid (28-O-{[6-O-acetyl-β-D-glucopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranosyl-(1→)}-2β,3β-dihydroxyolean-18-ene-23,28-dioic acid) were isolated from the whole plant extract of Herniaria glabra L. (Caryophyllaceae), wild growing in the Ukraine. In addition, five known triterpenoid saponins; i.e. herniariasaponins 1, 4, 5, 6, and 7 were also isolated. Their structures were elucidated by HRESIMS, 1D and 2D NMR spectroscopy, as well as by comparison with the literature data. Twelve herniariasaponins, the purified crude extract, and the saponin fraction were evaluated in vitro for their xanthine oxidase, collagenase, elastase, and tyrosinase inhibitory activity. Moreover, herniariasaponins 4, 5, and 7 were screened for their cholinesterase inhibitory potential. As a result, no or low inhibition towards the mentioned enzymes was observed.
Collapse
Affiliation(s)
- Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Ul. Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Ul. Czartoryskich 8, 24-100, Puławy, Poland.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| | | | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Ul. Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|