1
|
Wang C, Yu J, Guo Y, Jiang M, Zhong K, Wang X. Separation and Purification of Ginsenosides and Flavonoids in From the Leaves and Stems of Panax quinquefolium by High-Speed Countercurrent Chromatography and Online-Storage Inner-Recycling Countercurrent Chromatography. J Sep Sci 2025; 48:e70073. [PMID: 39899460 DOI: 10.1002/jssc.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 02/05/2025]
Abstract
Study aimed to isolate and purify compounds from the stems and leaves of Panax quinquefolius. By employing a highly innovative separation technique that combined multistage countercurrent chromatography (MRCC), high-speed countercurrent chromatography (HSCCC), and an advanced online-storage inner-recycling countercurrent chromatography (OS-IRCCC) mode for the first time, 12 compounds were successfully isolated, including 10 ginsenosides and 2 flavonoids. First, the crude extract was fractionated into five parts using D101 MRCC, with HPLC analysis revealing that 40% and 60% ethanol eluate contained the highest compound diversity. Overall, 40% ethanol eluate was separated using the solvent system of EtOAc/n-BuOH/H2O (2:1:3, v/v), whereas 60% ethanol eluate underwent traditional countercurrent chromatography coupled with OS-IRCCC separation using the solvent system of methyl tert-butyl ether (MTBE)/n-BuOH/ACN/H2O (4:2:3:8, v/v). Ultimately, various compounds were obtained, including kaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-galactopyranosyl-7-O-α-l-rhamnopyranoside (13.2 mg), ginsenoside Rc (7.4 mg), 20(R)-ginsenoside Rh1 (7.2 mg), ginsenoside Re (12.3 mg), kaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-galactopyranoside (14.1 mg), ginsenoside Rb1 (8.2 mg), ginsenoside Rb2 (17.5 mg), ginsenoside Rb3 (27.3 mg), ginsenoside Rg1 (13.3 mg), ginsenoside Rg2 (9.7 mg), ginsenoside Rd (11.4 mg), and pseudo-ginsenoside F11 (16.7 mg). This research highlights the efficacy of the novel separation technique in isolating and purifying valuable compounds from P. quinquefolius stems and leaves.
Collapse
Affiliation(s)
- Chuangchuang Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jinqian Yu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingjian Guo
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Min Jiang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kai Zhong
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Ma N, Zhang H, Chen W, Ding X, Jiang Z, Chen S, Xu S, Yang L. Sodium caseinate‑sodium alginate binary complex stabilized W 1/O/W 2 emulsion gels loaded with proanthocyanidins from Aronia melanocarpa (Michx.) Elliott: Formation, structure, stability, in vitro gastrointestinal digestion. Int J Biol Macromol 2025; 301:140346. [PMID: 39870265 DOI: 10.1016/j.ijbiomac.2025.140346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
This study developed a W1/O/W2 emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.5 % PGPR concentration, a W1:O phase mass ratio of 3:7, 0.6 % NaCN concentration, and a W1/O:W2 mass ratio of 3:7. The influence of varying Alg concentrations on the microstructure, gel properties, stability, and in vitro digestibility of the emulsion gels was then investigated. Results indicated that NaCN-Alg emulsion gels with 0.8 % Alg exhibited uniform structure distribution, excellent elasticity, and deformation resistance, with an APC encapsulation efficiency of (98.09 ± 0.11)%. The addition of Alg enhanced the thermal and storage stability of the emulsion gel. After 28 days of storage, the gel with 0.8 % Alg demonstrated superior water retention and pH stability. During in vitro digestion, Alg slowed the hydrolysis of NaCN and oil droplets, improving the bioaccessibility and bioavailability of APC. These findings provide a foundation for applying NaCN-Alg emulsion gels in low-fat food products.
Collapse
Affiliation(s)
- Ning Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyuan Zhang
- Chemistry College, Baicheng Normal University, Baicheng 137000, China
| | - Wenwen Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xue Ding
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zhipeng Jiang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Sheng Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Shengyu Xu
- Baishan Lin Yuan Chun Ecological Technology Co, Baishan 134300, China
| | - Liu Yang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
3
|
Li A, La M, Wang Y, Chen T, Mian R, He F, Li Y, Zou D. Target-guided isolation and purification of cyclooxygenase-2 inhibitors from Meconopsis integrifolia (Maxim.) Franch. by high-speed counter-current chromatography combined with ultrafiltration liquid chromatography. J Sep Sci 2024; 47:e2300722. [PMID: 38234021 DOI: 10.1002/jssc.202300722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Meconopsis integrifolia (Maxim.) Franch. is used extensively in traditional Tibetan medicine for its potent anti-inflammatory properties. In this study, six cyclooxygenase-2 (COX-2) inhibitors were purified from M. integrifolia using high-speed counter-current chromatography guided by ultrafiltration liquid chromatography (ultrafiltration-LC). First, ultrafiltration-LC was performed to profile the COX-2 inhibitors in M. integrifolia. The reflux extraction conditions were further optimized using response surface methodology, and the results showed that the targeted COX-2 inhibitors could be well enriched under the optimized extraction conditions. Then the six target COX-2 inhibitors were separated by high-speed countercurrent chromatography with a solvent system composed of ethyl acetate/n-butanol/water (4:1:4, v/v/v. Finally, the six COX-2 inhibitors, including 21.2 mg of 8-hydroxyluteolin 7-sophoroside, 29.6 mg of 8-hydroxyluteolin 7-[6'''-acetylallosyl-(1→2)-glucoside], 42.5 mg of Sinocrassoside D3, 54.1 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-3''-acetylglucoside, 30.6 mg of Hypolaetin 7-[6'''-acetylallosyll-(l→2)-6''-acetylglucoside and 17.8 mg of Hypolaetin were obtained from 500 mg of sample. Their structures were elucidated by 1 H-NMR spectroscopy. This study reveals that ultrafiltration-LC combined with high-speed counter-current chromatography is a robust and efficient strategy for target-guided isolation and purification of bioactive molecules. It also enhances the scientific understanding of the anti-inflammatory properties of M. integrifolia but also paves the way for its further medicinal applications.
Collapse
Affiliation(s)
- Aijing Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Ruisha Mian
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Denglang Zou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- School of Life Science, Qinghai Normal University, Xining, P. R. China
| |
Collapse
|
4
|
Li A, La M, Wang H, Zhao J, Wang Y, Mian R, He F, Wang Y, Yang T, Zou D. Target-Guided Isolation and Purification of Antioxidants from Urtica laetevirens Maxim. by HSCCC Combined with Online DPPH-HPLC Analysis. Molecules 2023; 28:7332. [PMID: 37959752 PMCID: PMC10650309 DOI: 10.3390/molecules28217332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Urtica laetevirens Maxim. is used extensively in traditional Chinese medicine (TCM) for its potent antioxidative properties. In this study, three antioxidants were purified from U. laetevirens. using HSCCC guided by online DPPH-HPLC analysis. Firstly, the online DPPH-HPLC analysis was performed to profile out the antioxidant active molecules in U. laetevirens. The ultrasonic-assisted extraction conditions were optimized by response surface methodology and the results showed the targeted antioxidant active molecules could be well enriched under the optimized extraction conditions. Then, the antioxidant active molecules were separated by high-speed countercurrent chromatography ethyl acetate/n-butanol/water (2:3:5, v/v/v) as the solvent system. Finally, the three targets including 16.8 mg of Isovitexin, 9.8 mg of Isoorientin, and 26.7 mg of Apigenin-6,8-di-C-β-d-glucopyranoside were obtained from 100 mg of sample. Their structures were identified by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Aijing Li
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Mencuo La
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Huichun Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Jianzhong Zhao
- Agricultural and Rural Science and Technology Guidance Development Service Center of Qinghai Province, Xining 810008, China;
| | - Yao Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Ruisha Mian
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
| | - Denglang Zou
- School of Life Science, Qinghai Normal University, Xining 810008, China; (A.L.); (M.L.); (Y.W.); (R.M.); (F.H.); (Y.W.); (T.Y.)
- Agricultural and Rural Science and Technology Guidance Development Service Center of Qinghai Province, Xining 810008, China;
| |
Collapse
|
5
|
Fontana A, Schieber A. Preparative Fractionation of Phenolic Compounds and Isolation of an Enriched Flavonol Fraction from Winemaking Industry By-Products by High-Performance Counter-Current Chromatography. PLANTS (BASEL, SWITZERLAND) 2023; 12:2242. [PMID: 37375868 DOI: 10.3390/plants12122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
High-performance counter-current chromatography (HPCCC) was used as a tool for the isolation and fractionation of phenolic compounds (PCs) in extracts from wine lees (WL) and grape pomace (GP). The biphasic solvent systems applied for HPCCC separation were n-butanol:methyl tert-butyl ether:acetonitrile:water (3:1:1:5) with 0.1% trifluoroacetic acid (TFA) and n-hexane:ethyl acetate:methanol:water (1:5:1:5). After refining the ethanol:water extracts of GP and WL by-products by ethyl acetate extraction, the latter system yielded an enriched fraction of the minor family of flavonols. Recoveries of 112.9 and 105.9 mg of purified flavonols (myricetin, quercetin, isorhamnetin, and kaempferol) in GP and WL, respectively, from 500 mg of ethyl acetate extract (equivalent to 10 g of by-product) were obtained. The HPCCC fractionation and concentration capabilities were also exploited for the characterization and tentative identification of constitutive PCs by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). In addition to the isolation of the enriched flavonol fraction, a total of 57 PCs in both matrixes were identified, 12 of which were reported for the first time in WL and/or GP. The application of HPCCC to GP and WL extracts may be a powerful approach to isolate large amounts of minor PCs. The composition of the isolated fraction demonstrated quantitative differences in the individual compound composition of GP and WL, supporting the potential exploitation of these matrixes as sources of specific flavonols for technological applications.
Collapse
Affiliation(s)
- Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza CONICET-UNCuyo, Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich-Hirzebruch-Allee 7, D-53115 Bonn, Germany
| |
Collapse
|
6
|
Huang W, Tian F, Wang H, Wu S, Jin W, Shen W, Hu Z, Cai Q, Liu G. Comparative assessment of extraction, composition, and in vitro antioxidative properties of wheat bran polyphenols. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhang Y, Yuan D, Guo J, Jiang J, Yao H, Chen Z, Li L, Cui Y. Integrated LC-MS/MS method and network pharmacology for exploring the characterization and mechanism of neuroprotective effect of Vitis amurensis Rupr. wine polyphenol. J Food Biochem 2022; 46:e14316. [PMID: 35848530 DOI: 10.1111/jfbc.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
Polyphenols are the main active components in Vitis amurensis Rupr. wine, which show good protective effects on the nervous system, but their compositions in Vitis amurensis Rupr. wine and the molecular mechanism underlying their neuroprotection remains unclear. The purpose of this study is to investigate the potential mechanism of the neuroprotective effect of Vitis amurensis Rupr. wine polyphenols on the basis of the specific composition of polyphenols in Vitis amurensis Rupr. wine. In this study, 40 phenolic compounds which include 15 anthocyanins, 10 flavonoids, 10 phenolic acids, 3 proanthocyanidins and 2 resveratrols were identified by UPLC Q-Exactive Orbitrap MS. Furthermore, An UPLC-QqQ/MS method was established to simultaneously determine the phenolic compounds in Vitis amurensis Rupr. Wine, and analyze the content differences of phenolic compounds between Vitis amurensis Rupr. and Vitis vinifera wine. Finally, network pharmacology was employed for the first time to predict the possible pharmacological mechanisms of Vitis amurensis wine polyphenols against nervous damage. Multivariate network analysis indicated that quercetin, (-)-epigallocatechin and various anthocyanins were found as prominent compounds for the treatment of nervous system diseases. Vitis amurensis Rupr. wine polyphenols mainly acted on these key targets, including AKT1, EGFR, ESR1, and SRC, and further regulate the PI3K-AKT and Rap1 signaling pathway for treating nervous system diseases. Our findings suggested that polyphenols in Vitis amurensis Rupr. wine possess neuroprotective effect through multicomponent, multitarget, and multichannel. PRACTICAL APPLICATIONS: Studies have revealed that Vitis amurensis Rupr. has higher levels of phenolic compounds than Vitis vinifera wine. However, due to the few and limited study of Vitis amurensis Rupr., their compositions in Vitis amurensis Rupr. wine and the molecular mechanism underlying their neuroprotection remains unclear. This research uses a holistic network pharmacology strategy to investigate the potential targets and pharmacological mechanisms of Vitis amurensis Rupr. wine polyphenols against nervous damage. To some things up, The finding elucidates the relationships between signaling pathways, targets, and compounds in Vitis amurensis Rupr. wine polyphenols, which may provide guidance and foundations for further application of medicinal food.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Danbing Yuan
- Jiangsu Haosen Pharmaceutical Group Co., Ltd, Lianyungang, China
| | - Jianyu Guo
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoran Yao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhongling Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Talari K, Ganji SK, Mutyam S, Tiruveedula RR. Gas chromatography-mass spectrometric determination of organic acids by ion pair liquid extraction followed by in-situ butylation from aqua feed samples. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2022; 28:25-34. [PMID: 35746850 DOI: 10.1177/14690667221103227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A rapid and sensitive analytical method was developed to quantitatively determine organic acids (OAs) from fish feed samples extracted by ion-pair (IP) solvent extraction, followed by in-situ butylation and gas chromatography-mass spectrometric (GC-MS) analysis. The extraction of OAs was carried out with acetonitrile containing 10 mM tetrabutylammonium hydroxide (TBAH), and the analytes were derivatized to their butyl esters in the injection port of the GC-MS system. The developed method was validated in the range of 1-5000 ng/g, with recoveries ranging from 93-117%. The limit of detection (LOD) and limit of quantification (LOQ) of the method was 1-5 ng/g and 2-10 ng/g, respectively, yielding good linearity (R2 > 0.9990) and precision with a relative standard deviation less than 10%. The proposed method was successfully applied to analyze OAs in sinking and floating fish feed samples. The analyzed samples showed the presence of benzoic, succinic, fumaric, glutaric, adipic, and phthalic acids in sinking feed samples; and benzoic, succinic, adipic, phthalic acids in floating feed samples, respectively.
Collapse
Affiliation(s)
- Kalpana Talari
- Department of Chemistry, 28629Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
- Department of Chemistry, Government College for Women (A), Guntur, Andhra Pradesh, India
| | - Sai Krishna Ganji
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, 62391CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
| | - Satish Mutyam
- Analytical and Structural Chemistry Division, Centre for Mass Spectrometry, 62391CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
10
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
11
|
Hou W, Liu C, Li S, Zhang Y, Jin Y, Li X, Liu Z, Niu H, Xia J. An efficient strategy based on two-stage chromatography and in vitro evaluation for rapid screening and isolation of acetylcholinesterase inhibitors from Scutellaria baicalensis Georgi. J Sep Sci 2022; 45:1170-1184. [PMID: 34990521 DOI: 10.1002/jssc.202100918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022]
Abstract
The extraction of Scutellaria baicalensis Georgi was investigated using the response surface methodology-genetic algorithm mathematical regression model, and the extraction variables were optimized to maximize the flavonoid yield. Furthermore, a simple and efficient ultrafiltration-liquid chromatography-mass spectrometry and molecular docking methods was developed for the rapid screening and identification of acetylcholinesterase inhibitors present in Scutellaria baicalensis Georgi. Subsequently, four major chemical constituents, namely baicalein, norwogonin, wogonin, and oroxylin A, were identified as potent acetylcholinesterase inhibitors. This novel approach, involving the use of ultrafiltration-liquid chromatography-mass spectrometry and molecular docking methods combined with stepwise flow rate counter-current chromatography and semi-preparative high-performance liquid chromatography, could potentially provide a powerful tool for the screening and extraction of acetylcholinesterase inhibitors from complex matrices and be a useful platform for the production of bioactive and nutraceutical ingredients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wanchao Hou
- College of Chemistry, Jilin University, Changchun, 130021, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, 130021, China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130021, China
| | - Zhen Liu
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| | - Jianli Xia
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun, 130032, China
| |
Collapse
|
12
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
13
|
Wang L, Chen X, Liu J, Tan Z. A LCST-type ionic liquid used as the recyclable extractant for the extraction and separation of liquiritin and glycyrrhizic acid from licorice (Glycyrrhiza uralensis Fisch). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
de Mello RFA, de Souza Pinheiro WB, Benjamim JKF, de Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Wang C, Zhang M, Wu L, Wang F, Li L, Zhang S, Sun B. Qualitative and quantitative analysis of phenolic compounds in blueberries and protective effects on hydrogen peroxide-induced cell injury. J Sep Sci 2021; 44:2837-2855. [PMID: 33939882 DOI: 10.1002/jssc.202001264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/13/2023]
Abstract
This work was conducted to optimize an accelerated solvent extraction for ultra high performance liquid chromatography-mass spectrometry/mass spectrometry analysis of blueberry phenolic compounds. The conditions for accelerated solvent extraction were verified using response surface methodology to obtain the following optimized conditions: ethanol concentration (pH = 3), 48%; temperature, 50℃, and static cycle times, 3. Further, ultra high performance liquid chromatography with quadrupole Exactive Orbitrap mass spectrometry and ultra high performance liquid chromatography with triple-quadrupole tandem mass methods for determination of the detailed phenolic composition were developed and validated. Total of 81 phenolic compounds were identified by ultra high performance liquid chromatography with quadrupole Exactive Orbitrap mass spectrometry including 23 anthocyanins, 32 flavonols, 11 proanthocyanidins, 2 other flavonoids, and 13 phenolic acids. Fifty-one of these compounds have been simultaneously quantified by ultra high performance liquid chromatography with triple-quadrupole tandem mass including 31 anthocyanins, 8 flavonols, 6 proanthocyanidins, 2 other flavonoids, and 8 phenolic acids. Malvidin-dinhexoside has, for the first time, been detected in wild. Moreover, by verifying the protection on PC12 cells against oxidative damage, it was showed that the phenolic extracts (500 µg/mL) can improve significantly the viability (9.26-24.78%) of hydrogen peroxide-induced PC12 cells, activities of superoxide dismutase (34.59-37.90 U/mg) and glutathione peroxidase (6.87-14.42 mU/mg) and decrease the content of malonic dialdehyde (13.27-24.62 nmol/mg). Correlation analysis suggested that anthocyanins might contribute most to these activities.
Collapse
Affiliation(s)
- Chen Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Minna Zhang
- Tasly Modern TCM Resources Co. Ltd., Tianjin, P. R. China
| | - Limin Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| |
Collapse
|
16
|
Yang Y, Khan BM, Zhang X, Zhao Y, Cheong KL, Liu Y. Advances in Separation and Purification of Bioactive Polysaccharides through High-speed Counter-Current Chromatography. J Chromatogr Sci 2021; 58:992-1000. [PMID: 32901274 DOI: 10.1093/chromsci/bmaa063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Polysaccharides, with an extensive distribution in natural products, represent a group of natural bioactive substances having widespread applications in health-care food products and as biomaterials. Devising an efficient system for the separation and purification of polysaccharides from natural sources, hence, is of utmost importance in the widespread applicability and feasibility of research for the development of polysaccharide-based products. High-speed counter-current chromatography (HSCCC) is a continuous liquid-liquid partitioning chromatography with the ability to support a high loading amount and crude material treatment. Due to its flexible two-phase solvent system, HSCCC has been successfully used in the separation of many natural products. Based on HSCCC unique advantages over general column chromatography and its enhanced superiority in this regard when coupled to aqueous two-phase system (ATPS), this review summarizes the separation and purification of various bioactive polysaccharides through HSCCC and its coupling to ATPS as an aid in future research in this direction.
Collapse
Affiliation(s)
- Yu Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Xiping Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, P.R. China
| | - Yongjie Zhao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, P.R. China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| |
Collapse
|
17
|
Zhou Y, Long S, Xu Q, Yan C, Yang J, Zhou Y. Optimization and application of HPLC for simultaneous separation of six well-known major anthocyanins in blueberry. Prep Biochem Biotechnol 2021; 51:961-970. [PMID: 33626297 DOI: 10.1080/10826068.2021.1881906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anthocyanins have attracted great attention because of their potential therapeutic benefit. However, the effective technique for simultaneous separation and preparation multiple anthocyanin monomers with high purity and high yield is still deficient. In this study, the chromatographic conditions of HPLC were optimized to investigate six well-known major anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-glucoside and malvidin-3-O-glucoside) in blueberry. The separation conditions were optimized in analytical HPLC and further applied in semi-preparative HPLC to prepare anthocyanin monomers. The results showed that six well-known major anthocyanins were well separated under the condition of using acetonitrile-water (contained 0.3% phosphoric acid) as a mobile phase with gradient elution at a detection wavelength of 520 nm. The method showed good linear correlations between the concentrations and peak areas of the six components with correlation coefficients greater than 0.9994, and the detection limits of the six anthocyanins were 0.010-0.035 μg/mL, and the quantification limits were 0.033-0.117 μg/mL, which was suitable for the determination of anthocyanins in products. In the same experimental conditions, six well-known major anthocyanins were simultaneously prepared by semi-preparative HPLC with high purity to 99% and high yield to 22.5%. This study provides a practical and valuable method for simultaneous determination and preparation of six well-known major anthocyanins.
Collapse
Affiliation(s)
- Yuanjing Zhou
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Shangjun Long
- Guizhou Academy of Analysis and Testing, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Changrui Yan
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Jiang Yang
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| | - Yousong Zhou
- Institute of Biology, Guizhou Academy of Sciences, Guiyang City, P. R. China
| |
Collapse
|
18
|
Schwarz M, Weber F, Durán-Guerrero E, Castro R, Rodríguez-Dodero MDC, García-Moreno MV, Winterhalter P, Guillén-Sánchez D. HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography. Foods 2021; 10:foods10010131. [PMID: 33435411 PMCID: PMC7826704 DOI: 10.3390/foods10010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
In the present work, the polyphenolic profile of a complex matrix such as Amontillado sherry has been processed by means of high-speed counter-current chromatography (HSCCC) and characterized by HPLC-DAD-MS. An Amberlite XAD-7 column was used to obtain the wine extract, and three different biphasic solvent systems were applied for HSCCC separation: MTBE (methyl tert-butyl ether)/n-butanol/acetonitrile/water (1.1/3/1.1/5+0.1% trifluoroacetic acid), MTBE/n-butanol/acetonitrile/water (2/2/1/5), and hexane/ethyl acetate/ethanol/water (1/5/1/5). As a result, 42 phenolic compounds and furanic derivatives have been identified by means of HPLC-DAD-MS, with 11 of them being identified for the first time in Sherry wines: 3-feruloylquinic acid, isovanillin, ethyl vanillate, furoic acid, dihydro-p-coumaric acid, 6-O-feruloylglucose, ethyl gallate, hydroxytyrosol, methyl protocatechuate, homoveratric acid and veratraldehyde. In addition, the antioxidant capacity (ABTS) of the obtained fractions was determined, revealing higher values in those fractions in which compounds such as gallic acid, protocatechuic acid, protocatechualdehyde, trans-caftaric acid, syringic acid, isovanillin or tyrosol, among others, were present. This is the first time that HSCCC has been used to characterize the phenolic composition of Sherry wines.
Collapse
Affiliation(s)
- Mónica Schwarz
- “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain;
- Nutrition and Bromatology Area, Faculty of Medicine, University of Cadiz, Plaza Falla, 9, 11003 Cadiz, Spain
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany;
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
- Correspondence: ; Tel.: +34-956-016-456
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - María del Carmen Rodríguez-Dodero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Maria Valme García-Moreno
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany;
| | - Dominico Guillén-Sánchez
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| |
Collapse
|
19
|
Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Res Int 2020; 136:109558. [DOI: 10.1016/j.foodres.2020.109558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023]
|
20
|
Green synthesis of gold nanoparticles coated doxorubicin liposomes using procyanidins for light–controlled drug release. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Lossi L, Merighi A, Novello V, Ferrandino A. Protective Effects of Some Grapevine Polyphenols against Naturally Occurring Neuronal Death. Molecules 2020; 25:E2925. [PMID: 32630488 PMCID: PMC7356852 DOI: 10.3390/molecules25122925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
The interest in the biological properties of grapevine polyphenols (PPs) in neuroprotection is continuously growing in the hope of finding translational applications. However, there are several concerns about the specificity of action of these molecules that appear to act non-specifically on the permeability of cellular membranes. Naturally occurring neuronal death (NOND) during cerebellar maturation is a well characterized postnatal event that is very useful to investigate the death and rescue of neurons. We here aimed to establish a baseline comparative study of the potential to counteract NOND of certain grapevine PPs of interest for the oenology. To do so, we tested ex vivo the neuroprotective activity of peonidin- and malvidin-3-O-glucosides, resveratrol, polydatin, quercetin-3-O-glucoside, (+)-taxifolin, and (+)-catechin. The addition of these molecules (50 μM) to organotypic cultures of mouse cerebellum explanted at postnatal day 7, when NOND reaches a physiological peak, resulted in statistically significant (two-tailed Mann-Whitney test-p < 0.001) reductions of the density of dead cells (propidium iodide+ cells/mm2) except for malvidin-3-O-glucoside. The stilbenes were less effective in reducing cell death (to 51-60%) in comparison to flavanols, (+)-taxifolin and quercetin 3-O-glucoside (to 69-72%). Thus, molecules with a -OH group in ortho position (taxifolin, quercetin 3-O-glucoside, (+)-catechin, and peonidin 3-O-glucoside) have a higher capability to limit death of cerebellar neurons. As NOND is apoptotic, we speculate that PPs act by inhibiting executioner caspase 3.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences (DSV), University of Turin, 10095 Grugliasco (TO), Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco (TO), Italy
| |
Collapse
|
22
|
Gong Y, Huang XY, Pei D, Duan WD, Zhang X, Sun X, Di DL. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J Chromatogr A 2020; 1623:461150. [PMID: 32505270 DOI: 10.1016/j.chroma.2020.461150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023]
Abstract
Antioxidants play an essential role in human health, as they have been found to be capable of lowering the incidence of many diseases, such as cancer and angiocardiopathy. Currently, more attention is paid to natural antioxidants because of the possible insecurity of synthetic antioxidants. Thus, the development of efficient techniques or methods to separate antioxidants from natural sources is requested urgently. High-speed counter current chromatography (HSCCC) is a unique support-free liquid-liquid chromatographic technique and has been widely applied in the field of separation of natural products. In this review, we summarize and analyze the related researches on the application of HSCCC in the separation of various natural antioxidants so far. The purpose of the article is to provide a certain theoretical support for the separation of natural antioxidants by HSCCC, and to make full use of advantages of HSCCC in the separation of bioactive components. In particular, some key problems associated with the separation strategies, the structural categories of natural antioxidants, solvent system choices, and the application of different elution modes in HSCCC separation, are summarized and commented. We expect that the content reviewed can offer more evidence for the development of the field of natural antioxidants separation, so as to achieve large-scale preparation of natural antioxidants.
Collapse
Affiliation(s)
- Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Wen-Da Duan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| |
Collapse
|
23
|
Zhao X, Zhang SS, Zhang XK, He F, Duan CQ. An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace. Food Chem 2020; 310:125830. [DOI: 10.1016/j.foodchem.2019.125830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/23/2023]
|
24
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
25
|
Xie G, Yang J, Wei X, Xu Q, Qin M. Separation of acteoside and linarin from Buddlejae Flos by high‐speed countercurrent chromatography and their anti‐inflammatory activities. J Sep Sci 2020; 43:1450-1457. [DOI: 10.1002/jssc.201901062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyong Xie
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Jie Yang
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Xiaonan Wei
- The Sixth People's Hospital of Hengshui Hengshui P. R. China
| | - Qiuhong Xu
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
26
|
Pan Y, Ju R, Cao X, Pei H, Zheng T, Wang W. Optimization extraction and purification of biological activity curcumin from Curcuma longa L by high-performance counter-current chromatography. J Sep Sci 2020; 43:1586-1592. [PMID: 32027757 DOI: 10.1002/jssc.201901174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023]
Abstract
The extraction condition of curcumin from Curcuma longa L was optimized through four factors and three levels orthogonal experiment based on the results of single factor tests. Under the optimal conditions: the concentration of ethanol 80%, extraction temperature 70°C, the ratio of liquid to material 20, and extraction time 3 h, a crude extract with the yield of curcumin 56.8 mg/g could be obtained. The isolation and purification of curcuminoids from the crude extract was performed on high performance counter current chromatography employing an optimized solvent system n-hexane/ethyl acetate/methanol/water (2/3/3/1, v/v/v/v). From 97 mg crude sample (in which the purity of curmumin was 68.56%), 67 mg curmumin, 18 mg demethoxycurcumin, and 9.7 mg bisdemethoxycurcumin with a high-performance liquid chromatography purity of 98.26, 97.39, and 98.67%, respectively, were obtained within 70 min. The antioxidant activities and cytotoxicity of purified curcumin was comparable to that of the commercial product, indicating that the biological activity of curcumin could be maintained by this method.
Collapse
Affiliation(s)
- Yan Pan
- Beijing Vocational College of Agriculture, Beijing, P. R. China
| | - Ronghui Ju
- Beijing Vocational College of Agriculture, Beijing, P. R. China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, P. R. China
| | - Hairun Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, P. R. China
| | - Tianhao Zheng
- Beijing Vocational College of Agriculture, Beijing, P. R. China
| | - Wei Wang
- Beijing Center for Physical and Chemical Analysis, Beijing, P. R. China
| |
Collapse
|
27
|
Li L, Li Z, Wei Z, Yu W, Cui Y. Effect of tannin addition on chromatic characteristics, sensory qualities and antioxidant activities of red wines. RSC Adv 2020; 10:7108-7117. [PMID: 35493901 PMCID: PMC9049732 DOI: 10.1039/c9ra09846a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 11/26/2022] Open
Abstract
Tannin addition as an enological practice has been widely used in the winemaking process because of their ability of improving the aroma and sensory characteristics and stabilizing of color of red wine. In this study, hydrolysable, condensed tannins and their mixtures in different ratios were added into two Merlot wines to investigate their effect on the wine overall quality. The contents of 15 phenolic compounds were detected by HPLC-DAD, CIELAB color parameters were measured using a chromatic aberration meter, sensory evaluation was accomplished using the assessment standards established by the American Wine Association, and antioxidant activities were analyzed using DPPH and ABTS radical tests. The results indicated that adding tannins affected phenolic composition, contents and color of wine. The specific effects varied by tannins. Furthermore, tannin addition, especially the mixed tannins, improved the sensory qualities and antioxidant activities greatly. The mixed tannins added with a ratio of 1 : 1 between hydrolyzable and condensed tannins exhibited a better effect on both sensory qualities and antioxidant activities, and it could be recommended as an ideal tannin addition for wine quality improvement. The effect of tannin addition on the wine overall quality were investigated and an ideal tannin addition was recommended for wine quality improving.![]()
Collapse
Affiliation(s)
- Lingxi Li
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zhe Li
- China Resources Double-Crane Pharmaceutical Co., Ltd
- Beijing
- China
| | - Zongmin Wei
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Weichao Yu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yan Cui
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
28
|
Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 2020; 11:4853-4877. [DOI: 10.1039/d0fo00937g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agro-food industrial waste is currently being accumulated, pushing scientists to find recovery strategies to obtain bioactive compounds within a circular bioeconomy. Target phenolic compounds have shown market potential by means of optimization extraction techniques.
Collapse
Affiliation(s)
- C. Jimenez-Lopez
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Fraga-Corral
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Carpena
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - P. García-Oliveira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Echave
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - A. G. Pereira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. A. Prieto
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Simal-Gandara
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| |
Collapse
|
29
|
Exploring and comparing two means of preparing and fractionating oligomeric proanthocyanidins from mangosteen pericarp: gel filtration chromatography and progressive solvent precipitation. Anal Bioanal Chem 2019; 411:5455-5464. [PMID: 31227847 DOI: 10.1007/s00216-019-01919-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
The preparation and fractionation of oligomeric proanthocyanidins (OPCs) are particularly important for the application of tannins in the biomedical field. By use of two different methods-gel filtration chromatography (GFC) with Sephadex LH-20 and progressive solvent precipitation-the OPCs were prepared and fractionated from mangosteen pericarp. The fractions were compared by reversed-phase and normal-phase high-performance liquid chromatography-electrospray ionization mass spectrometry and gel permeation chromatography. GFC directly purified oligomers (monomer to pentamer) with polydispersity values close to 1 and generated fractions with a higher level of total phenols (800.59 mg gallic acid equivalents per gram) but a lower yield (7.72%). Progressive solvent precipitation rapidly prepared and fractionated OPCs with a lower level of total phenols (609.57 mg gallic acid equivalents per gram) but a higher yield (24.74%) and higher polydispersity. Additionally, we found pronounced structural and quantitative differences among different tannin-rich fractions, and fractions obtained by GFC better reflected the structural diversity and complexity of OPCs from mangosteen pericarp. This study presents different ways of preparing and fractionating OPCs in the biomedical field.
Collapse
|
30
|
Pei H, Ma X, Pan Y, Han T, Lu Z, Wu R, Cao X, Zheng J. Separation and purification of lanosterol, dihydrolanosterol, and cholesterol from lanolin by high‐performance counter‐current chromatography dual‐mode elution method. J Sep Sci 2019; 42:2171-2178. [DOI: 10.1002/jssc.201900063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Hairun Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University Beijing P. R. China
| | - Xiaotong Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University Beijing P. R. China
| | - Yan Pan
- Beijing Vocational College of Agriculture Beijing P. R. China
| | - Tian Han
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University Beijing P. R. China
| | - Zhifang Lu
- College of ChemistryBeijing Normal University Beijing P. R. China
| | - Ruijuan Wu
- College of ChemistryBeijing Normal University Beijing P. R. China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University Beijing P. R. China
| | - Jimin Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University Beijing P. R. China
- College of ChemistryBeijing Normal University Beijing P. R. China
| |
Collapse
|
31
|
Single reference quantitative analysis of xanthomonasin A and B in Monascus yellow colorant using high-performance liquid chromatography with relative molar sensitivity based on high-speed countercurrent chromatography. J Chromatogr A 2018; 1555:45-52. [DOI: 10.1016/j.chroma.2018.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/22/2022]
|
32
|
Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions. Molecules 2018; 23:molecules23051066. [PMID: 29751487 PMCID: PMC6100035 DOI: 10.3390/molecules23051066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
Anthocyanin-flavanol pigments, formed during red wine fermentation and storage by condensation reactions between anthocyanins and flavanols (monomers, oligomers, and polymers), are one of the major groups of polyphenols in aged red wine. However, knowledge of their biological activities is lacking. This is probably due to the structural diversity and complexity of these molecules, which makes the large-scale separation and isolation of the individual compounds very difficult, thus restricting their further study. In this study, anthocyanins (i.e., malvidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside) and (–)-epicatechin were first isolated at a preparative scale by high-speed counter-current chromatography. The condensation reaction between each of the isolated anthocyanins and (–)-epicatechin, mediated by acetaldehyde, was conducted in model wine solutions to obtain ethyl-linked anthocyanin-flavanol pigments. The effects of pH, molar ratio, and temperature on the reaction rate were investigated, and the reaction conditions of pH 1.7, molar ratio 1:6:10 (anthocyanin/(–)-epicatechin/acetaldehyde), and reaction temperature of 35 °C were identified as optimal for conversion of anthocyanins to ethyl-linked anthocyanin-flavanol pigments. Six ethyl-linked anthocyanin-flavanol pigments were isolated in larger quantities and collected under optimal reaction conditions, and their chemical structures were identified by HPLC-QTOF-MS and ECD analyses. Furthermore, DPPH, ABTS, and FRAP assays indicate that ethyl-linked anthocyanin-flavanol pigments show stronger antioxidant activities than their precursor anthocyanins.
Collapse
|
33
|
Stephan LS, Almeida ED, Markoski MM, Garavaglia J, Marcadenti A. Red Wine, Resveratrol and Atrial Fibrillation. Nutrients 2017; 9:nu9111190. [PMID: 29084143 PMCID: PMC5707662 DOI: 10.3390/nu9111190] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that is associated with increased risk for cardiovascular disease and overall mortality. Excessive alcohol intake is a well-known risk factor for AF, but this correlation is less clear with light and moderate drinking. Besides, low doses of red wine may acutely prolong repolarization and slow cardiac conduction. Resveratrol, a bioactive polyphenol found in grapes and red wine, has been linked to antiarrhythmic properties and may act as an inhibitor of both intracellular calcium release and pathological signaling cascades in AF, eliminating calcium overload and preserving the cardiomyocyte contractile function. However, there are still no clinical trials at all that prove that resveratrol supplementation leads to improved outcomes. Besides, no observational study supports a beneficial effect of light or moderate alcohol intake and a lower risk of AF. The purpose of this review is to briefly describe possible beneficial effects of red wine and resveratrol in AF, and also present studies conducted in humans regarding chronic red wine consumption, resveratrol, and AF.
Collapse
Affiliation(s)
- Laura Siga Stephan
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 370, Porto Alegre RS 90620-001, Brazil.
| | - Eduardo Dytz Almeida
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 370, Porto Alegre RS 90620-001, Brazil.
| | - Melissa Medeiros Markoski
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 370, Porto Alegre RS 90620-001, Brazil.
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Avenue, 245, Porto Alegre RS 90050-170, Brazil.
| | - Juliano Garavaglia
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Avenue, 245, Porto Alegre RS 90050-170, Brazil.
- Institute of Technology in Food for Health, University of Vale do Rio dos Sinos (UNISINOS), Unisinos Avenue, 950, São Leopoldo RS 93022-750, Brazil.
| | - Aline Marcadenti
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 370, Porto Alegre RS 90620-001, Brazil.
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Avenue, 245, Porto Alegre RS 90050-170, Brazil.
| |
Collapse
|
34
|
Abstract
Phenolic compounds are important constituents of red wine, contributing to its sensory properties and antioxidant activity. Owing to the diversity and structural complexity, study of these compounds was mainly limited, during the last three decades, on their low-molecular-mass compounds or simple phenolic compounds. Only in recent years, much attention has been paid to highly polymerized polyphenols in grape and red wines. The reason for this is largely due to the development of analytical techniques, especially those of HPLC-ESI-MS, permitting the structural characterization of highly polymerized polyphenols. Furthermore, the knowledge on the biological properties of polymeric polyphenols of red wine is very limited. Grape polyphenols mainly consist of proanthocyanidins (oligomers and polymers) and anthocyanins, and low amount of other phenolics. Red wine polyphenols include both grape polyphenols and new phenolic products formed from them during winemaking process. This leads to a great diversity of new polyphenols and makes wine polyphenol composition more complex. The present paper summarizes the advances in the research of polymeric polyphenols in grape and red wine and their important role in Enology. Scientific results indicate that polymeric polyphenols, as the major polyphenols in grape and red wine, play a major role in red wine sensory properties, color stability and antioxidant activities.
Collapse
Affiliation(s)
- Lingxi Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P. R. China.,b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Baoshan Sun
- b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China.,c Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. , Quinta da Almoinha , Dois Portos , Portugal
| |
Collapse
|