1
|
Hu C, Chen W, Yang Y, Tao Y. An exploratory metabolomic study reveals the Dipsacus asper-Achyranthes bidentate herb pair against osteoarthritis by modulating imbalance in polyunsaturated fatty acids and energy metabolism. J Pharm Biomed Anal 2024; 245:116196. [PMID: 38723559 DOI: 10.1016/j.jpba.2024.116196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease primarily affecting the cartilage. The therapeutic potential of the Dipsacus asper-Achyranthes bidentate herb pair for OA has been acknowledged, yet its precise mechanism remains elusive. In this study, we conducted a comprehensive analysis of metabolomic changes and therapeutic outcomes in osteoarthritic rats, employing a gas chromatography-mass spectrometry-based metabolomics approach in conjunction with histopathological and biochemical assessments. The rats were divided into six groups: control, model, positive control, Dipsacus asper treated, Achyranthes bidentata treated, and herb pair treated groups. Compared to the model group, significant reductions in levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and iNOS were observed in the treated groups. Multivariate statistical analyses were employed to investigate metabolite profile changes in serum samples and identify potential biomarkers, revealing 45 differential biomarkers, with eighteen validated using standard substances. These analytes exhibited excellent linearity across a wide concentration range (R2>0.9990), with intra- and inter-day precision RSD values below 4.69% and 4.83%, respectively. Recoveries of the eighteen analytes ranged from 93.97% to 106.59%, with RSD values under 5.72%, underscoring the method's reliability. Treatment with the herbal pair effectively restored levels of unsaturated fatty acids such as linoleic acid and arachidonic acid, along with glucogenic amino acids. Additionally, levels of phosphoric acid and citric acid were reversed, indicating restoration of energy metabolism. Collectively, these findings highlight the utility of metabolomic analysis in evaluating therapeutic efficacy and elucidating the underlying molecular mechanisms of herb pairs in OA treatment.
Collapse
Affiliation(s)
- Chengying Hu
- Orthopedics Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Wei Chen
- Orthopedics Department, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang 321300, China
| | - Ying Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
2
|
Wan J, Ding J, Zhang X, Hu X, Chen R, Han S. Exploration of the Amino Acid Metabolic Profiling and Pathway in Clonorchis sinensis-Infected Rats Revealed by the Targeted Metabolomic Analysis. Vector Borne Zoonotic Dis 2024; 24:428-438. [PMID: 38574253 DOI: 10.1089/vbz.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and β-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1β. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; β-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.
Collapse
Affiliation(s)
- Jie Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xinyi Hu
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Rui Chen
- Jiangnan University Medical Center, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
- Department of Parasitology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Arjun A, Chellamuthu G, Jeyaraman N, Jeyaraman M, Khanna M. Metabolomics in Osteoarthritis Knee: A Systematic Review of Literature. Indian J Orthop 2024; 58:813-828. [PMID: 38948380 PMCID: PMC11208384 DOI: 10.1007/s43465-024-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
Introduction Osteoarthritis (OA) is a common degenerative disorder of the synovial joints and is usually an age-related disease that occurs due to continuous wear and tear of the cartilage in the joints. Presently, there is no proven medical management to halt the progression of the disease in the early stages. The purpose of our systematic review is to analyze the possible metabolites and metabolic pathways that are specifically involved in OA pathogenesis and early treatment of the disease. Materials and Methods The articles were collected from PubMed, Cochrane, Google Scholar, Embase, and Scopus databases. "Knee", "Osteoarthritis", "Proteomics", "Lipidomics", "Metabolomics", "Metabolic Methods", and metabolic* were employed for finding the articles. Only original articles with human or animal OA models with healthy controls were included. Results From the initial screening, a total of 458 articles were identified from the 5 research databases. From these, 297 articles were selected in the end for screening, of which 53 papers were selected for full-text screening. Finally, 50 articles were taken for the review based on body fluid: 6 urine studies, 15 plasma studies, 16 synovial fluid studies, 11 serum studies, 4 joint tissue studies, and 1 fecal study. Many metabolites were found to be elevated in OA. Some of these metabolites can be used to stage the OA Three pathways that were found to be commonly involved are the TCA cycle, the glycolytic pathway, and the lipid metabolism. Conclusion All these studies showed a vast array of metabolites and metabolic pathways associated with OA. Metabolites like lysophospholipids, phospholipids, arginine, BCCA, and histidine were identified as potential biomarkers of OA but a definite association was not identified, Three pathways (glycolytic pathway, TCA cycle, and lipid metabolic pathways) have been found as highly significant in OA pathogenesis. These metabolic pathways could provide novel therapeutic targets for the prevention and progression of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01169-5.
Collapse
Affiliation(s)
- Akhilesh Arjun
- Department of Orthopaedics, KIMS Health Hospital, Kollam, Kerala India
- Dr RML National Law University, Lucknow, Uttar Pradesh India
| | - Girinivasan Chellamuthu
- Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Madhan Jeyaraman
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Manish Khanna
- Department of Orthopaedics, Dr KNS Mayo Institute of Medical Sciences, Lucknow, Uttar Pradesh India
| |
Collapse
|
4
|
Gao K, Huang Z, Yu W, Wu Y, Liu W, Sun S, Zhang Y, Chen D. Therapeutic mechanisms of modified Jiawei Juanbi decoction in early knee osteoarthritis: A multimodal analysis. Heliyon 2024; 10:e30828. [PMID: 38770333 PMCID: PMC11103480 DOI: 10.1016/j.heliyon.2024.e30828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Modified Jiawei Juanbi decoction (MJD) is used for the treatment of early-stage knee osteoarthritis (KOA). Here, modified Jiawei Juanbi decoction (MJD) was employed for the treatment of early-stage knee osteoarthritis (KOA) and its mechanisms were assessed via metabonomics and network pharmacology. A total of 24 male Sprague-Dawley rats were randomly allocated into a normal control group, a model group, and an MJD group (n = 8 rats per group). Each rat group was further equally divided into two subgroups for investigation for either 14 or 28 days. A rat model of early-stage KOA was constructed and rats were treated with MJD. Effects were evaluated based on changes in knee circumference, mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). We also analyzed histopathological changes in articular cartilage. High-resolution mass spectrometry was used to analyze the chemical profile of MJD, identifying 228 components. Using an LC-Q-TOF-MS metabonomics approach, 33 differential metabolites were identified. The relevant pathways significantly associated with MJD include arginine and proline metabolism, vitamin B6 metabolism, as well as the biosynthesis of phenylalanine, tyrosine and tryptophan. The system pharmacology paradigm revealed that MJD contains 1027 components and associates with 1637 genes, of which 862 disease genes are related to osteoarthritis. The construction of the MJD composition-target-KOA network revealed a total of 140 intersection genes. A total of 39 hub genes were identified via integration of betweenness centrality values greater than 100 using CytoHubba. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed several significantly affected signaling pathways including the HIF-1, AGE-RAGE (in diabetic complications), IL-17, rheumatoid arthritis and TNF pathways. Integrated-omics and network pharmacology approaches revealed a necessity for further detailed investigation focusing on two major targets, namely NOS2 and NOS3, along with their essential metabolite (arginine) and associated pathways (HIF-1 signaling and arginine and proline metabolism). Real-time PCR validated significantly greater downregulation of NOS2 and HIF-1ɑ in the MJD as compared to the model group. Molecular docking analysis further confirmed the binding of active MJD with key active components. Our findings elucidate the impact of MJD on relevant pathophysiological and metabolic networks relevant to KOA and assess the drug efficacy of MJD and its underlying mechanisms of action.
Collapse
Affiliation(s)
- Kun Gao
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Zhenyu Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiji Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yihong Wu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Weidong Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shufen Sun
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yong Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Dayu Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| |
Collapse
|
5
|
Ekeuku SO, Tan JK, Al-Saadi HM, Ahmad F, Elvy Suhana MR, Arlamsyah AM, Japar Sidik FZ, Abdul Hamid J, Ima-Nirwana S, Chin KY. Serum Metabolomic Alteration in Rats with Osteoarthritis Treated with Palm Tocotrienol-Rich Fraction Alone or in Combination with Glucosamine Sulphate. Life (Basel) 2023; 13:2343. [PMID: 38137944 PMCID: PMC10744932 DOI: 10.3390/life13122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint condition with limited disease-modifying treatments currently. Palm tocotrienol-rich fraction (TRF) has been previously shown to be effective against OA, but its mechanism of action remains elusive. This study aims to compare serum metabolomic alteration in Sprague-Dawley rats with monosodium iodoacetate (MIA)-induced OA which were treated with palm TRF, glucosamine sulphate, or a combination of both. This study was performed on thirty adult male rats, which were divided into normal control (n = 6) and OA groups (n = 24). The OA group received intra-articular injections of MIA and daily oral treatments of refined olive oil (vehicle, n = 6), palm TRF (100 mg/kg, n = 6), glucosamine sulphate (250 mg/kg, n = 6), or a combination of TRF and glucosamine (n = 6) for four weeks. Serum was collected at the study's conclusion for metabolomic analysis. The findings revealed that MIA-induced OA influences amino acid metabolism, leading to changes in metabolites associated with the biosynthesis of phenylalanine, tyrosine and tryptophan as well as alterations in the metabolism of phenylalanine, tryptophan, arginine and proline. Supplementation with glucosamine sulphate, TRF, or both effectively reversed these metabolic changes induced by OA. The amelioration of metabolic effects induced by OA is linked to the therapeutic effects of TRF and glucosamine. However, it remains unclear whether these effects are direct or indirect in nature.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (S.O.E.)
| | - Jen-Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (S.O.E.)
| | - Hiba Murtadha Al-Saadi
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Mohd Ramli Elvy Suhana
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Azlan Mohd Arlamsyah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | | | - Juliana Abdul Hamid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
6
|
Wang X, Cai W, Liu Y, Lu Y, Liu M, Cao X, Guo D. Exploring biomarkers associated with severity of knee osteoarthritis in Southern China using widely targeted metabolomics. BMC Musculoskelet Disord 2023; 24:953. [PMID: 38066443 PMCID: PMC10704822 DOI: 10.1186/s12891-023-07084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Metabolomics is a tool to study the pathogenesis of diseases and their associated metabolites, but there are still insufficient metabolomic studies on severe knee osteoarthritis.To investigate the differences in serum metabolites between healthy populations and knee osteoarthritis (KOA) patients in Southern China using widely targeted metabolomics, and to explore biomarkers and their metabolic pathways that could be associated with the severity of KOA. METHODS There were 10 healthy individuals in the control group and 32 patients with KOA. According to the Kellgren-Lawrence (KL) grading system, KOA was further divided into mild (n = 13, KL grade 1 and 2) and severe (n = 19, KL grade 3 and 4). Serum samples from all participants were collected and analyzed metabolomics based on ultra-performance liquid chromatography/electrospray ionization/tandem mass spectrometry. We screened for differential metabolites between patients and controls, and between mild and severe KOA. We explored the metabolic pathways involved in differential metabolism using the Kyoto Encyclopedia of Genes and Genomes database. RESULTS Sixty-one metabolites were differentially expressed in the sera of the patient group compared with the control group (45 upregulated and 16 downregulated). Analysis of the mild and severe KOA groups showed a total of 12 differential metabolites. Receiver operating characteristic curve analysis showed N-alpha-acetyl-L-asparagine was a good predictor of advanced osteoarthritis(OA).Differential metabolites are enriched in multiple pathways such as arachidonic acid metabolism. CONCLUSION Widely targeted metabolomics found that upregulation of the amino acid metabolite N-α-acetyl-L-asparagine was significantly associated with severe KOA and could be a biomarker for predicting severity of KOA. Arachidonic acid metabolism may play an important role in patients with severe KOA.
Collapse
Affiliation(s)
- Xiaochao Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wanling Cai
- Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoming Lu
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mange Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuewei Cao
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Da Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Liao Z, Han X, Wang Y, Shi J, Zhang Y, Zhao H, Zhang L, Jiang M, Liu M. Differential Metabolites in Osteoarthritis: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4191. [PMID: 37836475 PMCID: PMC10574084 DOI: 10.3390/nu15194191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Many studies have attempted to utilize metabolomic approaches to explore potential biomarkers for the early detection of osteoarthritis (OA), but consistent and high-level evidence is still lacking. In this study, we performed a systematic review and meta-analysis of differential small molecule metabolites between OA patients and healthy individuals to screen promising candidates from a large number of samples with the aim of informing future prospective studies. (2) Methods: We searched the EMBASE, the Cochrane Library, PubMed, Web of Science, Wan Fang Data, VIP Date, and CNKI up to 11 August 2022, and selected relevant records based on inclusion criteria. The risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. We performed qualitative synthesis by counting the frequencies of changing directions and conducted meta-analyses using the random effects model and the fixed-effects model to calculate the mean difference and 95% confidence interval. (3) Results: A total of 3798 records were identified and 13 studies with 495 participants were included. In the 13 studies, 132 kinds of small molecule differential metabolites were extracted, 58 increased, 57 decreased and 17 had direction conflicts. Among them, 37 metabolites appeared more than twice. The results of meta-analyses among four studies showed that three metabolites increased, and eight metabolites decreased compared to healthy controls (HC). (4) Conclusions: The main differential metabolites between OA and healthy subjects were amino acids (AAs) and their derivatives, including tryptophan, lysine, leucine, proline, phenylalanine, glutamine, dimethylglycine, citrulline, asparagine, acetylcarnitine and creatinine (muscle metabolic products), which could be potential biomarkers for predicting OA.
Collapse
Affiliation(s)
- Zeqi Liao
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yuhe Wang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Jingru Shi
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Yuanyue Zhang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Hongyan Zhao
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| | - Lei Zhang
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Meijie Liu
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.W.); (J.S.); (Y.Z.); (H.Z.)
| |
Collapse
|
8
|
Cui Z, Feng H, He B, He J, Tian H, Tian Y. Causal associations between serum amino acid levels and osteoarthritis: A Mendelian randomization study. Osteoarthritis Cartilage 2023:S1063-4584(23)00759-8. [PMID: 37088265 DOI: 10.1016/j.joca.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE The association between serum amino acid (AA) levels and osteoarthritis (OA) risk remains unclear. METHOD We performed a two-sample Mendelian randomization (MR) analysis to analyze the causal effects of. serum AA levels on the OA risk by using summary-level genome-wide association study (GWAS) data. Inverse variance weighted (IVW) and Wald ratio were used as the main analysis.We also applied MR-Egger, Weighted median and Robust Adjusted Profile Score (MR.RAPS) methods. Heterogeneity and horizontally pleiotropic outliers were checked. The causal effects of AAs on early-onset all OA were explored. We also performed multivariable MR (MVMR) and conducted the bidirectional MR. RESULTS The results suggested that genetically predicted alanine (Ala), tyrosine (Tyr) and isoleucine (Ile) levels were significantly associated with OA risk (e.g., association between Ala and hip/knee OA risk: OR = 0.82, 95% CI = 0.75 ∼ 0.90, p = 1.54E-05). The study yielded little evidence of associations between genetically predicted AA levels with early-onset all OA risk. When adjusting the BMI in the MVMR model, suggestive causal effects of Ala and Tyr were also identified, while the effects of Ile substantially attenuated with OA risk. No significant associations between OA and AA levels were observed after testing for bidirectionality. CONCLUSIONS Some AAs, such as Ala, Tyr and Ile likely affects the OA risk especially at hip or knee joints. The findings highlight the important role that serum AAs might play in the development of OA and provided new treatment approaches to OA.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Hui Feng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Baichuan He
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jinyao He
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Hua Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Zhao T, Wang S, Liu W, Shen J, Dai Y, Shi M, Huang X, Wei Y, Li T, Zhang X, Xie Z, Wang N, Qin D, Li Z. Clinical efficacy of Yiqi Yangxue formula on knee osteoarthritis and unraveling therapeutic mechanism through plasma metabolites in rats. Front Genet 2023; 14:1096616. [PMID: 37091797 PMCID: PMC10113924 DOI: 10.3389/fgene.2023.1096616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: To observe the clinical efficacy and safety of Yiqi Yangxue formula (YQYXF) on knee osteoarthritis (KOA), and to explore the underlying therapeutic mechanism of YQYXF through endogenous differential metabolites and their related metabolic pathways.Methods: A total of 61 KOA patients were recruited and divided into the treatment group (YQYXF, 30 cases) and the control group (celecoxib, Cxb, 31 cases). Effects of these two drugs on joint pain, swelling, erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) were observed, and their safety and adverse reactions were investigated. In animal experiments, 63 SD rats were randomly divided into normal control (NC) group, sham operation (sham) group, model (KOA) group, Cxb group, as well as low-dose (YL), medium-dose (YM), and high-dose groups of YQYXF (YH). The KOA rat model was established using a modified Hulth method. Ultra-high-performance liquid chromatography/Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass (UHPLC-QE-MS)-based metabolomics technology was used to analyze the changes of metabolites in plasma samples of rats. Comprehensive (VIP) >1 and t-test p < 0.05 conditions were used to screen the disease biomarkers of KOA, and the underlying mechanisms of YQYXF were explored through metabolic pathway enrichment analysis. The related markers of YQYXF were further verified by ELISA (enzyme-linked immunosorbent assay).Results: YQYXF can improve joint pain, swelling, range of motion, joint function, Michel Lequesen index of severity for osteoarthritis (ISOA) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, ESR, and CRP. No apparent adverse reactions were reported. In addition, YQYXF can improve cartilage damage in KOA rats, reverse the abnormal changes of 16 different metabolites, and exert an anti-KOA effect mainly through five metabolic pathways. The levels of reactive oxygen species (ROS) and glutathione (GSH) were significantly decreased after the treatment of YQYXF.Conclusion: YQYXF can significantly improve the clinical symptoms of KOA patients without obvious adverse reactions. It mainly improved KOA through modulating lipid metabolism-related biomarkers, reducing lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiqi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenbin Liu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Li
- Qujing Hospital Affiliated to Yunnan University of Traditional Chinese Medicine, Qujing, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Wang
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| |
Collapse
|
10
|
Van Pevenage PM, Birchmier JT, June RK. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: A systematic review. Semin Arthritis Rheum 2023; 59:152163. [PMID: 36736024 PMCID: PMC9992342 DOI: 10.1016/j.semarthrit.2023.152163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a joint disease that is clinically diagnosed using components of history, physical exam, and characteristic radiographic findings, such as joint space narrowing. Currently, there are no laboratory findings that are specific to a diagnosis of OA. The purpose of this systematic review is to evaluate the state of current studies of metabolomic biomarkers that can aid in the diagnosis and treatment of OA. METHODS Articles were gathered from PubMed and Web of Science using the search terms "osteoarthritis" and "biomarkers" and "metabolomics". Last search of databases took place December 3rd, 2022. Duplicates were manually screened, along with any other results that were not original journal articles. Only original reports involving populations with diagnosed primary or secondary OA (human participants) or surgically induced OA (animal participants) and a healthy control group for comparison were considered for inclusion. Metabolites and metabolic pathways reported in included articles were then manually extracted and evaluated for importance based on reported a priori p-values and/or area under the receiver-operator curve (AUC). RESULTS Of the 161 results that were returned in the database searches, 43 unique articles met the inclusion criteria. Articles were categorized based on body fluid analyzed: 6 studies on urine samples, 13 studies on plasma samples, 11 studies on synovial fluid (SF) samples, 11 studies on serum samples, 1 study on both synovial fluid and serum, and 1 study that involved both plasma and synovial fluid. To synthesize results, individual metabolites, as well as metabolic pathways that involve frequently reported metabolites, are presented for each study. Indications as to whether metabolite levels were increased or decreased are also included if this data was included in the original articles. CONCLUSIONS These studies clearly show that there are a wide range of metabolic pathways perturbed in OA. For this period, there was no consensus on a single metabolite, or panel of metabolites, that would be clinically useful in early diagnosis of OA or distinguishing OA from a healthy control. However, many common metabolic pathways were identified in the studies, including TCA cycle, fatty acid metabolism, amino acid metabolism (notably BCAA metabolism and tryptophan metabolism via kynurenine pathway), nucleotide metabolism, urea cycle, cartilage matrix components, and phospholipid metabolism. Future research is needed to define effective clinical biomarkers of osteoarthritis from metabolomic and other data.
Collapse
Affiliation(s)
| | - Jaedyn T Birchmier
- Department of Mechanical & Industrial Engineering, Montana State University, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, United States; Department of Microbiology & Cell Biology, Montana State University, United States; Department of Orthopaedics and Sports Medicine, University of Washington, United States.
| |
Collapse
|
11
|
Huang R, Tang J, Wang S, Liu Y, Zhang M, Jin M, Qin H, Qian W, Lu Y, Yang Y, Lu B, Yao Y, Yan P, Huang J, Zhang W, Lu J, Gu M, Zhu Y, Guo X, Xian S, Liu X, Huang Z. Sequencing technology as a major impetus in the advancement of studies into rheumatism: A bibliometric study. Front Immunol 2023; 14:1067830. [PMID: 36875117 PMCID: PMC9982012 DOI: 10.3389/fimmu.2023.1067830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Background Rheumatism covers a wide range of diseases with complex clinical manifestations and places a tremendous burden on humans. For many years, our understanding of rheumatism was seriously hindered by technology constraints. However, the increasing application and rapid advancement of sequencing technology in the past decades have enabled us to study rheumatism with greater accuracy and in more depth. Sequencing technology has made huge contributions to the field and is now an indispensable component and powerful tool in the study of rheumatism. Methods Articles on sequencing and rheumatism, published from 1 January 2000 to 25 April 2022, were retrieved from the Web of Science™ (Clarivate™, Philadelphia, PA, USA) database. Bibliometrix, the open-source tool, was used for the analysis of publication years, countries, authors, sources, citations, keywords, and co-words. Results The 1,374 articles retrieved came from 62 countries and 350 institutions, with a general increase in article numbers during the last 22 years. The leading countries in terms of publication numbers and active cooperation with other countries were the USA and China. The most prolific authors and most popular documents were identified to establish the historiography of the field. Popular and emerging research topics were assessed by keywords and co-occurrence analysis. Immunological and pathological process in rheumatism, classification, risks and susceptibility, and biomarkers for diagnosis were among the hottest themes for research. Conclusions Sequencing technology has been widely applied in the study of rheumatism and propells research in the area of discovering novel biomarkers, related gene patterns and physiopathology. We suggest that further efforts be made to advance the study of genetic patterns related to rheumatic susceptibility, pathogenesis, classification and disease activity, and novel biomarkers.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jieling Tang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengwei Qin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, Shibei Hospital, Shanghai, China
| | - Xin Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Chen K, Zhang X, Li Z, Yuan X, Fu D, Wu K, Shang X, Ni Z. Excessive sulfur oxidation in endoplasmic reticulum drives an inflammatory reaction of chondrocytes in aging mice. Front Pharmacol 2022; 13:1058469. [PMID: 36353501 PMCID: PMC9638109 DOI: 10.3389/fphar.2022.1058469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis, as a common joint disease among middle-aged and elderly people, has many problems, such as diverse pathogenesis, poor prognosis and high recurrence rate, which seriously affects patients’ physical and mental health and reduces their quality of life. At present, the pathogenesis of osteoarthritis is not completely clear, and the treatment plan is mainly to relieve symptoms and ensure basic quality of life. Therefore, it is particularly urgent to explore the pathogenesis of osteoarthritis. Protein, as organic macromolecule which plays a major role in life activities, plays an important role in the development of disease. Through protein omics, this study found that with the increase of age, excessive sulfur oxidation occurred in endoplasmic reticulum of chondrocytes, which then drove the occurrence of inflammatory reaction, and provided a direction for the follow-up molecular targeted.
Collapse
Affiliation(s)
| | | | | | | | | | - Kerong Wu
- *Correspondence: Kerong Wu, ; Xifu Shang, ; Zhe Ni,
| | - Xifu Shang
- *Correspondence: Kerong Wu, ; Xifu Shang, ; Zhe Ni,
| | - Zhe Ni
- *Correspondence: Kerong Wu, ; Xifu Shang, ; Zhe Ni,
| |
Collapse
|
13
|
Pérez-Hernández E, Pastrana-Carballo JJ, Gómez-Chávez F, Gupta RC, Pérez-Hernández N. A Key Metabolic Regulator of Bone and Cartilage Health. Endocrinol Metab (Seoul) 2022; 37:559-574. [PMID: 35938304 PMCID: PMC9449101 DOI: 10.3803/enm.2022.1443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Taurine, a cysteine-derived zwitterionic sulfonic acid, is a common ingredient in energy drinks and is naturally found in fish and other seafood. In humans, taurine is produced mainly in the liver, and it can also be obtained from food. In target tissues, such as the retina, heart, and skeletal muscle, it functions as an essential antioxidant, osmolyte, and antiapoptotic agent. Taurine is also involved in energy metabolism and calcium homeostasis. Taurine plays a considerable role in bone growth and development, and high-profile reports have demonstrated the importance of its metabolism for bone health. However, these reports have not been collated for more than 10 years. Therefore, this review focuses on taurine-bone interactions and covers recently discovered aspects of taurine's effects on osteoblastogenesis, osteoclastogenesis, bone structure, and bone pathologies (e.g., osteoporosis and fracture healing), with due attention to the taurine-cartilage relationship.
Collapse
Affiliation(s)
- Elizabeth Pérez-Hernández
- Medical Unit of High Specialty of Traumatology, Orthopedics and Rehabilitation “Dr. Victorio de la Fuente Narváez”, Mexican Social Security Institute, Mexico City, Mexico
| | | | - Fernando Gómez-Chávez
- National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Ramesh C. Gupta
- School of Agricultural Sciences and Rural Development (SASRD) Nagaland University, Medziphema, India
- Ramesh C. Gupta. School of Agricultural Sciences and Rural Development (SASRD) Nagaland University, Medziphema-797106, India Tel: +91-3862-247102, Fax: +91-3862-247113, E-mail:
| | - Nury Pérez-Hernández
- National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
- Corresponding authors: Nury Pérez-Hernández. National School of Medicine and Homeopathy, National Polytechnic Institute, 07320, Mexico City, Mexico Tel: +52-5729-6000 ext. 55537, Fax: +52-5729-6000, E-mail:
| |
Collapse
|
14
|
Xiao Z, Zhang Z, Huang S, Lon JR, Xie S. Metabolic Profiling of Serum for Osteoarthritis Biomarkers. DISEASE MARKERS 2022; 2022:1800812. [PMID: 35942132 PMCID: PMC9356247 DOI: 10.1155/2022/1800812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Osteoarthritis is a prevalent aging disease in the world, and in recent years it has shown a trend toward younger age, which is becoming a major health problem in the world and seriously endangers the health of the elderly. However, the etiology and pathogenesis of osteoarthritis are still unclear, causing great trouble for treatment. To screen out candidate biomarkers that could be used for the identification of osteoarthritis and explore the pathogenesis of osteoarthritis, we performed an untargeted metabolomics analysis of nine New Zealand rabbit serum samples by LC-MS/MS, including three normal serum samples (control group) and six osteoarthritis serum samples (case group). Finally, 44 differential metabolites were identified, and the ROC analysis results indicated that a total of 36 differential metabolites could be used as candidate biomarkers. Further metabolic pathway enrichment analysis was performed on these differential metabolites, and we found that a total of 17 metabolic pathways were affected, which may provide directions for the study of osteoarthritis mechanisms.
Collapse
Affiliation(s)
- Ziqian Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhenyang Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shanbin Huang
- School of Physical Education, South China University of Technology, Guangzhou, China
| | - Jerome Rumdon Lon
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Shuilin Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Shen CL, Watkins BA, Kahathuduwa C, Chyu MC, Zabet-Moghaddam M, Elmassry MM, Luk HY, Brismée JM, Knox A, Lee J, Zumwalt M, Wang R, Wager TD, Neugebauer V. Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study. Front Med (Lausanne) 2022; 8:775344. [PMID: 35047525 PMCID: PMC8761802 DOI: 10.3389/fmed.2021.775344] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: A pre/post pilot study was designed to investigate neurobiological mechanisms and plasma metabolites in an 8-week Tai-Chi (TC) group intervention in subjects with knee osteoarthritis. Methods: Twelve postmenopausal women underwent Tai-Chi group exercise for 8 weeks (60 min/session, three times/week). Outcomes were measured before and after Tai Chi intervention including pain intensity (VAS), Brief Pain Inventory (BPI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), plasma metabolites (amino acids and lipids), as well as resting-state functional magnetic resonance imaging (rs-fMRI, 10 min, eyes open), diffusion tensor imaging (DTI, 12 min), and structural MRI (4.5 min) in a subgroup. Clinical data was analyzed using paired t-tests; plasma metabolites were analyzed using Wilcoxon signed-rank tests; and rs-fMRI data were analyzed using seed-based correlations of the left and right amygdala in a two-level mixed-effects model (FSL software). Correlations between amygdala-medial prefrontal cortex (mPFC) connectivity and corresponding changes in clinical outcomes were examined. DTI connectivity of each amygdala was modeled using a Bayesian approach and probabilistic tractography. The associations between neurobiological effects and pain/physical function were examined. Results: Significant pre/post changes were observed with reduced knee pain (VAS with most pain: p = 0.018; WOMAC-pain: p = 0.021; BPI with worst level: p = 0.018) and stiffness (WOMAC-stiffness, p = 0.020), that likely contributed to improved physical function (WOMAC-physical function: p = 0.018) with TC. Moderate to large effect sizes pre/post increase in rs-fMRI connectivity were observed between bilateral mPFC and the amygdala seed regions (i.e., left: d = 0.988, p = 0.355; right: d = 0.600, p = 0.282). Increased DTI connectivity was observed between bilateral mPFC and left amygdala (d = 0.720, p = 0.156). There were moderate-high correlations (r = 0.28–0.60) between TC-associated pre-post changes in amygdala-mPFC functional connectivity and pain/physical function improvement. Significantly higher levels of lysophosphatidylcholines were observed after TC but lower levels of some essential amino acids. Amino acid levels (alanine, lysine, and methionine) were lower after 8 weeks of TC and many of the lipid metabolites were higher after TC. Further, plasma non-HDL cholesterol levels were lower after TC. Conclusion: This pilot study showed moderate to large effect sizes, suggesting an important role that cortico-amygdala interactions related to TC have on pain and physical function in subjects with knee osteoarthritis pain. Metabolite analyses revealed a metabolic shift of higher lyso-lipids and lower amino acids that might suggest greater fatty acid catabolism, protein turnover and changes in lipid redistribution in response to TC exercise. The results also support therapeutic strategies aimed at strengthening functional and structural connectivity between the mPFC and the amygdala. Controlled clinical trials are warranted to confirm these observed preliminary effects.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Chanaka Kahathuduwa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Laboratory Sciences and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ming-Chien Chyu
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Hui-Ying Luk
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Jean-Michel Brismée
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ami Knox
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jaehoon Lee
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, United States
| | - Mimi Zumwalt
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Orthopedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
16
|
Zhai G. The role of metabolomics in precision medicine of osteoarthritis: How far are we? OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100170. [DOI: 10.1016/j.ocarto.2021.100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022] Open
|
17
|
Convill JG, Tawy GF, Freemont AJ, Biant LC. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1511S-1531S. [PMID: 32680434 PMCID: PMC8808945 DOI: 10.1177/1947603520941239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Biomarkers in osteoarthritis (OA) could serve as objective clinical indicators for various disease parameters, and act as surrogate endpoints in clinical trials for disease-modifying drugs. The aim of this systematic review was to produce a comprehensive list of candidate molecular biomarkers for knee OA after the 2013 ESCEO review and discern whether any have been studied in sufficient detail for use in clinical settings. DESIGN MEDLINE and Embase databases were searched between August 2013 and May 2018 using the keywords "knee osteoarthritis," "osteoarthritis," and "biomarker." Studies were screened by title, abstract, and full text. Human studies on knee OA that were published in the English language were included. Excluded were studies on genetic/imaging/cellular markers, studies on participants with secondary OA, and publications that were review/abstract-only. Study quality and bias were assessed. Statistically significant data regarding the relationship between a biomarker and a disease parameter were extracted. RESULTS A total of 80 studies were included in the final review and 89 statistically significant individual molecular biomarkers were identified. C-telopeptide of type II collagen (CTXII) was shown to predict progression of knee OA in urine and serum in multiple studies. Synovial fluid vascular endothelial growth factor concentration was reported by 2 studies to be predictive of knee OA progression. CONCLUSION Despite the clear need for biomarkers of OA, the lack of coordination in current research has led to incompatible results. As such, there is yet to be a suitable biomarker to be used in a clinical setting.
Collapse
Affiliation(s)
- James G Convill
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwenllian F Tawy
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anthony J Freemont
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leela C Biant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Li JT, Zeng N, Yan ZP, Liao T, Ni GX. A review of applications of metabolomics in osteoarthritis. Clin Rheumatol 2021; 40:2569-2579. [PMID: 33219452 DOI: 10.1007/s10067-020-05511-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) represents the most prevalent and disabling arthritis worldwide due to its heterogeneous and progressive articular degradation. However, effective and timely diagnosis and fundamental treatment for this disorder are lacking. Metabolomics, a growing field in life science research in recent years, has the potential to detect many metabolites and thus explains the underlying pathophysiological processes. Hence, new specific metabolic markers and related metabolic pathways can be identified for OA. In this review, we aimed to provide an overview of studies related to the metabolomics of OA in animal models and humans to describe the metabolic changes and related pathways for OA. The present metabolomics studies reveal that the pathogenesis of OA may be significantly related to perturbations of amino acid metabolism. These altered amino acids (e.g., branched-chain amino acids, arginine, and alanine), as well as phospholipids, were identified as potential biomarkers to distinguish patients with OA from healthy individuals.
Collapse
Affiliation(s)
- Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is a heterogeneous, multifactorial condition regulated by complex biological interactions at multiple levels. Comprehensive understanding of these regulatory interactions is required to develop feasible advances to improve patient outcomes. Improvements in technology have made extensive genomic, transcriptomic, epigenomic, proteomic, and metabolomic profiling possible. This review summarizes findings over the past 20 months related to omics technologies in osteoarthritis and examines how using a multiomics approach is necessary for advancing our understanding of osteoarthritis as a disease to improve precision osteoarthritis treatments. RECENT FINDINGS Using the search terms 'genomics' or 'transcriptomics' or 'epigenomics' or 'proteomics' or 'metabolomics' and 'osteoarthritis' from January 1, 2018 to August 31, 2019, we identified advances in omics approaches applied to osteoarthritis. Trends include untargeted whole genome, transcriptome, proteome, and metabolome analyses leading to identification of novel molecular signatures, cell subpopulations and multiomics validation approaches. SUMMARY To address the complexity of osteoarthritis, integration of multitissue analyses by multiomics approaches with the inclusion of longitudinal clinical data is necessary for a comprehensive understanding of the disease process, and for appropriate development of efficacious diagnostics, prognostics, and biotherapeutics.
Collapse
|
20
|
Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, Hojo N, Ogawa T, Kobayashi W, Tsutsui Y, Yamamoto S, Maruya M, Narushima S, Suzuki K, Sugiya H, Murakami K, Hashimoto M, Ueno H, Kobayashi T, Ito K, Hirano T, Shiroguchi K, Matsuda F, Suematsu M, Honjo T, Fagarasan S. B cell-derived GABA elicits IL-10 + macrophages to limit anti-tumour immunity. Nature 2021; 599:471-476. [PMID: 34732892 PMCID: PMC8599023 DOI: 10.1038/s41586-021-04082-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 01/16/2023]
Abstract
Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.
Collapse
Affiliation(s)
- Baihao Zhang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Alexis Vogelzang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Michio Miyajima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yuki Sugiura
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Yibo Wu
- grid.7597.c0000000094465255YCI Laboratory for Next-Generation Proteomics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Kenji Chamoto
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Nakano
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryusuke Hatae
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rosemary J. Menzies
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sonomura
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nozomi Hojo
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Taisaku Ogawa
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Wakana Kobayashi
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yumi Tsutsui
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Sachiko Yamamoto
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mikako Maruya
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Seiko Narushima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Keiichiro Suzuki
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Hiroshi Sugiya
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kosaku Murakami
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- grid.258799.80000 0004 0372 2033Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Ito
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Hirano
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuyuki Shiroguchi
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Fumihiko Matsuda
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Suematsu
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Tasuku Honjo
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan. .,Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Serum fatty acid chain length associates with prevalent symptomatic end-stage osteoarthritis, independent of BMI. Sci Rep 2020; 10:15459. [PMID: 32963331 PMCID: PMC7508826 DOI: 10.1038/s41598-020-71811-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Higher body mass index (BMI) is associated with osteoarthritis (OA) in both weight-bearing and non-weight-bearing joints, suggesting a link between OA and poor metabolic health beyond mechanical loading. This risk may be influenced by systemic factors accompanying BMI. Fluctuations in concentrations of metabolites may mark or even contribute to development of OA. This study explores the association of metabolites with radiographic knee/hip OA prevalence and progression. A 1H-NMR-metabolomics assay was performed on plasma samples of 1564 cases for prevalent OA and 2,125 controls collected from the Rotterdam Study, CHECK, GARP/NORREF and LUMC-arthroplasty cohorts. OA prevalence and 5 to 10 year progression was assessed by means of Kellgren-Lawrence (KL) score and the OARSI-atlas. End-stage knee/hip OA (TJA) was defined as indication for arthroplasty surgery. Controls did not have OA at baseline or follow-up. Principal component analysis of 227 metabolites demonstrated 23 factors, of which 19 remained interpretable after quality-control. Associations of factor scores with OA definitions were investigated with logistic regression. Fatty acids chain length (FALen), which was included in two factors which associated with TJA, was individually associated with both overall OA as well as TJA. Increased Fatty Acid chain Length is associated with OA.
Collapse
|
22
|
Metabolomic Signature of Amino Acids, Biogenic Amines and Lipids in Blood Serum of Patients with Severe Osteoarthritis. Metabolites 2020; 10:metabo10080323. [PMID: 32784380 PMCID: PMC7464318 DOI: 10.3390/metabo10080323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomic analysis is an emerging new diagnostic tool, which holds great potential for improving the understanding of osteoarthritis (OA)-caused metabolomic shifts associated with systemic inflammation and oxidative stress. The main aim of the study was to map the changes of amino acid, biogenic amine and complex lipid profiles in severe OA, where the shifts should be more eminent compared with early stages. The fasting serum of 70 knee and hip OA patients and 82 controls was assessed via a targeted approach using the AbsoluteIDQ™ p180 kit. Changes in the serum levels of amino acids, sphingomyelins, phoshatidylcholines and lysophosphatidylcholines of the OA patients compared with controls suggest systemic inflammation in severe OA patients. Furthermore, the decreased spermine to spermidine ratio indicates excessive oxidative stress to be associated with OA. Serum arginine level was positively correlated with radiographic severity of OA, potentially linking inflammation through NO synthesis to OA. Further, the level of glycine was negatively associated with the severity of OA, which might refer to glycine deficiency in severe OA. The current study demonstrates significant changes in the amino acid, biogenic amine and low-molecular weight lipid profiles of severe OA and provides new insights into the complex interplay between chronic inflammation, oxidative stress and OA.
Collapse
|
23
|
Akhbari P, Karamchandani U, Jaggard MKJ, Graça G, Bhattacharya R, Lindon JC, Williams HRT, Gupte CM. Can joint fluid metabolic profiling (or "metabonomics") reveal biomarkers for osteoarthritis and inflammatory joint disease?: A systematic review. Bone Joint Res 2020; 9:108-119. [PMID: 32435463 PMCID: PMC7229296 DOI: 10.1302/2046-3758.93.bjr-2019-0167.r1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes. Methods A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF. Results The primary analysis, which pooled the results from 17 published studies and four meeting abstracts, identified over 200 metabolites. Seven of these studies (six published studies, one meeting abstract) had asymptomatic control groups and collectively suggested 26 putative biomarkers in osteoarthritis, inflammatory arthropathies, and trauma. These can broadly be categorized into amino acids plus related metabolites, fatty acids, ketones, and sugars. Conclusion The role of metabolic profiling in orthopaedics is fast evolving with many metabolites already identified in a variety of pathologies. However, these results need to be interpreted with caution due to the presence of multiple confounding factors in many of the studies. Future research should include largescale epidemiological metabolic profiling studies incorporating various confounding factors with appropriate statistical analysis to account for multiple testing of the data. Cite this article:Bone Joint Res. 2020;9(3):108–119.
Collapse
Affiliation(s)
- Pouya Akhbari
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, UK
| | | | - Matthew K J Jaggard
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, UK
| | - Goncalo Graça
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rajarshi Bhattacharya
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, UK
| | - John C Lindon
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Horace R T Williams
- Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Chinmay M Gupte
- Department of Surgery and Cancer, Imperial College London, and Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
24
|
Zhou Y, Zhang X, Chen R, Han S, Liu Y, Liu X, Gao M, Yang C, Lu D, Sun B, Chen H. Serum amino acid metabolic profiles of ankylosing spondylitis by targeted metabolomics analysis. Clin Rheumatol 2020; 39:2325-2336. [DOI: 10.1007/s10067-020-04974-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
|
25
|
Yi WJ, Chen J, Li ZB, Jiang TT, Bi DQ, Liu CM, Yang S, Hu YT, Gan L, Tu HH, Huang H, Li JC. Screening of potential biomarkers for Yin-deficiency-heat syndrome based on UHPLC-MS method and the mechanism of Zhibai Dihuang granule therapeutic effect. Anat Rec (Hoboken) 2020; 303:2095-2108. [PMID: 31909891 DOI: 10.1002/ar.24352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Yin-deficiency-heat (YDH) syndrome is a subhealth state of the individual, mainly manifested as oral ulcers, dry mouth, constipation, and other symptoms. Zhibai Dihuang granule (ZDG), as a classic traditional Chinese medicine, is effective in treating YDH syndrome. We screened the potential biomarkers for diagnosing YDH syndrome, and explored the mechanisms of the therapeutic effect of ZDG. METHODS Plasma samples from the Pinghe (PH, healthy control) group, the Shanghuo (SH, YDH syndrome) group, and the ZDG treated group (therapeutic group) were analyzed by using metabolomics profiling. The data were analyzed by multivariate statistical and bioinformatics analyses. RESULTS We screened four differential metabolites such as, decanoylcarnitine, dodecanoylcarnitine, phosphatidylcholine (PC), and Aspartate (Asp) Arginine (Arg) Proline (Pro) in the SH group and the PH group. The results showed that the combination of above four metabolites could serve as a potential biomarker for the early diagnosis of YDH syndrome. The metabolites decanoylcarnitine and glucose were found to be differentially expressed in the YDH syndrome group and tended to be normalized after ZDG treatment. CONCLUSION The increased levels of four differential metabolites (decanoylcarnitine, dodecanoylcarnitine, PC, and Asp Arg Pro) revealed that individuals with YDH syndrome may have increased energy metabolism in the body, which could lead to disorders of fatty acids β-oxidation and immune function. The levels of two differential metabolites including decanoylcarnitine and glucose returned to normal after ZDG treatment, indicating that ZDG could treat YDH syndrome by regulating glucose metabolism and fatty acids β-oxidation. Our study provides a new method for the diagnosis of YDH syndrome, and may provide theoretical basis for novel therapeutic strategies of YDH syndrome.
Collapse
Affiliation(s)
- Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Jing Chen
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Jiang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De-Qing Bi
- Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Yang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Lin Gan
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China.,Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Messina OD, Vidal Wilman M, Vidal Neira LF. Nutrition, osteoarthritis and cartilage metabolism. Aging Clin Exp Res 2019; 31:807-813. [PMID: 30982220 DOI: 10.1007/s40520-019-01191-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA and there is no effective treatment to stop its progression. Current pharmacologic treatments such as analgesics and non-steroidal anti-inflammatory drugs may improve the pain and offer some relief but they do not affect the progression of the disease. The chronic intake of these drugs may result in severe adverse events. The aim of this review is to revise the effects of nutrition on cartilage metabolism and OA progression. METHODS A systematic literature search was performed including those related to macro- and micro-nutrients' actions on cartilage and OA outcome. We selected peer-reviewed articles reporting the results of human clinical trials. RESULTS Glucosamine and chondroitin sulfate have shown to delay OA knee progression in several clinical trials. The effectiveness of some products considered nutraceuticals has been widely reviewed in the literature. This article presents a general description of the effectiveness and mechanism of action of nutrients, vitamins, antioxidants and other natural components considered as part of the normal diet. Many in vitro studies indicate the efficacy of specific nutrients in cartilage metabolism and its involvement in OA. However, rigorous clinical studies needed to evaluate the efficacy of these compounds in humans are still missing. The influence of nutrients and diet on the metabolism of cartilage and OA could represent a long-term coadjuvant alternative in the management of patients with OA. Effects of diet modifications on lipid and cholesterol profiles, adequate vitamin levels and weight reduction in obese patients could influence the course of the disease. CONCLUSION This review demonstrates that nutrition can improve the symptoms of OA. Glucosamine and chondroitin sulfate have shown robustly to delay the progression of knee OA in several well-designed studies, however more controlled clinical trials are needed to conclude that nutritional changes slow down the progression of the disease.
Collapse
Affiliation(s)
- Osvaldo Daniel Messina
- Rheumatology IRO Medical Center and Hospital C Argerich, Member of the Board of Governance, International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
| | - Maritza Vidal Wilman
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.
| | - Luis F Vidal Neira
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru
- Member of International Osteoporosis Foundation, Latin America (IOF-LATAM), Lima, Peru
| |
Collapse
|
27
|
López-López Á, López-Gonzálvez Á, Barker-Tejeda TC, Barbas C. A review of validated biomarkers obtained through metabolomics. Expert Rev Mol Diagn 2018; 18:557-575. [PMID: 29808702 DOI: 10.1080/14737159.2018.1481391] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Studying changes in the whole set of small molecules, final products of biochemical reactions in living systems or metabolites, is extremely appealing because they represent the best approach to identifying what occurs in an organism when samples are collected. However, their usefulness as potential biomarkers is limited by discoveries obtained in small groups without proper validation or even confirmation of the chemical structure. Areas covered: During the past 5 years, more than 900 papers have been published on metabolomics for biomarker discovery, but the numbers are much lower when some criteria of validation are applied. In total, 102 papers have been included in this review. The most frequent disease areas in which these markers have been discovered include the following: cancer, diabetes, and related diseases and neurodegenerative, cardiovascular, autoimmune, liver, and kidney diseases. Expert commentary: Metabolomics has been demonstrated as rapidly growing due to the improvements in instrumentation, mainly mass spectrometry, and data mining software. For application in the clinic, the results should be validated in different stages, from analytical validation to validation in independent sets of samples, using thousands of samples from different sources.
Collapse
Affiliation(s)
- Ángeles López-López
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Ángeles López-Gonzálvez
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Tomás Clive Barker-Tejeda
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| | - Coral Barbas
- a Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Madrid , Spain
| |
Collapse
|