1
|
Ahmed SA, Manna P, Borah JC. Stachydrine, a pyrrole alkaloid with promising therapeutic potential against metabolic syndrome and associated organ dysfunction. RSC Med Chem 2024:d4md00425f. [PMID: 39290386 PMCID: PMC11403578 DOI: 10.1039/d4md00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Metabolic syndrome is a multifaceted condition marked by interconnected risk factors, significantly increasing the risk of serious diseases like cardiovascular disease, type 2 diabetes, and stroke. Effective management often demands new medications due to complexity of the conditions and limitations of current treatments. Natural compounds are increasingly recognized in drug discovery due to their vast chemical diversity, commercial availability, low cost, and minimal side effects. One such compound is stachydrine (STA), also known as proline betaine or N-dimethyl proline. This simple pyrrole alkaloid is a major constituent of the genus Leonurus and the family Lamiaceae, and it shows promise due to its potential therapeutic properties. A comprehensive review of the literature, sourced from databases such as PubMed, Scopus, SciFinder, and Google Scholar, has provided extensive information on the sources, chemistry, biosynthesis, derivatives, molecular targets, biological activities, bioavailability, and toxicity of STA. This review highlights numerous in vitro and in vivo studies that demonstrate the effectiveness of STA in various therapeutic areas, including anti-obesity, neuroprotective, nephroprotective, and cardiovascular protection, among others. The wide range of biological activities of STA is attributed to its influence on multiple molecular targets and signaling pathways, such as ACE/AngII/AT1R-TGFβ1, NF-κB, JAK/STAT, AKT/ERK, AMPK/CAMKKβ/LKB1, CaMKII/PLN, etc. which are critical in the development and progression of metabolic syndrome. Additionally, this review addresses limitations related to the pharmacokinetics and bioavailability of STA. Overall, the findings underscore the potential of STA as a therapeutic agent for metabolic syndrome and related disorders, suggesting that further clinical investigation is warranted to fully understand and utilize its benefits.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology Guwahati-781035 Assam India +91 361 2273063 +91 361 2273061
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology Jorhat Assam 785006 India +91 376 2370011 +91 376 2370012
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology Guwahati-781035 Assam India +91 361 2273063 +91 361 2273061
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati Guwahati-781101 Assam India
| |
Collapse
|
2
|
Lu M, Zhang X, Li W, Li X, Li S, Yin X, Zhang Z. The effects of CYP2B6 inactivators on the metabolism of ciprofol. PLoS One 2024; 19:e0307995. [PMID: 39074104 DOI: 10.1371/journal.pone.0307995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Ciprofol is a novel short-acting intravenous anaesthetic developed in China that is mainly metabolized by cytochrome P450 2B6 (CYP2B6) and uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). Currently, insufficient evidence is available to support drug‒drug interactions between ciprofol and CYP2B6 inactivators. Here, we established a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method to assess the concentration of ciprofol and investigated the effects of psoralen and clopidogrel on the metabolism of ciprofol in liver microsomes and rats. In rat and human liver microsomes, the median inhibitory concentration (IC50) values of psoralen were 63.31 μmol·L-1 and 34.05 μmol·L-1, respectively, showing mild inhibitory effects on ciprofol metabolism, whereas the IC50 values of clopidogrel were 6.380 μmol·L-1 and 2.565 μmol·L-1, respectively, with moderate inhibitory effects. SD rats were randomly divided into three groups: psoralen (27 mg·kg-1), clopidogrel (7.5 mg·kg-1), and the same volume of 0.5% carboxy methyl cellulose. After 7 days, all rats were injected with 2.4 mg·kg-1 ciprofol. Compared with the control group, the AUC and MRT values of ciprofol in the psoralen and clopidogrel groups were significantly greater, whereas the CL values were significantly lower. In addition, the durations of loss of righting reflex (LORR) in the psoralen and clopidogrel groups were 16.1% and 23.0% longer than that in the control group, respectively. In conclusion, psoralen and clopidogrel inhibit ciprofol metabolism to different degrees and prolong the duration of LORR in rats.
Collapse
Affiliation(s)
- Ming Lu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaorui Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Yin
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zhang F, Yan Y, Ding K, Lian WW, Li L, Wang WP, Xia CY, Yang H, He J, Zhang WK, Xu JK. Development and validation of a simple and rapid UPLC-MS/MS method for loganin and its application in pharmacokinetic and tissue distribution studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117130. [PMID: 37678422 DOI: 10.1016/j.jep.2023.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc. is a medicinal and edible homolog in traditional Chinese medicine. Loganin, an iridoid glycoside, is one of the main active components of Cornus officinalis Sieb. et Zucc. Loganin has been demonstrated to improve depression-like behavior and may be a potential antidepressant candidate. However, the pharmacokinetic characteristics and tissue distribution of loganin, especially in the brain region, are still unclear. AIM OF THE STUDY This study aims to investigate the pharmacokinetic characteristics and tissue distribution after oral administration of loganin in rats. MATERIALS AND METHODS A simple, rapid and reproducible UPLC-MS/MS method was developed and validated for the determination of loganin in rat plasma and tissues. The samples were prepared by acetonitrile precipitation with chloramphenicol as internal standard (IS). Loganin was separated by gradient elution on ACQUITY UPLC®BEH C18 (2.1 × 50 mm, 1.7 μm) using multiple reactions monitoring (MRM) mode. Concentration-time data was subjected to pharmacokinetic analysis. The pharmacokinetic parameters of loganin in rat plasma were analyzed by compartment model using DAS 2.0 software. RESULTS The established UPLC-MS/MS method was accurate and reliable with a good linearity (R2 > 0.99) in the respective concentration range, satisfying the quantitative requirements. This method was successfully used to study the pharmacokinetics and tissue distribution after oral administration of loganin in rats. The peak time (Tmax) of oral administration was about 40 min, and the half-life (t1/2) was about 50 min, indicating that loganin was quickly absorbed and eliminated in rats. Oral bioavailability was 5.50%. The dose correlation results showed that AUC had a poor correlation with dose, while Cmax had a good correlation with dose. In tissues, loganin (35 mg/kg) was highly distributed in the stomach, small intestine, kidney, liver and lung. When the dose was 70 mg/kg, loganin had significant distribution in the cortex. CONCLUSION In this study, a simple and sensitive UPLC-MS/MS method was developed and validated for the determination of loganin in rat plasma and tissues. Loganin was absorbed quickly, eliminated quickly, and had low bioavailability. The distribution of loganin in the cortex was higher than that in the hippocampus. We hope that our results can provide a reference for loganin to become a new antidepressant.
Collapse
Affiliation(s)
- Fan Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Kang Ding
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Wen-Ping Wang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Mei Y, Tong X, Hu Y, Liu W, Wang J, Lv K, Li X, Cao L, Wang Z, Xiao W, Gao X. Comparative pharmacokinetics of six bioactive components of Shen-Wu-Yi-Shen tablets in normal and chronic renal failure rats based on UPLC-TSQ-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116818. [PMID: 37348793 DOI: 10.1016/j.jep.2023.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen-Wu-Yi-Shen tablets (SWYST), a Chinese patent medicine consisting of 12 herbal medicines, was formulated by a famous TCM nephrologist, Zou Yunxiang. It is clinically used to improve the symptoms of nausea, vomiting, poor appetite, dry mouth and throat, and dry stool in patients with chronic renal failure (CRF) accompanied by qi and yin deficiency, dampness, and turbidity. SWYST can reduce urea nitrogen, blood creatinine, and urinary protein loss, and increase the endogenous creatinine clearance rate. However, little is known about its pharmacokinetics. AIM OF STUDY To compare the pharmacokinetics of six bioactive components after oral administration of SWYST in normal and adenine-induced CRF rats. MATERIALS AND METHODS A method based on ultra-performance liquid chromatography coupled with a triple-stage quadrupole mass spectrometer (UPLC-TSQ-MS/MS) was developed and validated to determine the six bioactive compounds (albiflorin, paeoniflorin, plantagoguanidinic acid, rhein, aloe-emodin, and emodin) in rat plasma. Rat plasma samples were prepared using protein precipitation. Chromatography was performed on an Agilent Eclipse Plus C18 column (3.0 × 50 mm, 1.8 μm) using gradient elution with a mobile phase composed of acetonitrile and water containing 0.1% (v/v) formic acid, while detection was achieved by electrospray ionization MS under the multiple selective reaction monitoring modes. After SWYST administration, rat plasma was collected at different time points, and the pharmacokinetic parameters of six analytes were calculated and analyzed based on the measured plasma concentrations. RESULTS The UPLC-TSQ-MS/MS method was fully validated for its satisfactory linearity (r ≥ 0.9913), good precisions (RSD <11.5%), and accuracy (RE: -13.4∼13.1%), as well as acceptable limits in the extraction recoveries, matrix effects, and stability (RSD <15%). In normal rats, the six analytes were rapidly absorbed (Tmax ≤ 2 h), and approximately 80% of their total exposure was eliminated within 10 h. Moreover, in normal rats, the AUC0-t and Cmax of albiflorin, plantagoguanidinic acid, and rhein exhibited linear pharmacokinetics within the dose ranges, while that of paeoniflorin is non-linear. However, in CRF rats, the six analytes exhibited reduced elimination and significantly different AUC or Cmax values. These changes may reflect a decreased renal clearance rate or inhibition of drug-metabolizing enzymes and transporters in the liver and gastrointestinal tract caused by CRF. CONCLUSIONS A sensitive UPLC-TSQ-MS/MS method was validated and used to investigate the pharmacokinetics of SWYST in normal and CRF rats. This is the first study to investigate the pharmacokinetics of SWYST, and our findings elucidate the causes of their different pharmacokinetic behaviors in CRF rats. Furthermore, the results provide useful information to guide further research on the pharmacokinetic-pharmacodynamic correlation and clinical application of SWYST.
Collapse
Affiliation(s)
- Yudan Mei
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaoyu Tong
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Yumei Hu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Wenjun Liu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Jiajia Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Kaihong Lv
- China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xu Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China
| | - Wei Xiao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China.
| | - Xia Gao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China; Local Joint Engineering Research Center on the Intelligent Manufacturing of TCM, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222047, People's Republic of China.
| |
Collapse
|
5
|
Wang Q, Jiang Y, Wei N, Li J, Zhang M, Chen L. Comparative pharmacokinetics of four bioactive components in normal and chronic heart failure rats after oral administration of Qiangxin Lishui Prescription by microdialysis combined with ultra-high-performance liquid chromatography. J Sep Sci 2023; 46:e2300518. [PMID: 37853838 DOI: 10.1002/jssc.202300518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Qiangxin Lishui Prescription (QLP) has been clinically applied for treating heart failure with remarkable curative effects. A multi-component pharmacokinetic research is very necessary for determining active substances in it. This study aims to profile the traits and differences in the pharmacokinetics of salvianolic acid B, astragaloside IV, calycosin-7-O-β-D-glucoside and kaempferol in QLP between normal and chronic heart failure (CHF) rats by microdialysis combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Sensitive, selective, and online microdialysis combined with the UHPLC-MS/MS method was successfully established and applied to study the pharmacokinetics of QLP. The pathological condition of CHF could lead to the enhancement of systematic exposure and reduction of the metabolic rate of four bioactive components for better bioavailability and therapeutic efficacy. The pharmacokinetic results will provide data support for the clinical application of QLP.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yong Jiang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Nina Wei
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Mei Zhang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Zhang F, Yan Y, Zhang J, Li L, Wang YW, Xia CY, Lian WW, Peng Y, Zheng J, He J, Xu JK, Zhang WK. Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: A comprehensive review. Phytother Res 2022; 36:2272-2299. [PMID: 35583806 DOI: 10.1002/ptr.7347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 10/18/2022]
Abstract
Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yu-Wei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
7
|
Feng Q, Tong L, Lu Q, Liu S, Zhao L, Xiong Z. 1H NMR serum metabolomics and its endogenous network pharmacological analysis of gushudan on kidney-yang-deficiency-syndrome rats. Anal Biochem 2022; 643:114580. [PMID: 35149001 DOI: 10.1016/j.ab.2022.114580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 01/01/2023]
Abstract
The pharmacodynamics, 1H NMR metabolomics and endogenous network pharmacology strategy approaches were integrated to investigate the preventive mechanism of Gushudan (GSD) on kidney-yang-deficiency-syndrome (KYDS) rats in this study. Firstly, the KYDS rat model was achieved by hydrocortisone induction, and the efficacy of GSD on KYDS model rats was assessed by the pharmacodynamic indicators. Next, the comprehensive untargeted serum metabolic profile of rats was obtained in 1H NMR metabolomics study, 29 potential biomarkers closely associated with KYDS were identified, which were mainly involved in carbohydrate metabolism, amino acid metabolism and intestinal flora metabolism. In addition, the potential biomarkers-targets-pathways-disease metabolic network was further investigated for deeper understanding the preventive effects of GSD on KYDS rats and its mechanism, which was further obtained for the important targets related to biomarkers and diseases such as NOS3, PTGS2 and CXCL8, and important metabolic pathways such as glyoxylate and dicarboxylate metabolism, arginine and proline metabolism, and microbial metabolism in diverse environments. Finally, compared with our previous anti-osteoporosis study of GSD, it suggested that some similar metabolic pathways, which would provide some scientific reference of the existence of the kidney-bone axis under the traditional Chinese medicine (TCM) theory of "kidney dominates bone".
Collapse
Affiliation(s)
- Qisheng Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China
| | - Lin Tong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China
| | - Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China
| | - Shuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning Province, 117004, China.
| |
Collapse
|
8
|
Cheng X, Lu E, Fan M, Pi Z, Zheng Z, Liu S, Song F, Liu Z. A comprehensive strategy to clarify the pharmacodynamic constituents and mechanism of Wu-tou decoction based on the constituents migrating to blood and their in vivo process under pathological state. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114172. [PMID: 33932514 DOI: 10.1016/j.jep.2021.114172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine (TCM) formula, Wu-tou decoction has been used for treating rheumatoid arthritis (RA) for more than a thousand years. Identifying pharmacodynamic constituents (PCs) of WTD and exploring their in vivo process are very meaningful for promoting the modernization of TCM. However, the pathological state might change this process. AIM OF THE STUDY Hence, it is necessary and significant to compare the process in vivo of drugs both in normal and disease state and clarify their action mechanism. MATERIALS AND METHODS Taking Wu-tou decoction (WTD) as the research object, a comprehensive strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to identify PCs, clarify and compare their absorption and distribution in normal and model rats, and then explore the potential mechanism of TCM. Firstly, the PCs in WTD were identified. Then, the pharmacokinetics (PK) and tissue distribution of these ingredients were studied. Finally, the constituents with the difference between normal and model rats were selected for target network pharmacological analysis to clarify the mechanism. RESULTS A total of 27 PCs of WTD were identified. The absorption and distribution of 20 PCs were successfully analyzed. In the disease state, the absorption and distribution of all these components were improved to have better treatment effects. The results of target network pharmacological analysis indicated that PTGS1, PTGS2, ABCB1, SLC6A4, CHRM2, ESR1, ESR2, CDK2, TNF and IL-6 are 10 key targets for WTD against RA. The regulatory effects of WTD on the expression of PTGS2 and TNF were further verified. Pathway enrichment analysis showed that the key mechanism of WTD against RA is to reduce inflammation and regulate the immune response. CONCLUSION These results indicated that this strategy could better understand the in vivo process and mechanism of WTD under the pathological state. Furthermore, this strategy is also appropriate for other TCM.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Chromatography, High Pressure Liquid
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacokinetics
- Drugs, Chinese Herbal/pharmacology
- Glycyrrhizic Acid/blood
- Glycyrrhizic Acid/chemistry
- Inflammation/metabolism
- Lipopolysaccharides/toxicity
- Male
- Mass Spectrometry
- Medicine, Chinese Traditional
- Metabolic Networks and Pathways/drug effects
- Mice
- RAW 264.7 Cells
- Rats, Sprague-Dawley
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Xiaoxu Cheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Enyu Lu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, 130021, Changchun, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; Changchun Sunnytech Co.,Ltd., 130061, Changchun, China.
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
9
|
Chen L, Liu L, Wang Q, Jiang Y, Tian H. Comparative pharmacokinetics study of six effective components between two dosage forms of Qixue-Shuangbu Prescription in rats by UPLC-MS/MS. Biomed Chromatogr 2021; 35:e5179. [PMID: 34038571 DOI: 10.1002/bmc.5179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
Abstract
Qixue-Shuangbu Prescription (QSP) is an efficacious prescription for treating heart failure, myocardial ischemia and other diseases. It is composed of nine Chinese herbs. This study investigated and compared the pharmacokinetics of QSP in rats by UPLC-MS/MS between two dosage forms of traditional decoction (TD) and compound tincture (CT). Owing to the complexity of the chemicals in QSP, ginsenoside Rg1, ginsenoside Re, ferulic acid, astragaloside IV, rhein and calycosin were chosen for the pharmacokinetics study. The method established for detecting serum specimens was shown to have acceptable selectivity, linearity, lower limit of quantitation, precision, accuracy, recovery, matrix effect and stability. The peak concentration, AUC0-t and AUC0-∞ of ginsenoside Re, ginsenoside Rg1, ferulic acid and rhein were significantly increased after oral administration of CT (P < 0.05), the half-life of ferulic acid in the CT group was lower than that in the TD group (P < 0.05) and the half-life and AUC0-∞ of astragaloside IV in the CT group were significantly increased (P < 0.05), which revealed that wine-processing could influence the bioavailability and the elimination of these compounds. For better clinical efficacy, we suggest that the CT dosage form of QSP should be selected.
Collapse
Affiliation(s)
- Linwei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Lunyuan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Wang
- Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Yong Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hu Tian
- Department of Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| |
Collapse
|
10
|
Fu C, Liu M, Li Y, Wang K, Yang B, Deng L, Tian J, Yang G, Zheng G. UPLC-Q-Exactive Orbitrap MS Analysis for Identification of Lipophilic Components in Citri Sarcodactylis Fructus from Different Origins in China Using Supercritical CO 2 Fluid Extraction Method. ACS OMEGA 2020; 5:11013-11023. [PMID: 32455222 PMCID: PMC7241013 DOI: 10.1021/acsomega.0c00854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 05/04/2023]
Abstract
To thoroughly evaluate the quality of Citri Sarcodactylis Fructus (CSF) and acquire knowledge of the lipophilic components of CSF from different origins, a simple and efficient approach based on supercritical fluid extraction (SFE) combined with ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap/MS) detection for the discrimination of components from CSF was set up for the first time in this work. Eight batches of CSF samples from five main producing areas were extracted by SFE under optimized conditions, and then SFE extracts were dissected via UPLC-Q-Exactive Orbitrap/MS. The results indicated that 39 lipophilic compounds were successfully separated and unambiguously or tentatively identified, where 4 coumarins, 6 polymethoxyflavones, 3 phthalides, 6 terpenes, and 4 phenolics were not reported formerly. It was illustrated that CSF may be abundant in polymethoxyflavones, as in coumarins. Moreover, there were significant differences in the components of CSF from different origins. Especially, coumarin, dehydrocostus lactone, atractylenolide II, and atractylenolide I were exclusively found in CSF from the Guangdong province; isopsoralen was almost exclusively found in CSF from the Guangxi province; and ferulic acid was exclusively found in CSF from the Zhejiang province. These observations indicated that SFE joint with UPLC-Q-Exactive Orbitrap/MS owing to the potential of characterizing the lipophilic components could be used to promote quality assessment and chemotaxonomic investigation in phytology sciences of CSF.
Collapse
Affiliation(s)
- Chengxiao Fu
- Center
of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Mengshi Liu
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Yueshan Li
- School
of Health and Wellness, Guangzhou Huaxia
Technical College, Guangzhou 510935, P. R. China
| | - Kanghui Wang
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Bo Yang
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Lijing Deng
- Department
of Pharmacy, The First Affiliated Hospital
of University of South China, Hengyang 421001, Hunan, P. R. China
| | - Jingyuan Tian
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
| | - Guoping Yang
- Center
of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
- . Phone/Fax: +86-0731-88618931
| | - Guodong Zheng
- Key
Laboratory of Molecular Target & Clinical Pharmacology and the
State Key Laboratory of Respiratory Disease, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, P. R. China
- . Phone/Fax: +86-020-37103256
| |
Collapse
|
11
|
Cheng X, Xu T, Pi Z, Liu S, Song F, Liu Z. A wide-targeted urinary and serum metabolomics strategy reveals the effective substance of the Wu-tou decoction. J Sep Sci 2019; 43:727-735. [PMID: 31762208 DOI: 10.1002/jssc.201900678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023]
Abstract
As an important Chinese medicine decoction, Wu-tou decoction has been used to treat rheumatic arthritis for more than a thousand years. We previously reported that the Wu-tou decoction could change the urinary and serum metabolites in adjuvant-induced arthritis rats significantly. The purpose of this research was to confirm the potential biomarkers obtained by previous non-targeted metabolomics study through quantitative analysis by liqui chromatography with tandem mass spectrometry, in the meantime, to further study the effective material basis of Wu-tou decoction. Firstly, the important compounds in the tryptophan metabolism pathway, the arginine and proline metabolism pathway, the amino acid metabolism pathway, the tricarboxylic acid cycle, the vitamin B6 metabolism pathway, and the phenylalanine metabolism pathway, which were identified as potential biomarkers in previous study, were selected for quantitative analysis. Then the linearity, limit of detection, limit of quantification, selectivity, accuracy, precision, stability, recovery, and matrix effect of the quantitative method were examined. Finally, ten and eighteen metabolites were quantitatively analyzed in the serum and urine, respectively. The results showed that seven out of ten serum potential biomarkers and ten out of eighteen urine potential biomarkers were confirmed as real biomarkers. This research provides a powerful reference for the study on effective material basis of Wu-tou decoction.
Collapse
Affiliation(s)
- Xiaoxu Cheng
- State Key Laboratory of Electroanalytical Chemistry, National center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine, Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,University of Science and Technology of China, Hefei, P. R. China
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.,Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine, Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine, Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine, Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine, Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China
| |
Collapse
|