1
|
Sondermann NC, Momin AA, Arold ST, Haarmann-Stemmann T. Polybrominated diphenyl ether flame retardants inhibit growth factor-induced activation of EGFR by binding to its extracellular domain. Arch Toxicol 2024:10.1007/s00204-024-03926-9. [PMID: 39668266 DOI: 10.1007/s00204-024-03926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
For many years, polybrominated diphenyl ethers (PBDEs) were used as flame retardants in a large number of consumer products. Even though international law meanwhile prohibits the production and usage of PBDEs, these persistent and bioaccumulative chemicals still leak into the environment, and are frequently detected in wildlife and humans. Population-based studies reveal positive correlations between human PBDE exposure and various adverse health effects, emphasizing that a better understanding of the mode of action of these polybrominated chemicals is urgently needed. Therefore, we investigated the effect of two widespread PBDEs, namely BDE-47 and BDE-99, on epidermal growth factor receptor (EGFR) activity in human cells. Recent studies showed that the EGFR is not only orchestrating cellular functions, but also serves as a cell-surface receptor for dioxins, phenolic benzotriazoles and related organic pollutants. Results from in silico docking analyses, AlphaLISA-based receptor binding studies and SDS-PAGE/Western blot analyses revealed that BDE-47 and BDE-99 inhibit the growth factor-triggered activation of EGFR by binding to its extracellular domain. In keratinocytes, PBDEs also inhibit amphiregulin-induced and EGFR-mediated DNA synthesis as well as the EGFR-triggered trans-repression of the aryl hydrocarbon receptor signaling pathway. Our data identify EGFR as a cell-surface receptor for PBDEs and shed light on a novel mode of action of these ubiquitous and persistent chemicals. This finding may contribute to an improved hazard assessment of PBDEs and structurally related flame retardants.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Afaque A Momin
- Biological and Environmental Science and Engineering Division, Center of Excellence On Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Center of Excellence On Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Thomas Haarmann-Stemmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
2
|
Liu M, Jia X, Peng R, Bai Z, Yuan J, Tan L. Human Biomonitoring of Serum Polybrominated Diphenyl Ethers by Supported Liquid Extraction and Gas Chromatography Coupled With Tandem Mass Spectrometry. J Sep Sci 2024; 47:e70010. [PMID: 39494746 DOI: 10.1002/jssc.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
This study aims to develop and validate a robust analytical method for the quantification of polybrominated diphenyl ethers (PBDEs) in human serum using gas chromatography-tandem mass spectrometry. We compared procedural blanks, recoveries, and operational convenience of liquid-liquid extraction and supported liquid extraction for the determination of serum PBDEs. We evaluated different extraction solvents for their effect on PBDE recoveries. Supported liquid extraction was selected for method validation due to its operational convenience. The method demonstrated satisfactory linearity, sensitivity, and reproducibility, with the range of 0.10-5.00 µg/L for most PBDE congeners and 0.20-10.0 µg/L for PBDE-154 and PBDE-183, with limits of detection ranging from 2 to 48 ng/L, and with matrix effects ranging from 94% to 113%. Quality control assessments indicated that recoveries ranged from 85% to 110% and relative standard deviations of less than 11%. The proposed method was applied to biomonitoring of 111 healthy adults, revealing detectable levels of PBDEs in over 90% of the samples. BDE-47 and BDE-183 were the most prevalent, with mean concentrations of 4.13 and 22.1 ng/L, respectively. Detection frequencies ranged from 0.90% for BDE-17 and BDE-85 to 25.2% for BDE-47. Males had higher mean concentrations of BDE-183 than females.
Collapse
Affiliation(s)
- Miao Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiangyu Jia
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
5
|
De Oro-Carretero P, Sanz-Landaluze J. Miniaturized method for the quantification of persistent organic pollutants and their metabolites in HepG2 cells: assessment of their biotransformation. Anal Bioanal Chem 2023:10.1007/s00216-023-04781-w. [PMID: 37289209 DOI: 10.1007/s00216-023-04781-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Biotransformation can greatly influence the accumulation and, subsequently, toxicity of substances in living beings. Although traditionally these studies to quantify metabolization of a compound have been carried out with in vivo species, currently, in vitro test methods with very different cell lines are being developed for their evaluation. However, this is still a very limited field due to multiple variables of a very diverse nature. So, an increasing number of analytical chemists are working with cells or other similar biological samples of very small size. This makes it necessary to address the development of analytical methods that allow determining their concentration both inside the cells and in their exposure medium. The aim of this study is to develop a set of analytical methodologies for the quantification of polycyclic aromatic hydrocarbons, PAHs (phenanthrene, PHE), and polybrominated diphenyl ethers, PBDEs (2,2',4,4'-tetrabromodiphenyl ether, BDE-47), and their major metabolites in cells and their exposure medium. Analytical methodologies, based on miniaturized ultrasound probe-assisted extraction, gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-µECD), and liquid chromatography-fluorescence detector (LC-FL) determination techniques, have been optimized and then applied to a biotransformation study in HepG2 at 48 h of exposure. Significant concentrations of the major metabolites of PHE (1-OH, 2-OH, 3-OH, 4-OH-, and 9-OH-PHE) and BDE-47 (5-MeO-, 5-OH-, and 3-OH-BDE-47) were detected and quantified inside the cells and in the exposure medium. These results provide a new method for determination and improve information on the metabolization ratios for a better knowledge of the metabolic pathways and their toxicity.
Collapse
Affiliation(s)
- Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain.
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
6
|
Lu XF, Nan ZX, Li X, Li X, Liu T, Ji W, Guo DS. Online solid-phase extraction based on size-controllable spherical covalent organic framework for efficient determination of polybrominated diphenyl ethers in foods. Food Chem 2023; 410:135359. [PMID: 36608555 DOI: 10.1016/j.foodchem.2022.135359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
An analytical method of microspheric brominated covalent organic framework (Br-COF)-online solid-phase extraction integrated with high-performance liquid chromatography (online SPE-HPLC) was proposed for efficiently enriching six polybrominated diphenyl ethers (PBDEs) in foods. The Br-COF microspheres were facilely prepared with uniformity and dispersion by a size-controllable synthesis at the room temperature. Attributed to multiple interactions of the halogen bonding, Van der Waals forces, hydrophobic interaction along with size-matching effect, Br-COF performed satisfactory extraction capacity for PBDEs compared with commercial adsorbents. Five primary influencing factors were optimized, including loading solvent, loading flow rate, elution solvent, elution flow rate and elution volume. Under the optimal parameters, the implement displayed excellent linear ranges (0.5-500 ng mL-1) and low detection limits (0.01-0.05 ng mL-1). The relative recoveries in six spiked food samples ranged from 87.8 to 119.7 % with relative standard deviations below 10 %. This research estabished a promising platform for quantitatively determining trace PBDEs in complex foods.
Collapse
Affiliation(s)
- Xiao-Fan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Zi-Xuan Nan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xinyu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xuemei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tuanwei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
7
|
De Oro-Carretero P, Sanz-Landaluze J. Bioaccumulation and Biotransformation of BDE-47 Using Zebrafish Eleutheroembryos (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:835-845. [PMID: 36705440 DOI: 10.1002/etc.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are well-known endocrine disrupting chemicals identified as organic persistent pollutants. Their metabolites OH-BDE and MeO-BDE have been reported to be potentially more toxic than the postulated precursor PBDEs. One of the most predominant congeners of PBDEs in the environment is BDE-47, due to its high presence in industrially used mixtures. In the present study, the bioaccumulation and biotransformation of BDE-47 into its major metabolites is evaluated using zebrafish (Danio rerio) eleutheroembryos adapting a previously developed alternative method to bioconcentration official guideline Organisation for Economic Co-ordination and Development 305, which reduces the animal suffering, time, and cost. For the simultaneous determination of BDE-47 and its metabolites in larvae and exposure medium, and considering the polarity difference of the analytes and the small sample size, the development of a validated analytical method is a step to ensure quality results. In the present study, an ultrasound-assisted extraction followed by a solid phase extraction dispersive clean-up step and gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-μECD) with a previous derivatization process was optimized and validated. Bioconcentration factors (BCFs) were calculated using a first-order one-compartment toxicokinetic model. The profiles found show rapid absorption in the first hours of larval development and great bioaccumulative capacity, finding BCFs of 7294 ± 899 and 36 363 ± 5702 at nominal concentrations of 10 and 1 μg L-1 , respectively. Metabolization studies show increasing concentrations of the metabolites BDE-28, 2'-OH-BDE-28, and 5-MeO-BDE-47 throughout the exposure time. The results obtained show the feasibility of the method for bioaccumulation and open up the possibility of metabolic studies with zebrafish eleutheroembryos, which is a very underdeveloped field without official testing or regulation. Environ Toxicol Chem 2023;42:835-845. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Song C, Shao Y, Yue Z, Hu Q, Zheng J, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Anal Chim Acta 2021; 1176:338772. [PMID: 34399894 DOI: 10.1016/j.aca.2021.338772] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Shao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Zeyi Yue
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Qingkun Hu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China.
| |
Collapse
|
9
|
Fang X, Ye J, Duan D, Cai X, Guo X, Li K. Aspartic acid assisted one-step synthesis of stable CsPbX 3@Asp-Cs 4PbX 6 by in situ growth in NH 2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene. Mikrochim Acta 2021; 188:204. [PMID: 34043073 DOI: 10.1007/s00604-021-04863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
A molecularly imprinted ratiometric fluorescent sensor was synthesized for the detection of 4-bromophenoxybenzene (BDE-3) based on perovskite quantum dots and metal organic framework. First, aspartic acid (Asp) was introduced during the synthesis of perovskite CsPbX3 for the formation of a core-shell structure of CsPbX3@Asp-Cs4PbX6. Due to the protection of the shell layer Cs4PbX6, the stability of the core CsPbX3 was improved significantly. Compared to CsPb(BrI)3, the ultraviolet and thermal stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 were increased by 26 times and 32 times, respectively, and, compared to CsPbBr3, these stabilities of CsPbBr3@Asp-Cs4PbBr6 were increased by 3 times and 13 times, respectively. The water stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 and CsPbBr3@Asp-Cs4PbBr6 were greatly improved too. Then, a ratiometric fluorescence sensor was constructed by in situ growth of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 in metal organic framework (NH2-MIL-53) for the detection of BDE-3, in which the orange fluorescence of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 (614 nm) was regarded as the reference signal and the cyan fluorescence of NH2-MIL-53 (494 nm) was used as the fluorescence response signal. To improve the selectivity of the sensor, the molecular imprinting polymer (MIP) was modified on the NH2-MIL-53 and an imprinting factor of 3.17 was obtained. Under 365 nm light excitation, the fluorescent response signal at 494 nm was quenched gradually by BDE-3 in the range 11.4 to 68.5 nmol/L, while the reference signal at 614 nm remained unchanged. The limit of detection and limit of quantification were 3.35 and 11.2 nmol/L, respectively, and the fluorescent color of the sensor changed gradually from cyan to green to orange, which illustrated that the developed sensor has an ability to recognize BDE-3 specifically, a good anti-interference ability, and a sensitively visual detection ability. Moreover, the sensor was successfully applied to the BDE-3 detection in polyethylene terephthalate plastic bottle, polyvinyl chloride plastic bag, and circuit board with satisfactory recoveries (96.3-108.1%) and low relative standard deviations (5%). The preparation processes of NH2-MIL-53, NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6, and the MIP-NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6 composites.
Collapse
Affiliation(s)
- Xiaoyu Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianping Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ding Duan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China.
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
JIN J, SONG SJ, PENG ZJ, GUO F, LI PH. Determination of Polybrominated Diphenyl Ethers and Hydroxylated Analogues in Serum Using High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry with Online Solid Phase Extraction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fu QB, Jiang HL, Qiao LQ, Sun X, Wang ML, Zhao RS. Effective enrichment and detection of trace polybrominated diphenyl ethers in water samples based on magnetic covalent organic framework nanospheres coupled with chromatography-mass spectrometry. J Chromatogr A 2020; 1630:461534. [PMID: 32950812 DOI: 10.1016/j.chroma.2020.461534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023]
Abstract
Novel core shell structured magnetic covalent organic frameworks were synthesized at room temperature and first applied in water samples for the enrichment of trace polybrominated diphenyl ethers (PBDEs) through magnetic solid-phase extraction. The prepared materials were characterized through transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer and X-ray photoelectron spectroscopy. During adsorption, the parameters affecting extraction and desorption efficiency were further optimized. Combined gas chromatography and mass spectrometry (GC/MS) revealed that high enrichment factors (275-292), low limits of detection (0.12-0.38 ng·L-1), wide linear ranges (0.5-1000 ng·L-1), and good reproducibility (intra-day 1.40%-4.31% and inter-day 5.14%-9.12%) were obtained under optimal conditions. The method successfully detected PBDEs in different water samples.
Collapse
Affiliation(s)
- Quan-Bin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; Qilu University of Technology (Shandong Academy of Science), Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Jinan 250014, PR China
| | - Hai-Long Jiang
- Qilu University of Technology (Shandong Academy of Science), Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Jinan 250014, PR China
| | - Lu-Qin Qiao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, PR China.
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Ming-Lin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Science), Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Jinan 250014, PR China
| |
Collapse
|