1
|
Hughes F, Cookson A, Tamaki F, Bailey C, Gray DW, Wrobel K, Cookson K, Bell S, Tarver G. HTS library plate rejuvenation using a DMSO-rich atmosphere. SLAS Technol 2024; 29:100204. [PMID: 39396728 DOI: 10.1016/j.slast.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Dry DMSO can rapidly pull water vapor out of the air due to its hygroscopic nature. This is a well-documented problem within drug discovery, particularly within high-throughput screening (HTS). This hydration is caused by atmospheric moisture being absorbed each time a compound library is used. This effect becomes increasingly pronounced when a compound library is used routinely. The result of this hydration is a change to both the total volume of solution and the concentration of sample still in solution. This can result in a large amount of variability in the measured biological activity of a sample depending on the library usage. In this paper, we show the detrimental effects the hydration of sample libraries has on the reproducibility of biological data and present a novel way to remove it from HTS library plates. Our approach involves creating a DMSO-rich environment, created by placing anhydrous DMSO in compound storage pods purged with nitrogen, and incubating library plates in this environment for up to 3 days. Quantification via evaporative light scattering detection (ELSD) showed that removing water greatly increased the molarity of solutions, with a greater effect being seen for compounds with poor solubility. We also demonstrated how this approach can restore the inhibitory activity of stock solutions of compounds (pIC50) of samples containing ∼30 % water from >30 µM to sub-micromolar after moisture removal. This method improves the reliability of tested compounds in HTS by potentially saving pharmaceutical companies hundreds of thousands of dollars in screening campaigns and increasing the quality of data.
Collapse
Affiliation(s)
- Fraser Hughes
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Alex Cookson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom.
| | - Fabio Tamaki
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Christopher Bailey
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Karolina Wrobel
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Kirsty Cookson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Steve Bell
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| | - Gary Tarver
- Drug Discovery Unit, School of Life Sciences, University of Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
2
|
Park JW, Lee G, Shin JW, Yun CI, Kim YJ. Validation, measurement uncertainty, and determination of polysorbate-labeled foods distributed in Korea. Food Sci Biotechnol 2024; 33:2747-2754. [PMID: 39184988 PMCID: PMC11339194 DOI: 10.1007/s10068-024-01544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 08/27/2024] Open
Abstract
This study reports the improvement and validation of a colorimetric method to quantify polysorbates (20, 60, 65, and 80) in food by measuring absorbance at 620 nm using ultraviolet-visible spectrophotometry. The method was validated for linearity, limit of detection (LOD), limit of quantitation (LOQ), precision, accuracy, and measurement uncertainty. The coefficient of determination was linear (r 2 ≥ 0.9991) over the measured concentration range of 50-1000 mg/L. The LOD and LOQ were 2.3-4.9 and 7.0-15.0 mg/kg, respectively. Intra-day and inter-day accuracy and precision were 91.9-104.1% and 0.1-1.1% RSD, and 91.6-103.8% and 0.4-5.0% RSD, respectively. The result of inter-laboratory recovery was 90.9-99.8% and the measurement uncertainty was < 16% with the compliance of the CODEX recommendation. Sauce, bread, whipped cream, rice cake, ice cream, and various other polysorbate-labeled food products (n = 229, detection range; N.D.-16,442.3 mg/kg) distributed in Korea were analyzed to confirm the applicability of the analytical method. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01544-w.
Collapse
Affiliation(s)
- Jin-Wook Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Gayeong Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Jae-Wook Shin
- Korea Advanced Food Research Institute, Uiwang, 16001 Republic of Korea
| | - Choong-In Yun
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Young-Jun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| |
Collapse
|
3
|
Wang SQ, Zhao X, Zhang LJ, Zhao YM, Chen L, Zhang JL, Wang BC, Tang S, Yuan T, Yuan Y, Zhang M, Lee HK, Shi HW. Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library. J Pharm Anal 2024; 14:100929. [PMID: 38799234 PMCID: PMC11126531 DOI: 10.1016/j.jpha.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Analyzing polysorbate 20 (PS20) composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance. The similar structures and polarities of PS20 components make accurate separation, identification, and quantification challenging. In this work, a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) to separate 18 key components with multiple esters. The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) with an identical gradient as the HPLC-CAD analysis. The polysorbate compound database and library were expanded over 7-time compared to the commercial database. The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship. UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources. The method observed the impact of 4 degradation conditions on peak components, identifying stable components and their tendencies to change. HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences, distinguishing quasi products.
Collapse
Affiliation(s)
- Shi-Qi Wang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xun Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Li-Jun Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Yue-Mei Zhao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, 100061, China
| | - Jin-Lin Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Bao-Cheng Wang
- Nanjing Well Pharmaceutical Group Co., Ltd., Nanjing, 210018, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Tom Yuan
- University of Massachusetts Amherst, Amherst, 01003, USA
| | - Yaozuo Yuan
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Mei Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hai-Wei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| |
Collapse
|
4
|
Carle S, Evers DH, Hagelskamp E, Garidel P, Buske J. All-in-one stability indicating polysorbate 20 degradation root-cause analytics via UPLC-QDa. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123955. [PMID: 38128165 DOI: 10.1016/j.jchromb.2023.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Polysorbates (PS) are the most frequently used surfactants to stabilize biologicals. Ironically, these excellent stabilizing non-ionic surfactants have inherent structural properties, which lead to instabilities of their own. Such PS degradation can be triggered by multiple root-causes, like chemical and enzymatic hydrolysis or oxidative degradation. This can on the one hand reduce the concentration of surface-active PS and on the other hand lead to the formation of unfavorable degradants, like poorly soluble free fatty acids (FFA), which may phase separate and form visible FFA particles. Due to the potential criticality of PS degradation in biopharmaceutical formulations, various analytics have been established in recent years not only to monitor the PS content but also to evaluate specific PS markers and crucial degradants. However, in most cases sample preparations and several analytical assays have to be conducted to obtain a comprehensive picture of potential PS degradation root-causes. Here we show a novel approach for PS degradation UPLC-QDa based root-cause analytics, which utilizes previously established analytics for (i) most relevant polysorbate 20 (PS20) esters, (ii) PS20 free fatty acids and (iii) a newly developed method for the evaluation of PS20 specific oxidation markers. Thereby, this triad of analytical methods uses the same sample preparation and detector, which reduces the overall necessary effort, time investment and sample volume. Furthermore, the innovative PS20 oxidation marker method allows to quantify specific concentrations of the determined markers by external calibration and possible perception of oxidative degradation processes prior to relevant losses of PS20 esters, which could serve as an early indication during formulation development. The applicability of this method set was verified using several PS20 containing stress samples, which cover the most relevant root-causes, including acidic and alkaline hydrolysis, enzyme mediated hydrolysis, oxidative AAPH stress and Fe2+/H2O2 mediated degradation as well as autoxidation via long-term storage at elevated temperatures. Overall, this analytical setup has shown to deliver in-depth data about PS20 degradation, which can be used to narrow down the causative stress without the necessity of fundamentally different methods. Therefore, it can be seen as all-in-one solution during sometimes troublesome development of biopharmaceutical formulations, that supports the elucidation of the PS degradation mechanism(s) and thus establish mitigation strategies.
Collapse
Affiliation(s)
- Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Dirk-H Evers
- RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany.
| | | | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Straße 65, 88400 Biberach, Germany.
| |
Collapse
|
5
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
6
|
Glücklich N, Carle S, Diederichs T, Buske J, Mäder K, Garidel P. How enzymatic hydrolysis of polysorbate 20 influences colloidal protein stability. Eur J Pharm Sci 2023; 191:106597. [PMID: 37770006 DOI: 10.1016/j.ejps.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Polysorbates (PS) are esters of ethoxylated sorbitol anhydrides of different composition and are widely used surfactants in biologics. PSs are applied to increase protein stability and concomitant shelf-life via shielding against e.g., interfacial stresses. Due to the presence of specific lipolytic host cell protein (HCP) contaminations in the drug substance, PSs can be degraded via enzymatic hydrolysis. Surfactant hydrolysis leads to the formation of degradants, such as free fatty acids that might form fatty acid particles. In addition, PS degradation may reduce surfactant functionality and thus reduce the protection of the active pharmaceutical ingredient (API). Although enzymatic degradation was observed and reported in the last years, less is known about the relationship between certain polysorbate degradation patterns and the increase of mechanical and interfacial stress towards the API. In this study, the impact of specifically hydrolyzed polysorbate 20 (PS20) towards the stabilization of two monoclonal antibodies (mAbs) during accelerated shaking stress conditions was investigated. The results show that a specific enzymatic degradation pattern of PS20 can influence the colloidal stability of biopharmaceutical formulations. Furthermore, the kinetics of the appearance of visual phenomena, opalescence, and particle formation depended on the polysorbate degradation fingerprint as induced via the presence of surrogate enzymes. The current case study shows the importance of focusing on specific polysorbate ester fractions to understand the overall colloidal protein stabilizing effect. The performed study gives first insight into the functional properties of PS and helps to evaluate the impact of PS degradation in the formulation development of biopharmaceuticals in general.
Collapse
Affiliation(s)
- Nils Glücklich
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Stefan Carle
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Julia Buske
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany; Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
7
|
Kopf R, Paschen C, Müller L, Kocar B, Wolfring M, Vincent M, Klemm D, Bell C, Pinto C. Leveraging mass detection to simultaneously quantify surfactant content and degradation mode for highly concentrated biopharmaceuticals. J Pharm Biomed Anal 2023; 236:115651. [PMID: 37688908 DOI: 10.1016/j.jpba.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
Non-ionic surfactants are commonly used in parenteral protein formulations and include polysorbate 20, polysorbate 80 and poloxamer188. Recently, quantification and characterization of surfactants has generated considerable interest due to their connection to visible particle formation, a critical quality attribute for parenteral formulations. Typically, surfactant quantification is performed by mixed mode chromatography with evaporative light scattering detection (ELSD) or charged aerosol detection (CAD). However, these methods often suffer from loss of specificity in highly concentrated protein formulations. Here we present a mixed mode chromatography method using single quad mass detection, overcoming current limitations for highly concentrated proteins. In addition to content determination of intact surfactants, this method allows to quantify and characterize the predominant degradation patterns of polysorbates within a single measurement. Formulations with up to 200 mg/mL active pharmaceutical product (API) containing surfactant levels between 0.16 and 0.64 mg/mL were tested during method qualification. The obtained results for linearity (r > 0.99), precision (max. 3.8 % RSD) and accuracy (96-116 % recovery) meet current requirements for pharmaceutical products as defined in ICH Q2.
Collapse
Affiliation(s)
- Robert Kopf
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland.
| | - Christoph Paschen
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Lavinia Müller
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Berk Kocar
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Martin Wolfring
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Mathilde Vincent
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Denis Klemm
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Christian Bell
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| | - Cosimo Pinto
- F. Hoffmann-La Roche AG, Grenzacherstrasse 24, CH-4070 Basel, Switzerland
| |
Collapse
|
8
|
Kozuch B, Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Comparative Stability Study of Polysorbate 20 and Polysorbate 80 Related to Oxidative Degradation. Pharmaceutics 2023; 15:2332. [PMID: 37765302 PMCID: PMC10537708 DOI: 10.3390/pharmaceutics15092332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The surfactants polysorbate 20 (PS20) and polysorbate 80 (PS80) are utilized to stabilize protein drugs. However, concerns have been raised regarding the degradation of PSs in biologics and the potential impact on product quality. Oxidation has been identified as a prevalent degradation mechanism under pharmaceutically relevant conditions. So far, a systematic stability comparison of both PSs under pharmaceutically relevant conditions has not been conducted and little is known about the dependence of oxidation on PS concentration. Here, we conducted a comparative stability study to investigate (i) the different oxidative degradation propensities between PS20 and PS80 and (ii) the impact of PS concentration on oxidative degradation. PS20 and PS80 in concentrations ranging from 0.1 mg⋅mL-1 to raw material were stored at 5, 25, and 40 °C for 48 weeks in acetate buffer pH 5.5 and water, respectively. We observed a temperature-dependent oxidative degradation of the PSs with strong (40 °C), moderate (25 °C), and weak/no degradation (5 °C). Especially at elevated temperatures such as 40 °C, fast oxidative PS degradation processes were detected. In this case study, a stronger degradation and earlier onset of oxidation was observed for PS80 in comparison to PS20, detected via the fluorescence micelle assay. Additionally, degradation was found to be strongly dependent on PS concentration, with significantly less oxidative processes at higher PS concentrations. Iron impurities, oxygen in the vial headspaces, and the pH values of the formulations were identified as the main contributing factors to accelerate PS oxidation.
Collapse
Affiliation(s)
- Benedykt Kozuch
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Johanna Weber
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Julia Buske
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Patrick Garidel
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Tim Diederichs
- PDB-TIP, Innovation Unit, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
9
|
Herbig ME, Evers DH, Gorissen S, Köllmer M. Rational Design of Topical Semi-Solid Dosage Forms-How Far Are We? Pharmaceutics 2023; 15:1822. [PMID: 37514009 PMCID: PMC10386014 DOI: 10.3390/pharmaceutics15071822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Specific aspects of semi-solid dosage forms for topical application include the nature of the barrier to be overcome, aspects of susceptibility to physical and chemical instability, and a greater influence of sensory perception. Advances in understanding the driving forces of skin penetration as well as the design principles and inner structure of formulations, provide a good basis for the more rational design of such dosage forms, which still often follow more traditional design approaches. This review analyses the opportunities and constraints of rational formulation design approaches in the industrial development of new topical drugs. As the selection of drug candidates with favorable physicochemical properties increases the speed and probability of success, models for drug selection based on theoretical and experimental approaches are discussed. This paper reviews how progress in the scientific understanding of mechanisms and vehicle-influence of skin penetration can be used for rational formulation design. The characterization of semi-solid formulations is discussed with a special focus on modern rheological approaches and analytical methods for investigating and optimizing the chemical stability of active ingredients in consideration of applicable guidelines. In conclusion, the combination of a good understanding of scientific principles combined with early consideration of regulatory requirements for product quality are enablers for the successful development of innovative and robust semi-solid formulations for topical application.
Collapse
|
10
|
Diederichs T, Mittag JJ, Humphrey J, Voss S, Carle S, Buske J, Garidel P. Existence of a superior polysorbate fraction in respect to protein stabilization and particle formation? Int J Pharm 2023; 635:122660. [PMID: 36740078 DOI: 10.1016/j.ijpharm.2023.122660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Biologicals including monoclonal antibodies are the current flagships in pharmaceutical industry. However, they are exposed to a multitude of destabilization conditions like for instance hydrophobic interfaces, leading to reduced biological activity. Polysorbates are commonly applied to effectively stabilize these active pharmaceutical ingredients against colloidal stress. Nevertheless, chemical instability of polysorbate via hydrolysis or oxidation results in degradation products that might form particles via phase separation. Polysorbates are mixtures of hundreds of individual components, and recently purer quality grades with reduced variations in the fatty acid composition are available. As the protective function of polysorbate itself is not completely understood, even less is known about its individual components, raising the question of the existence of a superior polysorbate species in respect to protein stabilization or degradation susceptibility. Here, we evaluated the protective function of four main fractions of polysorbate 20 (PS20) in agitation studies with monoclonal antibodies, followed by particle analysis as well as protein and polysorbate content determination. The commercially-available inherent mixtures PS20 high purity and PS20 all-laurate, as well as the fraction isosorbide-POE-monolaurate showed superior protection against mechanical-induced stress (visual inspection and turbidity) at the air-water interface in comparison to sole sorbitan-POE-monolaurate, -dilaurate, and -trilaurate. Fractions composed mainly of higher-order esters like sorbitan-POE-dilaurate and sorbitan-POE-trilaurate indicated high turbidities as indication for subvisible and small particles accompanied by a reduced protein monomer content after agitation. For the isosorbide-POE-monolaurates as well as for the inherent polysorbate mixtures no obvious differences in protein content and protein aggregation (SEC) were observed, reflecting the observations from visual appearance. However, absolute polysorbate concentrations vary drastically between different species in the actual formulations. As there are still open questions in respect to protein specificity or regarding mixtures versus individual components of PS20, further studies must be performed, to gain a better understanding of a "generalized" stabilizing effect of polysorbates on monoclonal antibodies. The knowledge of the characteristics of individual polysorbate species can have the potential to pave the way to superior detergents in respect to protein stabilization and/or degradation susceptibility.
Collapse
Affiliation(s)
- Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| | - Judith J Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - James Humphrey
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Söhnke Voss
- Croda Europe Ltd, Cowick Hall, DN14 9AA, Snaith, United Kingdom
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
11
|
Wang R, Zhou H, Liao S, Tian Q, Lv Z, Bao K, Liu L. Qualitative Analysis of Visible Foreign Solids in Armillarisin A Injection Formulations Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023; 28:molecules28041609. [PMID: 36838598 PMCID: PMC9967911 DOI: 10.3390/molecules28041609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
During the trial production of Armillarisin A for injection (AA-I), unidentified needle-like yellow-brown crystals were occasionally observed. Here, we report an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) method for determining the source of the visible foreign bodies in the formulations of Armillarisin A active pharmaceutical ingredient (AA-API). AA-API, photolyzed samples, the intermediate polymer, and the excipient analyzed determined after the separation on a Waters Symmetry C18 (3.5 μm, 4.6 × 75 mm) column with a mobile phase consisting of a methanol/acetic acid (0.1 mol/L) aqueous solution (50:50). Furthermore, the crystal type of the visible foreign bodies, the intermediate polymer and AA-API were investigated by X-ray powder diffraction (XRD). The results revealed that the characteristics of the visible foreign solids were the same as those of AA-API as regards UPLC peak position (368 nm) and MS spectrum in negative ion detection mode. The visible foreign solids were thus identified as unpolymerized crystals of AA-API and were attributed to AA-API itself. The results showed that the production process could be improved by changing the stirring method and frequency as well as by optimizing the polymerization temperature to ensure the safety, stability, and control of the product quality in the stage of batch production.
Collapse
Affiliation(s)
- Ruiqi Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichang Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shiyu Liao
- Technical Centre, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou 341008, China
| | - Qi Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kangde Bao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (K.B.); (L.L.)
| | - Lili Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (K.B.); (L.L.)
| |
Collapse
|
12
|
Mittag JJ, Trutschel ML, Kruschwitz H, Mäder K, Buske J, Garidel P. Characterization of radicals in polysorbate 80 using electron paramagnetic resonance (EPR) spectroscopy and spin trapping. Int J Pharm X 2022; 4:100123. [PMID: 35795322 PMCID: PMC9251573 DOI: 10.1016/j.ijpx.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Polysorbates are an important class of nonionic surfactants that are widely used to stabilize biopharmaceuticals. The degradation of polysorbate 20 and 80 and the related particle formation in biologics are heavily discussed in the pharmaceutical community. Although a lot of experimental effort was spent in the detailed study of potential degradation pathways, the underlying mechanisms are only sparsely understood. Besides enzymatic hydrolysis, another proposed mechanism is associated with radical-induced (auto)oxidation of polysorbates. To characterize the types and the origin of the involved radicals and their propagation in bulk material as well as in diluted polysorbate 80 solutions, we applied electron paramagnetic resonance (EPR) spectroscopy using a spin trapping approach. The prerequisite for a meaningful experiment using spin traps is an understanding of the trapping rate, which is an interplay of (i) the presence of the spin trap at the scene of action, (ii) the specific reactivity of the selected spin trap with a certain radical as well as (iii) the stability of the formed spin adducts (a slow decay rate). We discuss whether and to which extent these criteria are fulfilled regarding the identification of different radical classes that might be involved in polysorbate oxidative degradation processes. The ratio of different radicals for different scenarios was determined for various polysorbate 80 quality grades in bulk material and in aqueous solution, showing differences in the ratio of present radicals. Possible correlations between the radical content and product parameters such as the quality grade, the manufacturing date, the manufacturer, the initial peroxide content according to the certificate of analysis of polysorbate 80 are discussed.
Collapse
Key Words
- 5,5-dimethyl-1-pyrroline-N-oxide, DMPO
- DMPO
- EPR
- Oxidation
- Peroxide
- Polysorbate
- Radical
- Spin trap
- alkoxyl radical, RO•
- alkyl radical, R•
- all-oleate, AO
- certificate of analysis, CoA
- china grade, CG
- electron paramagnetic resonance, EPR
- fatty acid, FA
- high purity, HP
- hydrogen peroxide, H2O2
- hydroperoxide, ROOH
- hydroxyl radical, HO•
- peroxyl radical, ROO•
- polyoxyethylene, POE
- polysorbate, PS
- reactive oxygen species, ROS
- super-refined, SR
- superoxide, O2•−
Collapse
Affiliation(s)
- Judith J. Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Marie-Luise Trutschel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Helen Kruschwitz
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
13
|
Wuchner K, Yi L, Chery C, Nikels F, Junge F, Crotts G, Rinaldi G, Starkey JA, Bechtold-Peters K, Shuman M, Leiss M, Jahn M, Garidel P, de Ruiter R, Richer SM, Cao S, Peuker S, Huille S, Wang T, Brun VL. Industry Perspective on the Use and Characterization of Polysorbates for Biopharmaceutical Products Part 2: Survey Report on Control Strategy Preparing for the Future. J Pharm Sci 2022; 111:2955-2967. [PMID: 36002077 DOI: 10.1016/j.xphs.2022.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Polysorbate (PS) 20 and 80 are the main surfactants used to stabilize biopharmaceutical products. Industry practices on various aspects of PS based on a confidential survey and following discussions by 16 globally acting major biotechnology companies is presented in two publications. Part 1 summarizes the current practice and use of PS during manufacture in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS.1 The current part 2 of the survey focusses on understanding, monitoring, prediction, and mitigation of PS degradation pathways in order to propose an effective control strategy. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature.
Collapse
Affiliation(s)
- Klaus Wuchner
- Janssen R&D, DPDS BTDS Analytical Development, Hochstr. 201, 8200 Schaffhausen, Switzerland.
| | - Linda Yi
- Analytical Development, Biogen, Morrisville, NC 27709, USA
| | - Cyrille Chery
- UCB, Analytical Development Sciences for Biologicals, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Felix Nikels
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Friederike Junge
- Analytical Research and Development, NBE Analytical R&D, AbbVie Deutschland GmbH& Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - George Crotts
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Gianluca Rinaldi
- Merck Serono SpA, Guidonia Montecelio, Italy, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Jason A Starkey
- Pfizer, Inc. Biotherapeutics Pharmaceutical Sciences, Analytical Research and Development 875 W. Chesterfield Parkway, Chesterfield, MO 63017, USA
| | | | - Melissa Shuman
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Michael Leiss
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany
| | - Michael Jahn
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co KG, Innovation Unit, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Rien de Ruiter
- Byondis B.V., Downstream Processing, Nijmegen, the Netherlands
| | - Sarah M Richer
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Shawn Cao
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sebastian Peuker
- Bayer AG, Product Supply, Analytical Development and Clinical QC for Biotech Products, Friedrich-Ebert-Str. 217-233, 42117 Wuppertal, Germany
| | - Sylvain Huille
- Sanofi R&D, Biologics Drug Products Development,13 quai Jules Guesde, 94403 Vitry-sur Seine, France
| | - Tingting Wang
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Virginie Le Brun
- Lonza AG, Drug Product Services, Hochbergerstr. 60G, CH-4057 Basel, Switzerland
| |
Collapse
|
14
|
Industry perspective on the use and characterization of polysorbates for biopharmaceutical products Part 1: Survey report on current state and common practices for handling and control of polysorbates. J Pharm Sci 2022; 111:1280-1291. [PMID: 35192858 DOI: 10.1016/j.xphs.2022.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Polysorbates (PS) are widely used as a stabilizer in biopharmaceutical products. Industry practices on various aspects of PS are presented in this part 1 survey report based on a confidential survey and following discussions by 16 globally acting major biotechnology companies. The current practice and use of PS during manufacture across their global manufacturing sites are covered in addition to aspects like current understanding of the (in)stability of PS, the routine QC testing and control of PS, and selected regulatory aspects of PS. The results of the survey and extensive cross-company discussions are put into relation with currently available scientific literature. Part 2 of the survey report (upcoming) will focus on understanding, monitoring, prediction, and mitigation of PS degradation pathways to develop an effective control strategy.
Collapse
|
15
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
16
|
Glücklich N, Carle S, Buske J, Mäder K, Garidel P. Assessing the polysorbate degradation fingerprints and kinetics of lipases - how the activity of polysorbate degrading hydrolases is influenced by the assay and assay conditions. Eur J Pharm Sci 2021; 166:105980. [PMID: 34419573 DOI: 10.1016/j.ejps.2021.105980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Two of the most widely used surfactants to stabilize biologicals against e.g. interfacial stresses are polysorbate 20 (PS20) and polysorbate 80 (PS80). In recent years, numerous cases of hydrolytic polysorbate (PS) degradation in liquid formulations of biopharmaceuticals have been observed. Concomitant with the degradation of PSs, formulated proteins become inherently instable and more susceptible to aggregation. Furthermore, poorly soluble fatty acids (FA) are released from the PSs, which might lead to FA precipitation and the formation of visible and subvisible particles. Therefore, possible particle inducing factors have to be monitored closely. The major root cause of hydrolytic PS degradation in biologicals is the presence of enzymatic active host cell proteins (HCP), like lipases and esterases, which are co-purified with the active pharmaceutical ingredient. Such contaminants can be detected via their hydrolytic activity, either using ester-based substrates or PS itself. However, each approach has its up- and downsides, which makes the comparison of the results from other publications difficult. It was therefore the aim of the present study to investigate the impact of lipase specificities on the assay readouts. This study evaluates three different surrogate (model) lipases with distinctively different degradation kinetics and substrate specificities using specific analytical methods. The analytical panel contains on one hand two lipase activity assays with ester-based substrates, either detecting the release of para-nitrophenol or 4-methylumbelliferone, and on the other hand two PS-based monitoring analyses (fluorescence micelle assay and reverse phase high performance liquid chromatography - charged aerosol detection), which detect hydrolytic "activity" directly in the target substrate. Thereby, strengths and weaknesses of each assay are discussed, and recommendations are made for the respective use cases. Our results show that the determined lipase activities vary not only from assay to assay, but also significantly for the lipase tested, thus showing a different degradation fingerprint in the RP-HPLC-CAD chromatogram. This demonstrates that a comprehensive monitoring approach is essential to assess potential HCP contaminations.
Collapse
Affiliation(s)
- Nils Glücklich
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Chemistry, Faculty of Physical and Theoretical Chemistry, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
17
|
Knoch H, Ulbrich MH, Mittag JJ, Buske J, Garidel P, Heerklotz H. Complex Micellization Behavior of the Polysorbates Tween 20 and Tween 80. Mol Pharm 2021; 18:3147-3157. [PMID: 34251210 DOI: 10.1021/acs.molpharmaceut.1c00406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polysorbates (PSs, Tweens) are widely used surfactant products consisting of a sorbitan ring connecting up to four ethylene oxide (EO) chains of variable lengths, one or more of which are esterified with fatty acids of variable lengths and saturation degrees. Pharmaceutical applications include the stabilization of biologicals in solutions and the solubilization of poorly water soluble, active ingredients. This study characterizes the complex association behavior of compendial PSs PS20 and PS80, which is fundamentally different from that of single-component surfactants. To this end, a series of demicellization experiments of isothermal titration calorimetry with different PS concentrations are evaluated. Their experiment-dependent heats of titration are converted into a common function of the state of a sample, the micellar enthalpy Qm(c). These functions demonstrate that initial micelles are already present at the lowest concentrations investigated, 2 μM for PS20 and 10 μM for PS80. Initial micelles consist primarily of the surfactant species with the lowest individual critical micelle concentration (cmc). With increasing concentration, the other PS species gradually enter these micelles in the sequence of increasing individual cmc's and hydrophilic-lipophilic balance. Concentration ranges with pronounced slopes of Qm(c) can be tentatively assigned to the uptake of the major components of the PS products. Micellization and the variation of the micelle properties progress up to at least 10 mM PS. That means the published cmc values or ranges of PS20 and PS80 may be related to certain, major components being incorporated into and forming specific micelles but must not be interpreted in terms of an absence of micelles below and constant properties, e.g., the surface activity, of the micelles above these ranges. The micellization enthalpy curves differ quite substantially between PS20 and PS80 and, in a subtler fashion, between individual quality grades such as high purity, pure lauric acid/pure oleic acid, super-refined, and China grade.
Collapse
Affiliation(s)
- Hannah Knoch
- Institute of Pharmaceutical Sciences, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Maximilian H Ulbrich
- Renal Division, Department of Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Judith J Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.,Institute of Chemistry, Martin-Luther-University of Halle-Wittenberg, 06108 Halle, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, M5S Toronto, Canada
| |
Collapse
|
18
|
Hydrolytic polysorbate 20 degradation - Sensitive detection of free fatty acids in biopharmaceuticals via UPLC-QDa analytics with isolator column. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122717. [PMID: 33975273 DOI: 10.1016/j.jchromb.2021.122717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 04/11/2021] [Indexed: 11/21/2022]
Abstract
The enzymatic hydrolysis of polysorbates, e.g. induced by specific host cell proteins in biologics, is a known risk factor regarding the potential particle formation in the product over time. One of the root causes for this observation is an increase in free fatty acids (FA) within the formulation, which indicates the need for convenient monitoring of FA release. This study presents a novel UPLC-QDa based method to evaluate the content of the FAs esterified to polysorbate 20 (PS20) after hydrolysis. The presented method is label-free, i.e. independent of elaborate fluorophore-labeling and able to directly measure the ionized FAs. Furthermore, the method allows the determination of released FAs as percentage of ester bond hydrolysis and as absolute concentration expressed in ng/mL. Additionally, we describe for the first time in FA analytics the application of an isolator column, to remove trace levels of FAs present in the eluents to improve the sensitivity of the method. Lastly, the capabilities of the newly developed method are proven in case studies with three different monoclonal antibodies, which display characteristic FA release patterns in PS20-containing formulations. In summary, we developed a reliable, sensitive method for FA quantification in biologics, which could also be used as a predictive tool, considering FA solubility, regarding the formation of particles.
Collapse
|
19
|
Garidel P, Blech M, Buske J, Blume A. Surface Tension and Self-association Properties of Aqueous Polysorbate 20 HP and 80 HP Solutions: Insights into Protein Stabilisation Mechanisms. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|