1
|
Fan Q, Liang R, Chen M, Li Z, Tao X, Ren H, Sheng Y, Li J, Lin R, Zhao C, She G. Metabolic characteristics of evodiamine were associated with its hepatotoxicity via PPAR/PI3K/AKT/NF-кB/tight junction pathway-mediated apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116448. [PMID: 38754199 DOI: 10.1016/j.ecoenv.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.
Collapse
Affiliation(s)
- Qiqi Fan
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruiqiang Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Zhiqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Xiaoyu Tao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Hongmin Ren
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Yuhan Sheng
- Beijing University of Chinese Medicine, Beijing 100102,China
| | - Jiaqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Gaimei She
- Beijing University of Chinese Medicine, Beijing 100102,China.
| |
Collapse
|
2
|
Pang C, Wang R, Liu K, Yuan X, Ni J, Cao Q, Chen Y, Dong PL, Han H. Serum and urine metabolomics based on UPLC-QTOF/MS reveal the effect and potential mechanism of "schisandra-evodia" herb pair in the treatment of Alzheimer's disease. Biomed Chromatogr 2024; 38:e5882. [PMID: 38649307 DOI: 10.1002/bmc.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The "schisandra-evodia" herb pair (S-E) is a herbal preparation to treat Alzheimer's disease (AD). This study aims to investigate the therapeutic efficacy and potential mechanism of S-E in AD rats, utilizing pharmacodynamic assessments and serum- and urine-based metabolomic analyses. Pharmacodynamic assessments included Morris water maze test, hematoxylin-eosin staining and immunohistochemistry experiments. The results of the study showed that the AD model was successful; the S-E significantly enhanced long-term memory and spatial learning in AD rats. Meanwhile, S-E notably ameliorated Aβ25-35-induced cognitive impairment, improved hippocampal neuron morphology, decreased Aβ deposition in the hippocampus and mitigated inflammatory damage. We then analyzed serum and urine samples using UPLC-MS/MS to identify potential biomarkers and metabolic pathways. Metabolomic analysis revealed alterations in 40 serum metabolites and 38 urine metabolites following S-E treatment, predominantly affecting pathways related to taurine and hypotaurine metabolism, linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism and arachidonic acid metabolism. This study elucidates the biochemical mechanism underlying AD and the metabolic pathway influenced by S-E, laying the groundwork for future clinical applications.
Collapse
Affiliation(s)
- Chengguo Pang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ruijiao Wang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Kemeng Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Yuan
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jiating Ni
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuanjin Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Pei Liang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Yang L, Sun Y, Wei S, Wen H, Liu R, Wang X. Chemical profiling of Simiao pill and quantification of main effective constituents in it by ultra-high-performance liquid chromatography coupled with Q Exactive Orbitrap and triple quadrupole mass spectrometry. J Sep Sci 2024; 47:e2300615. [PMID: 38234033 DOI: 10.1002/jssc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Simiao pill is one of the most commonly used prescriptions in traditional Chinese medicine for the treatment of hyperuricemia and gout. However, methods based on more accurate and comprehensive qualitative and quantitative analyses of the active ingredients are not yet perfect due to limited methodology. This not only hinders the elucidation of the pharmacological mechanism of Simiao pill, but also its comprehensive clinical development and utilization. In this study, we employed ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry technology to perform rapid analysis and identification of the chemical constituents in Simiao pill. A total of 101 chemical components were identified, including 26 alkaloids, 15 terpenoids, 11 flavonoids, eight steroids, six fatty acids, five limonoids, four saponins, five phenylpropanoids, and 21 other compounds. In addition, we established a new method by high-throughput ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry combined with ultra-high-performance liquid chromatography-triple quadrupole-tandem mass spectrometry technology for quantification of 14 main active ingredients, such as adenosine (1), phellodendrine (2), mangnoflorine (3), β-ecdysterone (4), 25R-inokosterone (5), 25S-inokosterone (6), jatrorrhizine (7), palmatine (8), chikusetsu saponin IVa (9), limonin (10), atractylenolide III (11), atractylenolide I (12), obacunone (13), and atractylenolide II (14) in Simiao pill. This work laid a foundation for further analysis and quality control of effective components in Simiao pill.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Shuyun Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hao Wen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Ruicheng Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xijun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
4
|
Ren K, Zhang C, Liu M, Gao H, Ren S, Wang D, Yuan Z, Pan Y, Liu X. The attenuation effect of licorice on the hepatotoxicity of Euodiae Fructus by inhibiting the formation of protein conjugates and GSH depletion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116307. [PMID: 36842722 DOI: 10.1016/j.jep.2023.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine and food, Euodiae Fructus (EF) is widely used in clinics to relieve pain and prevent vomiting and for making tea for more than a thousand years. In recent years, hepatotoxic reactions to EF have been reported. The intermediates produced by evodiamine and rutaecarpine metabolism in vitro were captured by glutathione (GSH), suggesting that the toxicity of EF may be related to metabolic activation. Whether licorice can inhibit the metabolic activation of EF has not been reported, which needed an effective strategy to clarify the correlation between protein conjugates and hepatotoxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY This study aimed to explore the toxic components and mechanisms of EF based on metabolic activation and the detoxification of licorice. MATERIALS AND METHODS The content and toxicity index of protein conjugates in the liver were determined by orally administering mice and rats with EF. The attenuation mechanism of licorice was examined in cell and enzymology experiments. RESULTS The change in evodiamine-cysteinylglycine (EVO-Cys-Gly) and evodiamine-cysteine (EVO-Cys) levels was consistent with the change in hepatotoxicity. Licorice inhibited the formation of the protein conjugates of EF and increased the content of GSH in L02 cells. CONCLUSION EF mediated by P450 enzymes produced toxic intermediates, which combined with cysteine residues in animal liver and inactivate them, leading to hepatotoxicity. Interestingly, licorice can alleviate the GSH depletion caused by EF and inhibit the production of protein conjugates by inhibiting P450 enzymes.
Collapse
Affiliation(s)
- Kun Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Chuhao Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Meihan Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhong Yuan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
5
|
Xia H, Dai Y, Zhao C, Zhang H, Shi Y, Lou H. Chromatographic and mass spectrometric technologies for chemical analysis of Euodiae fructus: A review. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:5-29. [PMID: 36442477 DOI: 10.1002/pca.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.
Collapse
Affiliation(s)
- Hongmin Xia
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Chengxin Zhao
- The People's Republic of China Taian Customs, Taian, China
| | - Huimin Zhang
- Key Disciplines on Analysis of Traditional Chinese Medicine of SATCM, the Key Unit for Research of Technique and Principle of Honey-Processing and Carbonizing of SATCM, Shandong Key Laboratory of Chinese Medicine Quality Standard Research, Taishan Scholar-Distinguished Experts Position, Shandong Academy of Chinese Medicine, Jinan, China
| | - Yusheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongxiang Lou
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
6
|
Ta-Xi-San Suppresses Atopic Dermatitis Involved in Multitarget Mechanism Using Experimental and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8441938. [PMID: 35646146 PMCID: PMC9132654 DOI: 10.1155/2022/8441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
Abstract
Atopic dermatitis (AD) is a relapsing and chronic skin inflammation with a common incidence worldwide. Ta-Xi-San (TXS) is a Chinese herbal formula usually used for atopic dermatitis in clinic; however, its active compounds and mechanisms of action are still unclear. Our study was designed to reveal the pharmacological activities, the active compounds, and the pharmacological mechanisms of TXS for atopic dermatitis. Mice were induced by 2,4-dinitrocluorobenzene (DNCB) to build atopic dermatitis model. The pathological evaluation, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) assay were performed. The UPLC-Q-Exactive-MSE and network pharmacology analysis were performed to explore active ingredients and therapeutic mechanisms of TXS. TXS treatment decreased levels of immunoglobulin E (IgE), interleukin-4 (IL-4), and tumor necrosis factor-α (TNF-α) in serum induced by DNCB. TXS reduced scratching behavior and alleviated inflammatory pathology of skin and ear. Meanwhile, TXS decreased the spleen index and increased spleen index. The UPLC-Q-Exactive-MSE results showed that 65 compounds of TXS were detected and 337 targets were fished. We collected 1371 AD disease targets, and the compound-target gene network reveled that the top 3 active ingredients were (−)-epigallocatechin gallate, apigenin, and esculetin, and the core target genes were PTGS2, PTGS1, and HSP90AA1. The KEGG pathway and GO analysis showed that TXS remedied atopic dermatitis via PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and Toll-like receptor (TLR) signaling pathway with the regulation of inflammatory response and transcription. Further, we found that the targets of PTGS2 and HSP90AA1 were both elevated in ears and skin of AD model mouse; however, TXS decreased the elevated expressions of PTGS2 and HSP90AA1. Our study revealed that TXS ameliorated AD based on (−)-epigallocatechin gallate, apigenin, and esculetin via targeting PTGS2 and HSP90AA1.
Collapse
|
7
|
Lin L, Chen Y, Li Q, Xu G, Ding K, Ren L, Shi W, Wang Y, Li Z, Dai W, Wei Z, Yang Y, Bai Z, Xiao X. Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114796. [PMID: 34740771 DOI: 10.1016/j.jep.2021.114796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens is a traditional Chinese medicine commonly used in clinical practice, which has the effects of clearing away heat and dampness. Unfortunately, it has been reported that Sophora flavescens and its preparation may cause liver damage to a certain extent, but the exact mechanism is not clear. AIM OF THE STUDY To assess the safety and risk of Sophora flavescens and to elucidate the relationship between Idiosyncratic drug-induced liver injury (IDILI) and the NOD-like receptor family protein 3 (NLRP3) inflammasome. MATERIALS AND METHODS Western blot, Caspase-Glo® 1 Inflammasome Assay, ELISA kits, Flow cytometry and FLIPRT Tetra system were used to study the effect of isoxanthohumol (IXN) on the activation of NLRP3 inflammasome and its mechanism. Combined with the lipopolysaccharide-mediated susceptibility IDILI model in mice to evaluate the hepatotoxicity of IXN. RESULTS IXN facilitates the activation of caspase-1 and secretion of interleukin (IL)-1β triggered by adenosine triphosphate (ATP), nigericin but not those induced by silicon dioxide and poly (I:C). Furthermore, the activation of NLR-family CARD-containing protein 4 (NLRC4) and the absent in melanoma 2 (AIM2) was not affected by IXN. Mechanistically, IXN promotes NLRP3-dependent apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) oligomerization and the generation of mitochondrial reactive oxygen species (mtROS) triggered by ATP. The in vivo data showed that non-hepatotoxic doses of IXN resulted in increased levels of glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, tumor necrosis factor and IL-1β in the serum and showed increased liver inflammation in the susceptible IDILI model mediated by lipopolysaccharide. CONCLUSIONS These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.
Collapse
Affiliation(s)
- Li Lin
- School of Pharmacy, Dali University, Dali, 671000, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuanyuan Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Li
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guang Xu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Kaixin Ding
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lutong Ren
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhiyong Li
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenzhang Dai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ziying Wei
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Yang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- School of Pharmacy, Dali University, Dali, 671000, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|