1
|
Steiner L, Raab A, Feldmann J, Goessler W, Lajin B. Allyl Dimethyl Sulfonium: A Novel Urinary Biomarker of Allium Consumption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40173342 DOI: 10.1021/acs.jafc.5c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Allyl methyl sulfide (AMS) is an odorous and bioactive major metabolite produced following Allium food consumption and is regarded as the culprit behind the "garlic breath". Indoleethylamine N-methyltransferase (INMT) can methylate a variety of thioethers to their respective sulfonium ions in humans, aiding in their urinary excretion. We hypothesize that AMS may serve as a novel target for INMT and be metabolized to the allyl dimethyl sulfonium (ADMS) ion, which would constitute a previously undescribed pathway for metabolism of Allium food. ADMS was synthesized, and analytical methods were developed to explore its existence and characterize its levels in humans. ADMS was indeed consistently detected in all volunteers over 6 weeks without dietary intervention and found to strongly respond to controlled garlic supplementation. Striking interindividual variability in urinary ADMS was observed and found to mirror other products of INMT, which is attributable to genetic variation. ADMS is a novel metabolite in humans, and its remarkably variable production suggests variable response in body odors and health effects of Allium food and can be used to assess Allium consumption in the general human population in future epidemiological studies. More products of INMT that can serve as biomarkers of sulfur-rich food intake await discovery.
Collapse
Affiliation(s)
- Lorenz Steiner
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Andrea Raab
- Institute of Chemistry, TESLA, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Joerg Feldmann
- Institute of Chemistry, TESLA, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for Health and Environment, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
- Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz 8010, Austria
| |
Collapse
|
2
|
Trummer O, Laglstorfer CM, Haudum CW, Missbrenner C, Goessler W, Obermayer-Pietsch B, Lajin B. Genetic variation in the INMT gene strongly impacts the production of trimethylsulfonium in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104662. [PMID: 40010557 DOI: 10.1016/j.etap.2025.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
We previously identified the trimethylsulfonium ion (TMS) in human urine and highlighted its potential as a novel H2S biomarker but observed significant inter-individual variability in its urinary excretion. In this work we investigate the contribution of genetic factors to this variability in a group of European subjects (n = 100) from the BioPersMed cohort. Urinary TMS concentrations displayed two clusters within 5.0-20 nM and 100-400 nM. Genotyping revealed that this clustering is linked to a single nucleotide polymorphism (rs6970396) in the INMT gene, P < 0.001. We found strong contrast in the effects of rs6970396 between TMS and the selenium analogue TMSe which is one of many other detoxification products of the poorly recognized chalcogen-methylation activity of the INMT enzyme. Genetic variability in INMT has wide implications not only for the detoxification of H2S, both inhaled and naturally produced, but also for that of other volatile sulfur compounds in humans which may serve as substrates including xenobiotics.
Collapse
Affiliation(s)
- Olivia Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Carina Maria Laglstorfer
- Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz 8010, Austria; BioTechMed-GRAZ, Graz 8010, Austria
| | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Cornelia Missbrenner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz 8010, Austria; BioTechMed-GRAZ, Graz 8010, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz 8036, Austria; BioTechMed-GRAZ, Graz 8010, Austria
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz 8010, Austria; Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz 8010, Austria; BioTechMed-GRAZ, Graz 8010, Austria.
| |
Collapse
|
3
|
Salih MQ, Steiner L, Goessler W, Hama JR, Lajin B. Urinary excretion of H 2S methylation metabolites in oil refinery workers. Toxicol Lett 2024; 401:82-88. [PMID: 39303962 DOI: 10.1016/j.toxlet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Hydrogen sulfide (H2S) is a toxic gas emitted through natural and anthropogenic activities. Chronic exposure to inhaled H2S at low sub-toxic levels is common among workers in oil refineries and may have important health implications. Inhaled H2S can be oxidized to thiosulfate or methylated to dimethylsulfide (DMS) which can be methylated to the novel human metabolite trimethylsulfonium (TMS) or oxidized to dimethylsulfoxide (DMSO) but the extent of methylation of inhaled H2S is currently unknown in humans. A total of 80 participants were recruited of which 40 were workers in an oil refinery in Kurdistan region, Iraq including those working in close contact with the facility area where H2S was measured at 1.5-5.0 mg m-3, and 40 controls living in a nearby city with no detectable H2S or perceptible odor (<0.1 mg m-3). A total of 240 urine samples were measured for multiple H2S-related metabolites. DMSO was consistently found in all urine samples with concentrations generally within the range of 1.0-10 µM. Although these concentrations were 10-100-fold higher than TMS urinary levels, clear correlation between DMSO and TMS was observed (rs 0.55, P < 0.0001), which supports DMS as common precursor. DMSO urinary levels were elevated in the oil refinery workers in close contact with the facilities (5.0 vs. 3.3 µM, P 0.03), but TMS was unaltered (0.13 vs. 0.14 µM, P 0.68). Overall, the results suggest that the investigated methylation metabolites are not sufficiently sensitive to low occupational exposure levels of inhaled H2S.
Collapse
Affiliation(s)
- Mamoon Q Salih
- Department of Medical Laboratory, Aynda Private Technical Institute, Erbil, Kurdistan Region 44001, Iraq
| | - Lorenz Steiner
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz, Austria.
| |
Collapse
|
4
|
Antonaros F, Obermayer-Pietsch B, Ramacieri G, Vione B, Locatelli C, Goessler W, Caracausi M, Lajin B. First clinical evidence that trimethylsulfonium can serve as a biomarker for the production of the signaling molecule hydrogen sulfide. Clin Chim Acta 2024; 554:117780. [PMID: 38266970 DOI: 10.1016/j.cca.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is established as the third gaseous signaling molecule and is known to be overproduced in down syndrome (DS) due to the extra copy of the CBS gene on chromosome 21, which has been suggested to contribute to the clinical manifestation of this condition. We recently discovered trimethylsulfonium (TMS) in human urine and highlighted its potential as a selective methylation metabolite of endogenously produced H2S, but the clinical utility of this novel metabolite has not been previously investigated. We hypothesize that the elevation of H2S production in DS would be reflected by an elevation in the methylation product TMS. METHODS To test this hypothesis, a case-control study was performed and the urinary levels of TMS were found to be higher in the DS group (geo. mean 4.5 nM, 95 % CI 2.4-3.9) than in the control (N) group (3.1 nM, 3.5-6.0), p-value 0.01, whereas the commonly used biomarker of hydrogen sulfide, thiosulfate, failed to reflect this alteration in H2S production (15 µM (N) vs. 13 µM (DS), p-value 0.24. RESULTS The observed association is in line with the proposed hypothesis and provides first clinical evidence of the utility of TMS as a novel and more sensitive biomarker for the endogenous production of the third gaseous signaling molecule than the conventionally used biomarker thiosulfate, which is heavily dependent on bacterial hydrogen sulfide production. CONCLUSION This work shows that TMS must be explored in clinical conditions where altered metabolism of hydrogen sulfide is implicated.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Beatrice Vione
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy; Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Walter Goessler
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Maria Caracausi
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria.
| |
Collapse
|
5
|
Lajin B, Obermayer-Pietsch B, Somma R, Goessler W. A time-course investigation of the human urinary excretion of the hydrogen sulfide biomarker trimethylsulfonium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104162. [PMID: 37245608 DOI: 10.1016/j.etap.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Hydrogen sulfide is a toxic gas but also recognized as an endogenously produced metabolite in humans playing key roles. We previously identified trimethylsulfonium, which can be a methylation product of hydrogen sulfide but the stability in the production of trimethylsulfonium has not been investigated. In the present work, the intra- and inter-individual variability in the excretion of trimethylsulfonium over 2 months in a group of healthy volunteers was investigated. Urinary levels of trimethylsulfonium (mean: 56 nM, 95% CI: 48-68 nM) were > 100-fold lower than the conventional hydrogen sulfide biomarker thiosulfate (13 µM, 12-15 µM) and the precursor for endogenous hydrogen sulfide production cystine (47 µM, 44-50 µM). There was no correlation between urinary trimethylsulfonium and thiosulfate. Higher intra-individual variability in the excretion of trimethylsulfonium (generally 2-8 fold) than that for cystine (generally 2-3 fold) was found. Trimethylsulfonium displayed significant inter-individual variability with two concentration clusters at 117 nM (97-141) and 27 nM (22-34). In conclusion, the observed inter- and intra-individual variability must be considered when using urinary trimethylsulfonium as a biomarker.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia Sezione di Napoli Osservatorio Vesuviano, 80124 Napoli, Italy; Consiglio Nazionale delle Ricerche ISMAR Istituto di Scienze Marine Napoli Calata Porta Di Massa, Porto Di Napoli 80, 80133 Napoli, Italy; Consiglio Nazionale delle Ricerche IRISS Istituto di Ricerca su Innovazione e Servizi per lo Sviluppo, Via Guglielmo Sanfelice, 8, 80134 Napoli, Italy
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
6
|
Lajin B. Variability in Background Urinary Concentrations of the Hydrogen Sulfide Biomarker Thiosulfate. ACS OMEGA 2022; 7:38622-38626. [PMID: 36340101 PMCID: PMC9631904 DOI: 10.1021/acsomega.2c04112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide is a toxic gas at high concentrations but has recently attracted attention as a naturally produced gaseous signaling molecule in various tissues of the human body, playing key physiological roles at low nanomolar concentrations. This has wide implications for chronic exposure to this gas in air at low levels far below toxicity. Thiosulfate is the currently used biomarker for exposure to hydrogen sulfide via inhalation but has been mainly employed for acute exposure. It is unknown how background thiosulfate concentrations vary on an intraindividual and interindividual basis in humans at normal ambient hydrogen sulfide levels (<1 μg m-3), which is key for the interpretation of its levels as biomarker for low-level hydrogen sulfide exposure. In the current work, the variability in thiosulfate urinary excretion in a total of 168 urine samples collected from eight volunteers over a period of 8 weeks was investigated. The determination of thiosulfate in urine was carried out by UHPLC-MS/MS. The total average concentration ± SD was 16 ± 6 μM (n = 168). Average urinary thiosulfate concentrations in the studied volunteers were within the range of 10-20 μM, but it was found that urinary thiosulfate can show significant day-to-day and week-to-week variability in some individuals (up to 10-fold), despite adjusting for urine specific gravity. In light of the presented variability data and previous studies about the lack of consistent response of thiosulfate to low levels of hydrogen sulfide inhalation exposure, and based on a review of the biochemistry of the production of thiosulfate and its various biological sources, it can be argued that thiosulfate might not be suitable as a biomarker for chronic environmental exposure to low levels of hydrogen sulfide via inhalation.
Collapse
|
7
|
Trace determination of the hydrogen sulfide biomarker thiosulfate in human urine by HPLC coupled with element selective ICPMS/MS detection. Anal Chim Acta 2022; 1237:340583. [DOI: 10.1016/j.aca.2022.340583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|