1
|
Linder T, Schnürch M, Mihovilovic MD. One-pot synthesis of triazines as potential agents affecting cell differentiation. MONATSHEFTE FUR CHEMIE 2018; 149:1257-1284. [PMID: 29983453 PMCID: PMC6006243 DOI: 10.1007/s00706-018-2212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/05/2022]
Abstract
ABSTRACT This paper outlines the synthesis of a number of structural analogs of 3-[(4,6-diphenoxy-1,3,5-triazin-2-yl)amino]benzoic acid which represent compounds with potential cardiogenetic activity. A one-pot protocol was developed for swift functionalization of the 1,3,5-triazine core without the need of isolating intermediates. The developed route starts from readily available 2,4,6-trichloro-1,3,5-triazine, displacing the chlorine atoms sequentially by aryloxy, arylamino, or arylthio moieties to enable access to molecules with three different substituents of this type in good yields. To facilitate purification, tert-butyl, methyl, and ethyl ester derivatives of the target compounds were initially synthesized. The tert-butyl esters could be readily hydrolyzed to the desired compounds, while reduction of the methyl and ethyl esters gave the corresponding benzylic alcohols in high yields, thereby expanding the substrate scope for future relevant cell assays. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Thomas Linder
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
2
|
Current Progress in the Rejuvenation of Aging Stem/Progenitor Cells for Improving the Therapeutic Effectiveness of Myocardial Repair. Stem Cells Int 2018; 2018:9308301. [PMID: 29760740 PMCID: PMC5926481 DOI: 10.1155/2018/9308301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemic heart disease affects a majority of people, especially elderly patients. Recent studies have utilized autologous adult stem/progenitor cells as a treatment option to heal cardiac tissue after myocardial infarction. However, donor cells from aging patients are more likely to be in a senescent stage. Rejuvenation is required to reverse the damage levied by aging and promote a youthful phenotype. This review aims to discuss current strategies that are effective in rejuvenating aging cardiac stem cells and represent novel therapeutic methods to treat the aging heart. Recent literature mainly focuses on three approaches that aim to reverse cardiac aging: genetic modification, pharmaceutical administration, and optimization of extracellular factors. In vitro genetic modification can be used to overexpress or knock down certain genes and allow for reversal of the aging phenotype. Pharmaceutical administration is another approach that allows for manipulation of signaling pathways related to cell proliferation and cell senescence. Since the stem cell niche can contribute to the age-related decline in stem cell function, rejuvenation strategies also include optimization of extracellular factors. Overall, improving the intrinsic properties of aging stem cells as well as the surrounding environment allows these cells to adopt a phenotype similar to their younger counterparts.
Collapse
|
3
|
Li C, Matsushita S, Li Z, Guan J, Amano A. c-kit Positive Cardiac Outgrowth Cells Demonstrate Better Ability for Cardiac Recovery Against Ischemic Myopathy. ACTA ACUST UNITED AC 2017; 7. [PMID: 29238626 PMCID: PMC5726283 DOI: 10.4172/2157-7633.1000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Resident cardiac stem cells are expected to be a therapeutic option for patients who suffer from severe heart failure. However, uncertainty remains over whether sorting cells for c-kit, a stem cell marker, improves therapeutic outcomes. Materials and methods Cardiac outgrowth cells cultured from explants of rat heart atrium were sorted according to their positivity (+) or negativity (−) for c-kit. These cells were exposed to hypoxia for 3 d, and subsequently harvested for mRNA expression measurement. The cell medium was also collected to assess cytokine secretion. To test for a functional benefit in animals, myocardial infarction (MI) was induced in rats, and c-kit+ or c-kit− cells were injected. The left ventricular ejection fraction (LVEF) was measured for up to 4 weeks, after which the heart was harvested for biological and histological analyses. Results and conclusion Expression of the angiogenesis-related genes, VEGF and ANGPTL2, was significantly higher in c-kit+ cells after 3 d of hypoxic culture, although we found no such difference prior to hypoxia. Secretion of VEGF and ANGPTL2 was greater in the c-kit+ group than in the c-kit− group, while hypoxia tended to increase cytokine expression in both groups. In addition, IGF-1 was significantly increased in the c-kit+ group, consistent with the relatively low expression of cleaved-caspase 3 revealed by western blot assay, and the relatively low count of apoptotic cells revealed by histochemical analysis. Administration of c-kit+cells into the MI heart improved the LVEF and increased neovascularization. These results indicate that c-kit+cells may be useful in cardiac stem cell therapy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhengqing Li
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Ciocci M, Mochi F, Carotenuto F, Di Giovanni E, Prosposito P, Francini R, De Matteis F, Reshetov I, Casalboni M, Melino S, Di Nardo P. Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells. Stem Cells Dev 2017; 26:1438-1447. [DOI: 10.1089/scd.2017.0051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Matteo Ciocci
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Federico Mochi
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Felicia Carotenuto
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emilia Di Giovanni
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Francini
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Igor Reshetov
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Plastic Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mauro Casalboni
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Di Nardo
- Center for Regenerative Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Toeg HD, Tiwari-Pandey R, Seymour R, Ahmadi A, Crowe S, Vulesevic B, Suuronen EJ, Ruel M. Injectable small intestine submucosal extracellular matrix in an acute myocardial infarction model. Ann Thorac Surg 2013; 96:1686-94; discussion 1694. [PMID: 24083799 DOI: 10.1016/j.athoracsur.2013.06.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND The mechanisms involved in myocardial regeneration and cardiac remodeling were examined by injecting porcine-derived small intestine submucosal extracellular matrix (SIS-ECM), with and without circulating angiogenic cells (CACs), in a mouse model of acute myocardial infarction (MI). METHODS Nine- to 10-week-old female C57BL/6J mice had the left anterior descending (LAD) coronary artery ligated. Seven days after ligation, 38 randomly allocated animals received echocardiographically guided intramyocardial injections of phosphate buffered saline (PBS), CACs, SIS-ECM, or SIS-ECM + CACs. Repeated echocardiography and immunohistochemical analysis were performed at 28 days after ligation. RESULTS Baseline postligation left ventricular ejection fraction (LVEF) was equivalent in all groups. Twenty-one days after treatment, ejection fraction improved in the SIS-ECM + CAC treatment group (by 38% ± 2.12%) and the SIS-ECM treatment group (by 36% ± 3.71%), compared with the CAC-alone and PBS treatment groups (p < 0.1). Masson's trichrome staining showed reduced infarct size in SIS-ECM + CACs (34.2% ± 3.1%) and SIS-ECM alone (34.5% ± 4.7%) compared with CACs alone (47.3% ± 6.0%) and PBS (61.9% ± 5.5%; p < 0.002). Arteriolar density in periinfarct regions was enhanced in both SIS-ECM-treated groups (by ≥ 78% ± 7%; p = 0.03). More GATA4- and β-catenin-positive cardiac cells were found in the myocardium of SIS-ECM-treated animals. CONCLUSIONS Intramyocardial delivery of SIS-ECM 7 days after MI in a mouse model reduced infarct size and improved myocardial vessel density and function; when combined with CACs it helped restore myocardial cellularity, suggesting a potential therapeutic role for SIS-ECM in cardiac regeneration.
Collapse
Affiliation(s)
- Hadi Daood Toeg
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromol Biosci 2013; 13:984-1019. [DOI: 10.1002/mabi.201200483] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Antonella Silvestri
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
- CNR-IPCF UOS Pisa; Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
7
|
Song L, Yang YJ, Dong QT, Qian HY, Gao RL, Qiao SB, Shen R, He ZX, Lu MJ, Zhao SH, Geng YJ, Gersh BJ. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One 2013; 8:e65702. [PMID: 23741509 PMCID: PMC3669282 DOI: 10.1371/journal.pone.0065702] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In a swine model of acute myocardial infarction (AMI), Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs) transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator) facilitates the effects of MSCs through activation of nitric oxide synthase (NOS), especially endothelial nitric oxide synthase (eNOS), which is known to protect against ischemic injury. METHODS AND RESULTS 42 miniswines were randomized into six groups (n = 7/group): Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA), an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001) and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004); Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019). In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and stem cells.
Collapse
Affiliation(s)
- Lei Song
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Turan RG, Bozdag-T I, Turan CH, Ortak J, Akin I, Kische S, Schneider H, Rauchhaus M, Rehders TC, Kleinfeldt T, Belu C, Amen S, Hermann T, Yokus S, Brehm M, Steiner S, Chatterjee T, Sahin K, Nienaber CA, Ince H. Enhanced mobilization of the bone marrow-derived circulating progenitor cells by intracoronary freshly isolated bone marrow cells transplantation in patients with acute myocardial infarction. J Cell Mol Med 2012; 16:852-64. [PMID: 21707914 PMCID: PMC3822854 DOI: 10.1111/j.1582-4934.2011.01358.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. We analysed in a randomized controlled study the influence of the intracoronary autologous freshly isolated BMCs-Tx on the mobilization of bone marrow–derived circulating progenitor cells (BM-CPCs) in patients with acute myocardial infarction (AMI). Sixty-two patients with AMI were randomized to either freshly isolated BMCs-Tx or to a control group without cell therapy. Peripheral blood (PB) concentrations of CD34/45+- and CD133/45+-circulating progenitor cells were measured by flow cytometry in 42 AMI patients with cell therapy as well as in 20 AMI patients without cell therapy as a control group on days 1, 3, 5, 7, 8 and 3, 6 as well as 12 months after AMI. Global ejection fraction (EF) and the size of infarct area were determined by left ventriculography. We observed in patients with freshly isolated BMCs-Tx at 3 and 12 months follow up a significant reduction of infarct size and increase of global EF as well as infarct wall movement velocity. The mobilization of CD34/45+ and CD133/45+ BM-CPCs significantly increased with a peak on day 7 as compared to baseline after AMI in both groups (CD34/45+: P < 0.001, CD133/45+: P < 0.001). Moreover, this significant mobilization of BM-CPCs existed 3, 6 and 12 months after cell therapy compared to day 1 after AMI. In control group, there were no significant differences of CD34/45+ and CD133/45+ BM-CPCs mobilization between day 1 and 3, 6 and 12 months after AMI. Intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system in patients with AMI may enhance and prolong the mobilization of CD34/45+ and CD133/45+ BM-CPCs in PB and this might increase the regenerative potency after AMI.
Collapse
Affiliation(s)
- R G Turan
- Division of Cardiology, Department of Internal Medicine, University Hospital Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 2011; 32:565-78. [PMID: 20889201 DOI: 10.1016/j.biomaterials.2010.08.097] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/29/2010] [Indexed: 11/20/2022]
Abstract
Proper spatio-temporal delivery of multiple therapeutic proteins represents a major challenge in therapy strategies aimed at inducing myocardial regeneration after myocardial infarction (MI). We hypothesized that the dual delivery of insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) by injectable affinity-binding alginate biomaterial would maximize their therapeutic effects, leading to a more favorable course of tissue restoration after acute MI. A sequential release of IGF-1 followed by HGF was attained from affinity-binding alginate biomaterial, which also protected the proteins from proteolysis (shown by mass spectroscopy). The released factors retained bioactivity, as judged by their capability to activate their respective signaling pathways and to prevent cardiomyocyte apoptosis in vitro. In a rat model of acute MI, an intramyocardial injection of the dual IGF-1/HGF affinity-bound alginate biomaterial preserved scar thickness, attenuated infarct expansion and reduced scar fibrosis after 4 weeks, concomitantly with increased angiogenesis and mature blood vessel formation at the infarct. Furthermore, this treatment prevented cell apoptosis, induced cardiomyocyte cell cycle re-entry and increased the incidence of GATA-4-positive cell clusters. The dual delivery of IGF-1 and HGF from affinity-binding alginate biomaterial represents a useful strategy to treat MI. It showed a marked therapeutic efficacy at various tissue levels, as well as potential to induce endogenous regeneration of cardiac muscle.
Collapse
|
10
|
Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. BONE MARROW RESEARCH 2010; 2011:207326. [PMID: 22046556 PMCID: PMC3195349 DOI: 10.1155/2011/207326] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.
Collapse
|
11
|
Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF. Cardiovascular magnetic resonance imaging in experimental models. Open Cardiovasc Med J 2010; 4:278-92. [PMID: 21331311 PMCID: PMC3040459 DOI: 10.2174/1874192401004010278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system.
Collapse
Affiliation(s)
- Anthony N Price
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | | | | | | | | | | |
Collapse
|
12
|
Reffelmann T, Kloner RA. Blood supply of the graft after cellular cardiomyoplasty. Regen Med 2010; 5:777-86. [PMID: 20868332 DOI: 10.2217/rme.10.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellular cardiomyoplasty is under extensive investigation as a potential therapeutic strategy after myocardial infarction, in congestive heart failure and chronic ischemic heart disease. Various cell sources and techniques for transplantation have been studied in animal models of cardiac disease. The initial goal of replacing myocardial scar tissue by vital myocardial cells, integrated into the host, simultaneously beating and contributing to systolic force, has not yet been accomplished. However, most experimental models provided evidence for enhanced vascularization after cell transplantation. In some investigations, neovascularization was also shown to be accompanied by increased myocardial perfusion. Mechanisms by which vascularization occurs have not been fully elucidated: either the transplanted cells provide an angiogenic stimulus, involving various paracrine or hormone-like factors, which induces the formation of a new vasculature or, depending on the source of transplanted cells, the cells incorporate into the vascular network after proliferation and differentiation. This review summarizes research that specifically studied the occurrence, magnitude and mechanisms of enhanced myocardial blood supply after cellular cardiomyoplasty.
Collapse
Affiliation(s)
- Thorsten Reffelmann
- The Heart Institute, Good Samaritan Hospital, Division of Cardiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90017-2395, USA.
| | | |
Collapse
|
13
|
Leblond AL, O'Sullivan J, Caplice N. Bone marrow mononuclear stem cells: potential in the treatment of myocardial infarction. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2009; 2:11-9. [PMID: 24198506 PMCID: PMC3781688 DOI: 10.2147/sccaa.s6210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Indexed: 12/19/2022]
Abstract
Despite advances in the management of myocardial infarction, congestive heart failure following myocardial infarction continues to be a major worldwide medical problem. Mononuclear cells from bone marrow are currently being studied as potential candidates for cell-based therapy to repair and regenerate damaged myocardium, with mixed results. The success of this strategy requires structural repair through both cardiomyogenesis and angiogenesis but also functional repair. However, pre-clinical and clinical studies with the intracoronary administration of cells indicate limited cardiomyogenesis and cell survival, controversial functional benefit and suggest paracrine effects mediated by the administered cells. Further investigations for optimizing therapeutic benefit focus on the requirement for stable cell engraftment and the involvement of cytokines in this process. This includes a large and varied range of strategies including cell or heart pre-treatment, tissue engineering and protein therapy. Although cell-based therapy holds promise in the future treatment of myocardial infarction, its current use is significantly hampered by biological and technological challenges.
Collapse
Affiliation(s)
- Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
14
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
From bone marrow transplants 5 decades ago to the most recent stem cell-derived organ transplants, regenerative medicine is increasingly recognized as an emerging core component of modern practice. In cardiovascular medicine, innovation in stem cell biology has created curative solutions for the treatment of both ischemic and nonischemic cardiomyopathy. Multiple cell-based platforms have been developed, harnessing the regenerative potential of various natural and bioengineered sources. Clinical experience from the first 1000 patients (approximately) who have received stem cell therapy worldwide indicates a favorable safety profile with modest improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Further investigation is required before early adoption and is ongoing. Broader application in practice will require continuous scientific advances to match each patient with the most effective reparative phenotype, while ensuring optimal cell delivery, dosing, and timing of intervention. An interdisciplinary effort across the scientific and clinical community within academia, biotechnology, and government will drive the successful realization of this next generation of therapeutic agents for the "broken" heart.
Collapse
Affiliation(s)
- Bernard J Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
16
|
Reffelmann T, Kloner RA. Intracoronary blood- or bone marrow-derived cell transplantation in patients with ischemic heart disease. Regen Med 2009; 4:709-19. [DOI: 10.2217/rme.09.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Soon after the first experimental scientific investigations of cell transplantation in various animal models of myocardial infarction and left ventricular dysfunction, a growing number of clinical trials evaluated the effects of intracoronary injection of peripheral blood- or bone marrow-derived cells in patients with myocardial infarction or chronic ischemic heart disease. In most of these trials, changes in parameters of left ventricular remodeling over time, such as left ventricular volumes, ejection fraction or infarct size, were used as trial end points, whereas information on mortality and morbidity after cell transplantation is sparse. Several meta-analyses, each including various sets of studies, estimated that intracoronary cell therapy was associated with small reductions in left ventricular end-systolic volumes and a moderate increase in left ventricular ejection fraction of 2.9–6.1% over time compared with control patients. As most of the clinical trials included a limited number of patients, results vary substantially between different studies. When evaluating whether effects of intracoronary cell transplantation on parameters of left ventricular remodeling may be transferable to meaningful consequences in terms of clinical outcome, the following aspects appear to be imperative. Robust data on mortality and clinical events based on a sufficient number of patients are required. Furthermore, effects of cell therapy must be compared with established therapeutic concepts for the treatment of myocardial infarction, such as reperfusion therapy or pharmacological interventions aiming at favorably influencing the remodeling process. Moreover, the potential effects of cell therapy must be evaluated as treatment options additive to established therapeutic strategies.
Collapse
Affiliation(s)
- Thorsten Reffelmann
- Klinik und Poliklinik für Innere Medizin B, Universitätsklinikum der Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Löffler Str. 23 a, 17475 Greifswald, Germany
- The Heart Institute, Good Samaritan Hospital, Division of Cardiology, Keck School of Medicine, University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017-2395, USA
| | - Robert A Kloner
- The Heart Institute, Good Samaritan Hospital, Division of Cardiology, Keck School of Medicine, University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017-2395, USA
| |
Collapse
|
17
|
Forrester JS, Makkar RR, Marbán E. Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. J Am Coll Cardiol 2009; 53:2270-2. [PMID: 19520250 DOI: 10.1016/j.jacc.2009.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 11/17/2022]
|