1
|
Rossi D, Dong Y, Paradkar R, Chen X, Wu Y, Mohler C, Kuo TC, Chen Z. Quantifying Chemical Reactions and Interfacial Properties at Buried Polymer/Polymer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12689-12696. [PMID: 38842226 DOI: 10.1021/acs.langmuir.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Maleic anhydride (MAH)-modified polymers are used as tie layers for binding dissimilar polymers in multilayer polymer films. The MAH chemistry which promotes adhesion is well characterized in the bulk; however, only recently has the interfacial chemistry been studied. Sum frequency generation vibrational spectroscopy (SFG) is an interfacial spectroscopy technique which provides detailed information on interfacial chemical reactions, species, and molecular orientations and has been essential for characterizing the MAH chemistry in both nylon and ethyl vinyl alcohol copolymer (EVOH) model systems and coextruded multilayer films. Here, we further characterize the interfacial chemistry between MAH-modified polyethylene tie layers and both EVOH and nylon by investigating the model systems over a range of MAH concentrations. We can detect the interfacial chemical reaction products between MAH and the barrier layer at MAH concentrations of ≥0.022 wt % for nylon and ≥0.077 wt % for EVOH. Additionally, from the concentration-dependent reaction reactant/product SFG peak positions and the product imide or ester/acid C═O group tilt angles extracted from the polarization-dependent SFG spectra, we quantitatively observe concentration-dependent changes to both the interfacial chemistry and interfacial structure. The interfacial chemistry and molecular orientation as a function of MAH concentration are well correlated with the adhesion strength, providing important quantitative information for the future design of MAH-modified tie layers for a variety of important applications.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Dong
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Yuchen Wu
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Tzu-Chi Kuo
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Xu Z, Li G, Zhang Y, Wu Y, Lu X. Probing Interfacial Aging of Model Adhesion Joints under a Hygrothermal Environment at a Molecular Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9280-9288. [PMID: 38619299 DOI: 10.1021/acs.langmuir.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Generally, for adhesive joints, the polar water molecules in humid environments can have a critical effect on the interfacial structures and structural evolution adjacent to the solid substrates. Regarding this, it is still a big challenge to detect and understand the interfacial hygrothermal aging process at the molecular level in real time and in situ. In this study, to trace the interfacial hygrothermal aging process of a classical epoxy formula containing diglycidyl ether of biphenyl A (DGEBA) and 2,2'-(ethylenedioxy) diethylamine (EDDA) with sapphire and fused silica in a typical hygrothermal environment (85 °C and 85% RH), sum frequency generation (SFG) vibrational spectroscopy was used to probe the molecular-level interfacial structural change over the time. The structural evolution dynamics at the buried epoxy/sapphire and epoxy/silica interfaces upon hygrothermal aging were revealed directly in situ. The interfacial delamination during hygrothermal aging was also elucidated from the molecular level. Upon hygrothermal aging, the interfacial CH signals, such as the ones from methyl, methylene, and phenyl groups, decreased significantly and the water OH signals increased substantially, indicating the water molecules had diffused into the interfaces and destroyed the original interactions between the epoxy formula and the substrates. Further analysis indicates that when the integrated signals in the CH range declined to their minimum and leveled off, the interfacial delamination happened. The tensile experiment proved the validity of these spectroscopic experimental results. Our study provides first-hand and molecular-level evidence on a direct correlation between the diffusion of the surrounding water molecules into the interface and the evolution/destruction of the interfacial structures during hygrothermal aging. More importantly, it is proved, SFG can be developed into a powerful tool to noninvasively reveal the local interfacial delamination in real time and in situ under extreme hygrothermal conditions, complemented by the mechanic test.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaoming Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaolin Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Lin T, Wu Y, Santos E, Chen X, Gubbels F, Shephard N, Mohler C, Ahn D, Kuo TC, Chen Z. Elucidating the Changes in Molecular Structure at the Buried Interface of RTV Silicone Elastomers during Curing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5968-5977. [PMID: 38441876 DOI: 10.1021/acs.langmuir.3c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Silicone elastomers are widely used in many industrial applications, including coatings, adhesives, and sealants. Room-temperature vulcanized (RTV) silicone, a major subcategory of silicone elastomers, undergoes molecular structural transformations during condensation curing, which affect their mechanical, thermal, and chemical properties. The role of reactive hydroxyl (-OH) groups in the curing reaction of RTV silicone is crucial but not well understood, particularly when multiple sources of hydroxyl groups are present in a formulated product. This work aims to elucidate the interfacial molecular structural changes and origins of interfacial reactive hydroxyl groups in RTV silicone during curing, focusing on the methoxy groups at interfaces and their relationship to adhesion. Sum frequency generation (SFG) vibrational spectroscopy is an in situ nondestructive technique used in this study to investigate the interfacial molecular structure of select RTV formulations at the buried interface at different levels of cure. The primary sources of hydroxyl groups required for interfacial reactions in the initial curing stage are found to be those on the substrate surface rather than those from the ingress of ambient moisture. The silylation treatment of silica substrates eliminates interfacial hydroxyl groups, which greatly impact the silicone interfacial behavior and properties (e.g., adhesion). This study establishes the correlation between interfacial molecular structural changes in RTV silicones and their effect on adhesion strength. It also highlights the power of SFG spectroscopy as a unique tool for studying chemical and structural changes at RTV silicone/substrate interface in situ and in real time during curing. This work provides valuable insights into the interfacial chemistry of RTV silicone and its implications for material performance and application development, aiding in the development of improved silicone adhesives.
Collapse
Affiliation(s)
| | | | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Frederic Gubbels
- Dow Silicones Belgium sprl, Parc Industriel Zone C, rue Jules Bordet, B-7180 Seneffe, Belgium
| | - Nick Shephard
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Tzu-Chi Kuo
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | | |
Collapse
|
4
|
Xu Z, Zhang Y, Wu Y, Lu X. Spectroscopically Detecting Molecular-Level Bonding Formation between an Epoxy Formula and Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13261-13271. [PMID: 36254887 DOI: 10.1021/acs.langmuir.2c02325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The formation of the interfacial adhesion between an epoxy adhesive and a substrate was normally accompanied by the epoxy curing process on the substrate. Although the debate on the formation mechanism of the interfacial adhesion is still ongoing, this issue can causally be resolved by studying the interfacial structural formation between the epoxy adhesive and the substrate. Herein, to reveal the interfacial structural formation of a representative formula composed of epoxy (digylcidyl ether of biphenyl A, DGEBA) and amine hardener (2,2'-(ethylenedioxy) diethylamine, EDDA) with the steel substrate upon curing and postcuring treatments, sum-frequency generation (SFG) vibrational spectroscopy with a sandwiched transparent window/epoxy adhesive/steel setup was applied to detect and track the buried molecular-level structures at the epoxy adhesive/steel interface. An X-ray photoelectron spectroscopic (XPS) experiment was performed to probe the intentionally exposed interface to disclose the occurring interfacial chemical reaction. The reaction between the epoxy groups and the steel-surface OH groups and the molecular reconstruction of interfacial epoxy methyl groups upon curing and postcuring steps were confirmed. The latter also indirectly indicated the formation of the additional hydrogen bonding and the former bonding reaction at the interface. The above two spectroscopic experimental results matched up with the further examination of the adhesion strength. Therefore, this work elucidates the formation of the interfacial bonding between the epoxy formula and the steel substrate upon curing and postcuring treatments at the molecular level, thus providing an in-depth insight into the origin of the interfacial adhesion.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
5
|
Xu Z, Zhang Y, Wu Y, Lu X. Molecular-Level Correlation between Spectral Evidence and Interfacial Bonding Formation for Epoxy Adhesives on Solid Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5847-5856. [PMID: 35441517 DOI: 10.1021/acs.langmuir.2c00470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial bonding strength of an epoxy-based adhesive depends on the interfacial interaction between the adhesive and the substrate. Normally, the curing process at the interface accompanied by the interfacial bonding formation is different from that in the bulk, and it is still a big challenge to probe the interfacial bonding formation at a molecular level. In this study, to trace the interfacial structural evolution of a representative formula of epoxy (digylcidyl ether of biphenyl A, DGEBA) and amine hardener [1,2-bis(2-aminoethoxy)ethane, EDDA] with the sapphire and silica substrates upon curing and post-curing steps, sum frequency generation (SFG) vibrational spectroscopy is employed to detect the molecular-level interfacial structural information. For the sapphire substrate, upon curing, backbone methylene (CH2) stretching signals decrease, indicating the formation of a rigid chain network structure and thus losing the local methylene order, while vibrational signals of the sapphire surface hydroxyl (OH) groups (including hydrogen-bonded and unbonded) increase significantly, indicating the formation of a strong hydrogen-bonding and polar interaction between the epoxy adhesive and the sapphire surface. Upon post-curing, increased backbone CH2 signals and decreased sapphire OH signals suggest interfacial chemical bonding formation due to the reaction between the epoxy rings and the sapphire surface OH groups. Orientation analysis confirms the enhanced ordering of the sapphire surface OH groups upon curing and post-curing, in comparison to the uncured epoxy formula. As for the fused silica, weak vibrational signals of the methylene (CH2) and methyl (CH3) groups are observed before curing, while both of them increase slightly for the cured and post-cured epoxy formulae, suggesting relatively less hydrophilic nature of the silica surface compared to that of the sapphire surface, also evidenced by the very weak OH signals upon curing and post-curing. Further measurement on the adhesion strength matches up with the above spectroscopic experimental results, substantiating the correlation between the macroscopic bonding strength of the epoxy adhesive and the microscopic molecular-level structure.
Collapse
Affiliation(s)
- Zhaohui Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Lin T, Wu Y, Santos E, Chen X, Ahn D, Mohler C, Chen Z. Molecular Insights into Adhesion at a Buried Silica-Filled Silicone/Polyethylene Terephthalate Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15128-15140. [PMID: 33283520 DOI: 10.1021/acs.langmuir.0c02719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicone adhesives are widely used in many important applications in aviation, automotive, construction, and electronics industries. The mixture of (3-glycidoxypropyl)trimethoxysilane (γ-GPS) and hydroxy-terminated dimethyl methylvinyl co-siloxanol (DMMVS) has been widely used as an adhesion promoter in silicone elastomers to enhance the adhesion between silicone and other materials including polymers. The interfacial molecular structures of silicone elastomers and the adhesion promotion mechanisms of a γ-GPS-DMMVS mixture in silicone without a filler or an adhesion catalyst (AC) have been extensively investigated using sum frequency generation (SFG) vibrational spectroscopy previously. In this research, SFG was applied to study interfacial structures of silicone elastomeric adhesives in the presence of a silica filler and/or a zirconium(IV) acetylacetonate adhesion catalyst at the silicone/polyethylene terephthalate (PET) interface in situ nondestructively to understand their individual and synergy effects. The interfacial structures obtained from the SFG study were correlated to the adhesion behavior to PET. The interfacial reactions of methoxy and epoxy groups of the adhesion promoter were found to play significant roles in enhancing the interfacial adhesion of the buried interface. This research provides an in-depth molecular-level understanding on the effects of a filler and an adhesion catalyst on the interfacial behavior of the adhesion promotion system for silicone elastomers as well as the related impact on adhesion.
Collapse
Affiliation(s)
- Ting Lin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Zhang C. Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces. APPLIED SPECTROSCOPY 2017; 71:1717-1749. [PMID: 28537432 DOI: 10.1177/0003702817708321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sum frequency generation vibrational spectroscopy (SFG-VS) has become one of the most appealing technologies to characterize molecular structures at interfaces. In this focal point review, we focus on SFG-VS studies at buried polymer interfaces and review many of the recent publications in the field. We also cover the essential theoretical background of SFG-VS and discuss the experimental implementation of SFG-VS.
Collapse
Affiliation(s)
- Chi Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Ulrich NW, Andre J, Williamson J, Lee KW, Chen Z. Plasma treatment effect on polymer buried interfacial structure and property. Phys Chem Chem Phys 2017; 19:12144-12155. [DOI: 10.1039/c7cp00567a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adhesion is important in many industrial applications including those in the microelectronics industry.
Collapse
Affiliation(s)
- Nathan W. Ulrich
- Department of Chemistry
- University of Michigan
- 930 North University Avenue
- Ann Arbor
- USA
| | - John Andre
- Department of Chemistry
- Humboldt State University
- Arcata
- USA
| | | | - Kang-Wook Lee
- IBM Thomas J. Watson Research Center
- Yorktown Heights
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- 930 North University Avenue
- Ann Arbor
- USA
| |
Collapse
|
9
|
Lu X, Zhang C, Ulrich N, Xiao M, Ma YH, Chen Z. Studying Polymer Surfaces and Interfaces with Sum Frequency Generation Vibrational Spectroscopy. Anal Chem 2016; 89:466-489. [DOI: 10.1021/acs.analchem.6b04320] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaolin Lu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Chi Zhang
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nathan Ulrich
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Minyu Xiao
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yong-Hao Ma
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, Jiangsu Province, P. R. China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Myers JN, Chen Z. Surface plasma treatment effects on the molecular structure at polyimide/air and buried polyimide/epoxy interfaces. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Hehn M, Sinha P, Pasch H, Hiller W. Onflow liquid chromatography at critical conditions coupled to 1H and 2H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition. J Chromatogr A 2015; 1387:69-74. [DOI: 10.1016/j.chroma.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
|
12
|
Ulrich NW, Myers JN, Chen Z. Characterization of polymer/epoxy buried interfaces with silane adhesion promoters before and after hygrothermal aging for the elucidation of molecular level details relevant to adhesion. RSC Adv 2015. [DOI: 10.1039/c5ra24332g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Buried interfacial structures containing epoxy underfills are incredibly important in the microelectronics industry and their structures determine the interfacial adhesion properties and ultimately their lifetime.
Collapse
Affiliation(s)
| | - John N. Myers
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
13
|
Myers JN, Zhang C, Lee KW, Williamson J, Chen Z. Hygrothermal aging effects on buried molecular structures at epoxy interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:165-171. [PMID: 24345068 DOI: 10.1021/la4037869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interfacial properties such as adhesion are determined by interfacial molecular structures. Adhesive interfaces in microelectronic packages that include organic polymers such as epoxy are susceptible to delamination during accelerated stress testing. Infrared-visible sum frequency generation vibrational spectroscopy (SFG) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used to study molecular structures at buried epoxy interfaces during hygrothermal aging to relate molecular structural changes at buried interfaces to decreases in macroscopic adhesion strength. SFG peaks associated with strongly hydrogen bonded water were detected at hydrophilic epoxy interfaces. Ordered interfacial water was also correlated to large decreases in interfacial adhesion strength that occurred as a result of hygrothermal aging, which suggests that water diffused to the interface and replaced original hydrogen bond networks. No water peaks were observed at hydrophobic epoxy interfaces, which was correlated with a much smaller decrease in adhesion strength from the same aging process. ATR-FTIR water signals observed in the epoxy bulk were mainly contributed by relatively weakly hydrogen bonded water molecules, which suggests that the bulk and interfacial water structure was different. Changes in interfacial methyl structures were observed regardless of the interfacial hydrophobicity which could be due to water acting as a plasticizer that restructured both the bulk and interfacial molecular structure. This research demonstrates that SFG studies of molecular structural changes at buried epoxy interfaces during hygrothermal aging can contribute to the understanding of moisture-induced failure mechanisms in electronic packages that contain organic adhesives.
Collapse
Affiliation(s)
- John N Myers
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
14
|
Zhang C, Chen Z. Quantitative molecular level understanding of ethoxysilane at poly(dimethylsiloxane)/polymer interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:610-619. [PMID: 23241016 DOI: 10.1021/la3041727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Because of the wide applications of silicone adhesives, it is important to study adhesion mechanisms of silicone elastomers to polymers. Adhesion properties are believed to be directly related to the molecular structures at the adhesive/substrate interfaces. To improve adhesion, adhesion promoters such as silanes are commonly used to modify the interfacial structures. It is difficult to study buried interfacial molecular structures between two materials in situ using conventional analytical techniques. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate molecular structures at buried silicone/poly(ethylene terephthalate) (PET) interfaces. Environmental-friendly epoxysilanes including (3-glycidoxypropyl)triethoxysilane (γ-GPES), (3-glycidoxypropyl)methyldiethoxysilane (γ-GPDES), and (3-glycidoxypropyl)dimethylethoxysilane (γ-GPDMES) and their mixtures with methylvinylsiloxanol (MVS) were used as adhesion promoters to modify silicone adhesion properties to PET. Various PET/silane, PET/uncured silicone, and PET/cured silicone interfaces were examined. The interfacial structures deduced from SFG spectra were correlated to adhesion testing results. It was found that silane headgroup order at the polymer interfaces is an important factor for improving adhesion. The decrease of silane headgroup order due to chemical reaction and disordering of such groups at the polymer interfaces can be associated with improved adhesion. The molecular level understanding on polymer/adhesive interfacial structures helps to design and develop adhesion promoters and polymer adhesives with improved performance.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
15
|
Zhang C, Myers J, Chen Z. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy. SOFT MATTER 2013; 9:4738-4761. [PMID: 23710244 PMCID: PMC3661304 DOI: 10.1039/c3sm27710k] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
16
|
Zhang C, Shephard NE, Rhodes SM, Chen Z. Headgroup effect on silane structures at buried polymer/silane and polymer/polymer interfaces and their relations to adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6052-6059. [PMID: 22424184 DOI: 10.1021/la300004x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy was used to study the effect of silane headgroups on the molecular interactions that occur between poly(ethylene terephthalate) (PET) and various epoxy silanes at the PET/silane and PET/silicone interfaces. Three different silanes were investigated: (3-glycidoxypropyl) trimethoxysilane (γ-GPS), (3-glycidoxypropyl) methyl-dimethoxysilane (γ-GPMS), and (3-glycidoxypropyl) dimethyl-methoxysilane (γ-GPDMS). These silanes share the same backbone and epoxy end group but have different headgroups. SFG was used to examine the interfaces between PET and each of these silanes, as well as silanes mixed with methylvinylsiloxanol (MVS). We also examined the interfaces between PET and uncured or cured silicone with silanes or silane-MVS mixtures. Silanes with different headgroups were found to exhibit a variety of methoxy group interfacial segregation and ordering behaviors at various interfaces. The effect of MVS was also dependent upon silane headgroup choice, and the interfacial molecular structures of silane methoxy headgroups were found to differ at PET/silane and PET/silicone interfaces. Epoxy silanes have been widely used as adhesion promoters for polymer adhesives; therefore, the molecular structures probed using SFG were correlated to adhesion testing results to understand the molecular mechanisms of silicone-polymer adhesion. Our results demonstrated that silane methoxy headgroups play important roles in adhesion at the PET/silicone interfaces. The presence of MVS can change interfacial methoxy segregation and ordering, leading to different adhesion strengths.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
17
|
Sum Frequency Generation Vibrational Spectroscopy of Silicone Surfaces & Interfaces. ADVANCES IN SILICON SCIENCE 2012. [DOI: 10.1007/978-94-007-3876-8_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Vázquez AV, Holden B, Kristalyn C, Fuller M, Wilkerson B, Chen Z. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1640-1651. [PMID: 21504140 DOI: 10.1021/am2001899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.
Collapse
Affiliation(s)
- Anne V Vázquez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
19
|
Chen Z. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog Polym Sci 2010; 35:1376-1402. [PMID: 21113334 DOI: 10.1016/j.progpolymsci.2010.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
20
|
Lu X, Li D, Kristalyn CB, Han J, Shephard N, Rhodes S, Xue G, Chen Z. Directly Probing Molecular Ordering at the Buried Polymer/Metal Interface. Macromolecules 2009. [DOI: 10.1021/ma901757w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaolin Lu
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China 210093
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - Dawei Li
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China 210093
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - Cornelius B. Kristalyn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - Jianglong Han
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China 210093
| | - Nick Shephard
- Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan 48686
| | - Susan Rhodes
- Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan 48686
| | - Gi Xue
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China 210093
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Lu X, Han J, Shephard N, Rhodes S, Martin AD, Li D, Xue G, Chen Z. Phenolic Resin Surface Restructuring upon Exposure to Humid Air: A Sum Frequency Generation Vibrational Spectroscopic Study. J Phys Chem B 2009; 113:12944-51. [DOI: 10.1021/jp9058092] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaolin Lu
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Jianglong Han
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Nick Shephard
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Susan Rhodes
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Alex D. Martin
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Dawei Li
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Gi Xue
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Zhan Chen
- Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, and Specialty Chemicals Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| |
Collapse
|
22
|
Vázquez AV, Shephard NE, Steinecker CL, Ahn D, Spanninga S, Chen Z. Understanding molecular structures of silanes at buried polymer interfaces using sum frequency generation vibrational spectroscopy and relating interfacial structures to polymer adhesion. J Colloid Interface Sci 2009; 331:408-16. [DOI: 10.1016/j.jcis.2008.11.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 11/23/2008] [Accepted: 11/28/2008] [Indexed: 11/15/2022]
|
23
|
Lu X, Shephard N, Han J, Xue G, Chen Z. Probing Molecular Structures of Polymer/Metal Interfaces by Sum Frequency Generation Vibrational Spectroscopy. Macromolecules 2008. [DOI: 10.1021/ma801680f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaolin Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, and ATVB Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Nick Shephard
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, and ATVB Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Jianglong Han
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, and ATVB Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Gi Xue
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, and ATVB Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan, 48109, Department of Polymer Science, Nanjing University, Nanjing, People’s Republic of China, 210093, and ATVB Business, Materials Science Technology Platform, Dow Corning Corporation, 2200 W. Salzburg Road, Midland, Michigan, 48686
| |
Collapse
|