1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Li L, Zhu Z, Ni J, Zuo X. Sustainable phosphorus adsorption and recovery from aqueous solution by a novel recyclable Ca-PAC-CTS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165444. [PMID: 37442468 DOI: 10.1016/j.scitotenv.2023.165444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Phosphorus removal has been explored for a long time, however sustainable phosphorus adsorption and recovery with adsorbents recycling is rarely reported. This work proposes a sustainable phosphorus recycling route with calcium-modified powdered activated carbon with chitosan (Ca-PAC-CTS). The morphology, functional groups and crystal structure of Ca-PAC-CTS were characterized. The maximum phosphorus adsorption capacity was 16.73 mg/g Ca-PAC-CTS with Langmuir model at 298 K. Stable phosphorus sorption on Ca-PAC-CTS could be observed at the large range of pH (4- 10) when coexisting with NO3-, SO42-, Cl- and F-, except HCO3-. 98.95 % The recovery of adsorbed phosphorus could get to 98.95 % using 0.05 M sulfuric acid solution, and the phosphate adsorption efficiency through Ca-PAC-CTS remained to be more than 80 % after five adsorption-desorption cycles, suggesting that Ca-PAC-CTS was one of the promising adsorbents for sustainable removal and recovery of phosphorus in aqueous solution.
Collapse
Affiliation(s)
- Lucheng Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zehua Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jie Ni
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaojun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Tripathy S, Jali P, Parida C, Pradhan C. Study on biodegradability and thermal behaviour of composites using poly lactic acid and gamma-irradiated fibres of Luffa cylindrica. CHEMOSPHERE 2020; 261:127684. [PMID: 32721687 DOI: 10.1016/j.chemosphere.2020.127684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Surface modification of natural fibres by gamma irradiation is an economical and potent technique. The biodegradability of gamma irradiated Luffa cylindrica (LC) fibres having response of doses (0.5Gy, 1Gy and 2Gy) is studied. The degradation process is carried out in various environments like compost, sand, soil, salt water, brackish water and sweet water for a period of 90 days and microbial degradation using bacteria and fungi for a period of 90 days. The rate of biodegradation was calculated by measuring the loss of weight of composites at an interval of 30 days in each environmental condition. Preliminary results reported that the bacterial environment was the most prominent medium for degradation than fungi. B8 composites showed degradation of 27.5% and 3.59 in bacterial and fungal medium respectively. A minimum degradation was observed in compost medium (0.29%, 2.52%, 0.21%, 0.08%, 0.11%, 0.13%, 0.17%, 1.25% and 1.51% for B1-B9 respectively). For exploring the use of the composites in the field of biomedical sciences, the LC fibres are modified using calcium salts before reinforcement. The thermal properties like crystallization temperature (Tcc), glass transition temperature (Tg), melting peak temperature (Tm) and thermal stability of the bio-composites were analyzed using Differential scanning calorimetry (DSC) in temperature range from 30 °C to 250 °C and the thermogravimetric analysis (TGA) was done in the temperature range of 20 °C to 700 °C. With increase in irradiation dose, crystallization temperature and glass transition temperature increased. Increasing in the irradiation dose, thermal stability of the composites decreased.
Collapse
Affiliation(s)
| | - Pallavi Jali
- Department of Botany, Utkal University, Bhubaneswar, Odisha, India
| | - Chhatrapati Parida
- Department of Physics, College of Basic Sciences and Humanities, OUAT, Bhubaneswar, Odisha, India
| | - Chinmay Pradhan
- Department of Botany, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Shams M, Karimi M, Heydari M, Salimi A. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111271. [PMID: 32919635 DOI: 10.1016/j.msec.2020.111271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Nanocomposite scaffolds were fabricated from poly (ε-caprolactone) (PCL), Poly (2-hydroxyethylmethacrylate) (PHEMA), and Apacite (Apatite-calcite) nanostructures (15 and 25 wt%). The nanoscale structure, physical and chemical properties, mechanical properties, hydrophilic behavior, degradability and osteogenic properties of the fabricated scaffolds were evaluated. The results showed that the mechanical strength, degradation, wetting ability, and mechanical strength of PCL-PHEMA scaffolds significantly increases upon inclusion of Apacite nanoparticles up to 25 wt%. Accordingly, the best mechanical values (E ~ 7.109 MPa and σ ~ 0.414 MPa) and highest degradability (32% within 96 h) were recorded for PCL-PHEMA scaffolds containing 25 wt% of Apacite. Furthermore, highest porosity and roughness were observed in the PCL-PHEMA/25% Apacite as a result of the Apacite nanoparticles inclusion. There was no cytotoxicity recorded for the fabricated scaffolds based on the results obtained from MTT assay and acridine orange staining. Alkaline phosphatase activity, calcium content quantification, Van Kossa staining, FESEM and real time PCR tests confirmed the biomineralization, and the differentiation potential of the nanocomposite scaffolds. Overall, the 3D structure, optimum porosity and balanced dissolution rate of PCL-PHEMA/25% Apacite providing a balanced microenvironment resulted in improved cell adhesion, cell behavior, and replication, as well as osteogenic induction of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs).
Collapse
Affiliation(s)
- Mehdi Shams
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Mohammad Karimi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Masoomeh Heydari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
The Effect of Mesoporous Bioactive Glass Nanoparticles/Graphene Oxide Composites on the Differentiation and Mineralization of Human Dental Pulp Stem Cells. NANOMATERIALS 2020; 10:nano10040620. [PMID: 32230907 PMCID: PMC7221817 DOI: 10.3390/nano10040620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of mesoporous bioactive glass nanoparticle (MBN)/graphene oxide (GO) composites on the mineralization ability and differentiation potential of human dental pulp stem cells (hDPSCs). MBN/GO composites were synthesized using the sol-gel method and colloidal processing to enhance the bioactivity and mechanical properties of MBN. Characterization using FESEM, XRD, FTIR, and Raman spectrometry showed that the composites were successfully synthesized. hDPSCs were then cultured directly on the MBN/GO (40:1 and 20:1) composites in vitro. MBN/GO promoted the proliferation and alkaline phosphatase (ALP) activity of hDPSCs. In addition, qRT-PCR showed that MBN/GO regulated the mRNA levels of odontogenic markers (dentin sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1), ALP, matrix extracellular phosphoglycoprotein (MEPE), bone morphogenetic protein 2 (BMP-2), and runt-related transcription factor 2 (RUNX-2)). The mRNA levels of DSPP and DMP-1, two odontogenesis-specific markers, were considerably upregulated in hDPSCs in response to growth on the MBN/GO composites. Western blot analysis revealed similar results. Alizarin red S staining was subsequently performed to further investigate MBN/GO-induced mineralization of hDPSCs. It was revealed that MBN/GO composites promote odontogenic differentiation via the Wnt/β-catenin signaling pathway. Collectively, the results of the present study suggest that MBN/GO composites may promote the differentiation of hDPSCs into odontoblast-like cells, and potentially induce dentin formation.
Collapse
|
6
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
7
|
Lee WH, Loo CY, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:929-939. [DOI: 10.1016/j.msec.2019.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/22/2023]
|
8
|
Amedlous A, Amadine O, Essamlali Y, Daanoun K, Aadil M, Zahouily M. Aqueous-phase catalytic hydroxylation of phenol with H 2O 2 by using a copper incorporated apatite nanocatalyst. RSC Adv 2019; 9:14132-14142. [PMID: 35519325 PMCID: PMC9064069 DOI: 10.1039/c9ra02021g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022] Open
Abstract
Copper incorporated apatite (Cu-apatite) nanomaterial was prepared by a co-precipitation method. The obtained material was characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and Raman spectroscopy, scanning electron microscopy (SEM, STEM) and nitrogen adsorption-desorption. The as-prepared Cu-apatite was used to catalyze phenol hydroxylation with hydrogen peroxide as an oxidant. The influencing parameters including reaction time, temperature, H2O2/phenol ratio and catalyst mass have been investigated. Under the optimized conditions, the Cu-apatite catalyst gave a phenol conversion of 64% with 95% selectivity to dihydroxybenzenes. More importantly, the results of catalyst recycling indicated that the same catalytic performance has been obtained after four cycles with a slight loss of activity and selectivity.
Collapse
Affiliation(s)
- Abdallah Amedlous
- VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli Madinat El Irfane 10100-Rabat Morocco
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FST, Université Hassan II-Casablanca Morocco
| | - Othmane Amadine
- VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli Madinat El Irfane 10100-Rabat Morocco
| | - Younes Essamlali
- VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli Madinat El Irfane 10100-Rabat Morocco
| | - Karim Daanoun
- VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli Madinat El Irfane 10100-Rabat Morocco
| | - Mina Aadil
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FST, Université Hassan II-Casablanca Morocco
| | - Mohamed Zahouily
- VARENA Center, MAScIR Foundation, Rabat Design, Rue Mohamed El Jazouli Madinat El Irfane 10100-Rabat Morocco
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FST, Université Hassan II-Casablanca Morocco
| |
Collapse
|
9
|
Bakan F, Kara G, Cokol Cakmak M, Cokol M, Denkbas EB. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery. Colloids Surf B Biointerfaces 2017; 158:175-181. [PMID: 28689100 DOI: 10.1016/j.colsurfb.2017.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023]
Abstract
Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer.
Collapse
Affiliation(s)
- Feray Bakan
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Istanbul, Turkey.
| | - Goknur Kara
- Hacettepe University, Department of Chemistry, Biochemistry Division, 06800, Ankara, Turkey
| | - Melike Cokol Cakmak
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, 34956, Istanbul, Turkey
| | - Murat Cokol
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, USA
| | - Emir Baki Denkbas
- Hacettepe University, Department of Chemistry, Biochemistry Division, 06800, Ankara, Turkey
| |
Collapse
|
10
|
Synthesis and characterization of new β-chitin/calcium phosphate (DCPA) based composite using natural resources for environmental application. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Jegatheeswaran S, Selvam S, Sri Ramkumar V, Sundrarajan M. Novel strategy for f-HAp/PVP/Ag nanocomposite synthesis from fluoro based ionic liquid assistance: Systematic investigations on its antibacterial and cytotoxicity behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:8-19. [DOI: 10.1016/j.msec.2016.04.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
|
12
|
Chen W, Tian B, Lei Y, Ke QF, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:395-408. [DOI: 10.1016/j.msec.2016.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022]
|
13
|
Tian B, Chen W, Yu D, Lei Y, Ke Q, Guo Y, Zhu Z. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J Mech Behav Biomed Mater 2016; 61:345-359. [DOI: 10.1016/j.jmbbm.2016.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
|
14
|
Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv 2016. [DOI: 10.1039/c5ra25391h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AgNP-HAC has the potential to be used on the surfaces of orthopedic and dental implants for infection prophylaxis.
Collapse
Affiliation(s)
- Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Wei Chen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yufeng Dong
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - John V. Marymont
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - Yong Lei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
15
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
16
|
Poralan GM, Gambe JE, Alcantara EM, Vequizo RM. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1757-899x/79/1/012028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Kumar GS, Sathish L, Govindan R, Girija EK. Utilization of snail shells to synthesise hydroxyapatite nanorods for orthopedic applications. RSC Adv 2015. [DOI: 10.1039/c5ra04402b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Snail shells have been successfully utilized to synthesize HA nanorods via facile microwave irradiation method in rapid manner using EDTA as a chelating agent.
Collapse
Affiliation(s)
- G. Suresh Kumar
- Department of Physics
- K. S. Rangasamy College of Arts and Science (Autonomous)
- Tiruchengode 637 215
- India
| | - L. Sathish
- Department of Physics
- K. S. Rangasamy College of Arts and Science (Autonomous)
- Tiruchengode 637 215
- India
| | - R. Govindan
- Department of Physics
- Periyar University
- Salem 636 011
- India
| | - E. K. Girija
- Department of Physics
- Periyar University
- Salem 636 011
- India
| |
Collapse
|
18
|
Lala S, Ghosh M, Das PK, Kar T, Pradhan SK. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp): effect of Mn doping on microstructure. Dalton Trans 2015; 44:20087-97. [DOI: 10.1039/c5dt03398e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mn substitution reduces Ca2/Mn–O bond lengths leading to structural changes in the A-cHAp lattice.
Collapse
Affiliation(s)
- S. Lala
- Materials Science Division
- Department of Physics
- The University of Burdwan
- Burdwan 713104
- India
| | - M. Ghosh
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - P. K. Das
- Department of Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - T. Kar
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - S. K. Pradhan
- Materials Science Division
- Department of Physics
- The University of Burdwan
- Burdwan 713104
- India
| |
Collapse
|
19
|
Govindan R, Kumar GS, Girija EK. Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Adv 2015. [DOI: 10.1039/c5ra09258b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biopolymer coated PG/HA composite scaffolds were prepared with enhanced mechanical properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- R. Govindan
- Department of Physics
- Periyar University
- Salem 636 011
- India
| | - G. Suresh Kumar
- Department of Physics
- K. S. Rangasamy College of Arts and Science (Autonomous)
- Tiruchengode 637 215
- India
| | - E. K. Girija
- Department of Physics
- Periyar University
- Salem 636 011
- India
| |
Collapse
|
20
|
Delbem ACB, Souza JAS, Zaze ACSF, Takeshita EM, Sassaki KT, Moraes JCS. Effect of Trimetaphosphate and Fluoride Association on Hydroxyapatite Dissolution and Precipitation In Vitro. Braz Dent J 2014; 25:479-84. [DOI: 10.1590/0103-6440201300174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/20/2014] [Indexed: 11/21/2022] Open
Abstract
The present study analyzed the action of sodium trimetaphosphate (TMP) and/or fluoride on hydroxyapatite. Hydroxyapatite powder was suspended in different solutions: deionized water, 500 µg F/mL, 1,100 µg F/mL, 1%TMP, 3%TMP, 500 µg F/mL plus 1%TMP and 500 µg F/mL plus 3%TMP. The pH value of the solutions was reduced to 4.0 and after 30 min, raised to 7.0 (three times). After pH-cycling, the samples were analyzed by X-ray diffraction and infrared spectroscopy. The concentrations of calcium fluoride, fluoride, calcium and phosphorus were also determined. Adding 1% or 3% TMP to the solution containing 500 µg F/mL produced a higher quantity of calcium fluoride compared to samples prepared in a 1,100 µg F/mL solution. Regarding the calcium concentration, samples prepared in solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP were statistically similar and showed higher values. Using solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP resulted in a calcium/phosphorus ratio close to that of hydroxyapatite. It is concluded that the association of TMP and fluoride favored the precipitation of a more stable hydroxyapatite.
Collapse
|
21
|
Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:647-56. [PMID: 25063165 DOI: 10.1016/j.msec.2014.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/07/2014] [Accepted: 06/10/2014] [Indexed: 11/20/2022]
Abstract
Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite.
Collapse
|
22
|
Kumar GS, Govindan R, Girija EK. In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B 2014; 2:5052-5060. [DOI: 10.1039/c4tb00339j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ciprofloxacin loaded hydroxyapatite nanoparticles has been synthesized by anin situprecipitation method for osteomyelitis treatment.
Collapse
Affiliation(s)
| | - R. Govindan
- Department of Physics
- Periyar University
- Salem 636 011, India
| | - E. K. Girija
- Department of Physics
- Periyar University
- Salem 636 011, India
| |
Collapse
|
23
|
Lala S, Satpati B, Kar T, Pradhan S. Structural and microstructural characterizations of nanocrystalline hydroxyapatite synthesized by mechanical alloying. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2891-8. [DOI: 10.1016/j.msec.2013.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/18/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|
24
|
Mavropoulos E, Hausen M, Costa AM, Alves G, Mello A, Ospina CA, Mir M, Granjeiro JM, Rossi AM. The impact of the RGD peptide on osteoblast adhesion and spreading on zinc-substituted hydroxyapatite surface. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1271-1283. [PMID: 23494616 DOI: 10.1007/s10856-013-4851-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The incorporation of zinc into the hydroxyapatite structure (ZnHA) has been proposed to stimulate osteoblast proliferation and differentiation. Another approach to improve cell adhesion and hydroxyapatite (HA) performance is coating HA with adhesive proteins or peptides such as RGD (arginine-glycine-aspartic acid). The present study investigated the adhesion of murine osteoblastic cells to non-sintered zinc-substituted HA disks before and after the adsorption of RGD. The incorporation of zinc into the HA structure simultaneously changed the topography of disk's surface on the nanoscale and the disk's surface chemistry. Fluorescence microscopy analyses using RGD conjugated to a fluorescein derivative demonstrated that ZnHA adsorbed higher amounts of RGD than non-substituted HA. Zinc incorporation into HA promoted cell adhesion and spreading, but no differences in the cell density, adhesion and spreading were detected when RGD was adsorbed onto ZnHA. The pre-treatment of disks with fetal bovine serum (FBS) greatly increased the cell density and cell surface area for all RGD-free groups, overcoming the positive contribution of zinc to cell adhesion. The presence of RGD on the ZnHA surface impaired the effects of FBS pre-treatment possibly due to competition between FBS proteins and RGD for surface binding sites.
Collapse
Affiliation(s)
- Elena Mavropoulos
- Brazilian Center for Physics Research, Xavier Sigaud 150, Urca, RJ 22290-180, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhan Y, Lin J, Li J. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2512-2526. [PMID: 22961484 DOI: 10.1007/s11356-012-1136-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
A novel composite material, i.e., surfactant-modified hydroxyapatite/zeolite composite, was used as an adsorbent to remove humic acid (HA) and copper(II) from aqueous solution. Hydroxyapatite/zeolite composite (HZC) and surfactant-modified HZC (SMHZC) were prepared and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscope. The adsorption of HA and copper(II) on SMHZC was investigated. For comparison purposes, HA adsorption onto HZC was also investigated. SMHZC exhibited much higher HA adsorption capacity than HZC. The HA adsorption capacity for SMHZC decreased slightly with increasing pH from 3 to 8 but decreased significantly with increasing pH from 8 to 12. The copper(II) adsorption capacity for SMHZC increased with increasing pH from 3 to 6.5. The adsorption kinetic data of HA and copper(II) on SMHZC obeyed a pseudo-second-order kinetic model. The adsorption of HA and copper(II) on SMHZC took place in three different stages: fast external surface adsorption, gradual adsorption controlled by both film and intra-particle diffusions, and final equilibrium stage. The equilibrium adsorption data of HA on SMHZC better fitted to the Langmuir isotherm model than the Freundlich isotherm model. The equilibrium adsorption data of copper(II) on SMHZC could be described by the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The presence of copper(II) in solution enhanced HA adsorption onto SMHZC. The presence of HA in solution enhanced copper(II) adsorption onto SMHZC. The mechanisms for the adsorption of HA on SMHZC at pH 7 may include electrostatic attraction, organic partitioning, hydrogen bonding, and Lewis acid-base interaction. The mechanisms for the adsorption of copper(II) on SMHZC at pH 6 may include surface complexation, ion exchange, and dissolution-precipitation. The obtained results indicate that SMHZC can be used as an effective adsorbent to simultaneously remove HA and copper(II) from water.
Collapse
Affiliation(s)
- Yanhui Zhan
- College of Marine Science, Shanghai Ocean University, No.999 Hucheng Huan Road, Pudong District, 201306, Shanghai, China
| | | | | |
Collapse
|
26
|
Thaveedeetrakul A, Witit-Anun N, Boonamnuayvitaya V. Effect of Sputtering Power on in vitro Bioactivity of Zirconia Thin Films Obtained by DC Unbalanced Magnetron Sputtering. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2013. [DOI: 10.1252/jcej.12we088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Nirun Witit-Anun
- Department of Physics, Burapha University
- Thailand Center of Excellence in Physics, Commission on Higher Education, Ministry of Education
| | | |
Collapse
|
27
|
Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadeh H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces 2012. [PMID: 23201735 DOI: 10.1016/j.colsurfb.2012.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM In the present investigation, vancomycin (VCM) biodegradable nanoparticles were developed for oral administration, with the aim of improving its intestinal permeability. METHODS The vancomycin-loaded nanoparticles were prepared using double-emulsion solvent evaporation method. The prepared nanoparticles were characterized for their micromeritic and crystallographic properties, particle size, zeta potential, drug loading and release. Intestinal permeability of VCM nanoparticles was determined in different concentrations using SPIP technique in rats. RESULTS Particle sizes were between 450 nm and 466 nm for different compositions of VCM-PLGA nanoparticles. Entrapment efficiency ranged between 38.38% and 78.6% with negative zeta (ζ) potential. The FT-IR, XRPD and DSC results ruled out any chemical interaction between the drug and PLGA. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 μg/ml were significantly higher than that of solutions at the same concentrations. CONCLUSION Our findings suggest that PLGA nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability.
Collapse
Affiliation(s)
- Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
28
|
Jabłoński M, Gun'ko VM, Golovan AP, Leboda R, Skubiszewska-Zięba J, Pluta R, Turov VV. Textural characteristics of model and natural bone tissues and interfacial behavior of bound water. J Colloid Interface Sci 2012; 392:446-462. [PMID: 23142010 DOI: 10.1016/j.jcis.2012.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Water, as a probe liquid bound in model systems (highly disperse hydroxyapatite - protein composites as a model of the main components of bones) and rat bone tissues healthy and affected by osteoporosis occurred due to experimental Alzheimer's disease (EAD), has been investigated using low-temperature (1)H NMR spectroscopy, NMR cryoporometry, TG/DTG/DTA, DSC, and TG and DSC thermoporometry. The textural characteristics of these intact systems cannot be studied using the standard adsorption methods, but the cryoporometry and thermoporometry methods give these characteristics. The (1)H NMR spectra of water bound in model and natural bone tissues include signals, which can be assigned to strongly associated (typical) water (SAW, chemical shift of proton resonance δ(H)=5-6 ppm) and weakly associated (atypical) water (WAW) at δ(H)=1-2 ppm. Contributions of SAW and WAW give information on textural organization of both model and natural bones. The influence of such co-adsorbates as HCl, CDCl(3), CD(3)CN, C(6)D(6), and (CD(3))(2)SO on the interfacial behavior and clustering of bound water depends on their polarity, amounts of components, and textural and structural features of the materials analyzed with the (1)H NMR spectroscopy and cryoporometry methods. According to the NMR cryoporometry data, the EAD causes an increase in nanoporosity of the bone tissues. The total porosity and the specific surface area of biostructures (accessible for water molecules and estimated using NMR cryoporometry and TG thermoporometry methods with a model of cylindrical pores) are larger for the EAD sample. Weakly polar chloroform-d has a significant influence on the organization of water in the bone tissue, and this effect is greater for the EAD sample as more porous material.
Collapse
Affiliation(s)
- Miroslaw Jabłoński
- Department of Orthopaedics and Rehabilitation, Lublin Medical University, 20-094 Lublin, Poland
| | - Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine.
| | - Alina P Golovan
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Roman Leboda
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | | | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Vladimir V Turov
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| |
Collapse
|
29
|
Lee WH, Loo CY, Zavgorodniy AV, Rohanizadeh R. High protein adsorptive capacity of amino acid-functionalized hydroxyapatite. J Biomed Mater Res A 2012; 101:873-83. [PMID: 23008163 DOI: 10.1002/jbm.a.34383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/30/2012] [Accepted: 07/13/2012] [Indexed: 11/05/2022]
Abstract
Charged functional groups present on the surface of biomaterials play an important role to regulate the affinity and attachment of macromolecules, including proteins, on the surface of biomaterials. In this study, the protein adsorptive capacity of hydroxyapatite (HA) was regulated by introducing different amino acids during the precipitation of HA. After incubation of HA samples in 5000 μg/mL lysozyme solution at pH 7.4 for 24 h, unmodified HA adsorbed 0.886 mg/m(2) of lysozyme while amino acid-functionalized HA (AA-HA) particles demonstrated higher adsorption capacity ranging from 1.090 to 1.680 mg/m(2). Incorporation of amino acids with longer side chain lengths decreased the crystallinity and increased the negative value of the surface charge of HA particles. The specific surface areas were significantly increased in the presence of amino acids. Protein loading capacity onto AA-HA was further enhanced by regulating the pH of working solution whereby the protein adsorption rate increased with decreasing the pH, while reverse trend obtained in unmodified HA. The study demonstrated that the amount of adsorbed lysozyme onto AA-HA particles was correlated with the particles' surface charges.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
30
|
Girija E, Kumar GS, Thamizhavel A, Yokogawa Y, Kalkura SN. Role of material processing on the thermal stability and sinterability of nanocrystalline hydroxyapatite. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2012.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv Pharm Bull 2012; 2:43-56. [PMID: 24312770 DOI: 10.5681/apb.2012.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/30/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The purpose of this work was to preparation of vancomycin (VCM) biodegradable nanoparticles to improve the intestinal permeability, using water-in-oil-in-water (W/O/W) multiple emulsion method. METHODS The vancomycin-loaded nanoparticles were created using double-emulsion solvent evaporation method. Using Eudragit RS100 as a coating material. The prepared nanoparticles were identifyed for their micromeritic and crystallographic properties, drug loading, particle size, drug release, Zeta potential, effective permeability (Peff) and oral fractional absorption. Intestinal permeability of VCM nanoparticles was figured out, in different concentrations using SPIP technique in rats. RESULTS Particle sizes were between 362 and 499 nm for different compositions of VCM-RS-100 nanoparticles. Entrapment efficiency expansed between 63%-94.76%. The highest entrapment efficiency 94.76% was obtained when the ratio of drug to polymer was 1:3. The in vitro release studies were accomplished in pH 7.4. The results showed that physicochemical properties were impressed by drug to polymer ratio. The FT-IR, XRPD and DSC results ruled out any chemical interaction betweenthe drug and RS-100. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 μg/ml were higher than that of solutions at the same concentrations. Oral fractional absorption was achieved between 0.419-0.767. CONCLUSION Our findings suggest that RS-100 nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability.
Collapse
Affiliation(s)
- Badir Delf Loveymi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
32
|
Delbem A, Alves K, Sassaki K, Moraes J. Effect of Iron II on Hydroxyapatite Dissolution and Precipitation in vitro. Caries Res 2012; 46:481-7. [DOI: 10.1159/000339484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
|
33
|
Riad M, Mikhail S. Oxidative desulfurization of light gas oil using zinc catalysts prepared via different techniques. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20064c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini AR. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res A 2011; 99:435-44. [DOI: 10.1002/jbm.a.33185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/05/2011] [Accepted: 05/19/2011] [Indexed: 01/21/2023]
|
35
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|
36
|
Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo. Asian J Androl 2011; 13:481-6. [PMID: 21297658 DOI: 10.1038/aja.2010.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BL/6 mice. CaCl₂-modified hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Stat3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGF and cyclin D1 were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P < 0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stat3-induced apoptosis (up to 42%, P < 0.01). The Stat3 downstream genes Bcl-2, VEGF and cyclin D1 were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.
Collapse
|
37
|
Phospholipid bilayer formation on hydroxyapatite sol–gel synthesized films. Colloids Surf B Biointerfaces 2011; 82:647-50. [DOI: 10.1016/j.colsurfb.2010.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022]
|