1
|
Lu Q, Choi K, Nam JD, Choi HJ. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers (Basel) 2021; 13:512. [PMID: 33567794 PMCID: PMC7915058 DOI: 10.3390/polym13040512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
As a family of smart functional hybrid materials, magnetic polymer composite particles have attracted considerable attention owing to their outstanding magnetism, dispersion stability, and fine biocompatibility. This review covers their magnetorheological properties, namely, flow curve, yield stress, and viscoelastic behavior, along with their synthesis. Preparation methods and characteristics of different types of magnetic composite particles are presented. Apart from the research progress in magnetic polymer composite synthesis, we also discuss prospects of this promising research field.
Collapse
Affiliation(s)
- Qi Lu
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea;
- Program of Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| | - Kisuk Choi
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (K.C.); (J.-D.N.)
| | - Jae-Do Nam
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (K.C.); (J.-D.N.)
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea;
- Program of Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
2
|
Filho E, Brito E, Silva R, Streck L, Bohn F, Fonseca J. Superparamagnetic polyacrylamide/magnetite composite gels. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1774382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ernani Filho
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| | - Elvis Brito
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| | - Rodolfo Silva
- Departamento de Física, Universidade Federal do Rio Grande do Norte Campus Universitário, Natal, RN, Brazil
| | - Letícia Streck
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte Campus Universitário, Natal, RN, Brazil
| | - José Fonseca
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| |
Collapse
|
3
|
Jaiswal KK, Manikandan D, Murugan R, Ramaswamy AP. Microwave-assisted rapid synthesis of Fe3O4/poly(styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Sadeghi M, Yekta S, Babanezhad E. Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.5.636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tański T, Matysiak W, Hajduk B. Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1141-55. [PMID: 27547631 PMCID: PMC4979636 DOI: 10.3762/bjnano.7.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 06/01/2023]
Abstract
The aim of this study was to produce nanocomposite polymer fibres, consisting of a matrix of polyacrylonitrile (PAN) and a reinforcing phase in the form of SiO2/TiO2/Bi2O3 nanoparticles, by electrospinning the solution. The effect of the nanoparticles and the electrospinning process parameters on the morphology and physical properties of the obtained composite nanofibres was then examined. The morphology of the fibres and the dispersion of nanoparticles in their volume were examined using scanning electron microscopy (SEM). All of the physical properties, which included the band gap width, dielectric constant and refractive index, were tested and plotted against the concentration by weight of the used reinforcing phase, which was as follows: 0%, 4%, 8% and 12% for each type of nanoparticles. The width of the band gap was determined on the basis of the absorption spectra of radiation (UV-vis) and ellipsometry methods. Spectroscopic ellipsometry has been used in order to determine the dielectric constant, refractive index and the thickness of the obtained fibrous mats.
Collapse
Affiliation(s)
- Tomasz Tański
- Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland
- Center for Nanotechnology, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland
| | - Wiktor Matysiak
- Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland
| | - Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| |
Collapse
|
6
|
|
7
|
Gu Y, Zhao J, Liu Q, Zhou N, Zhang Z, Zhu X. Zero-valent iron (Fe(0)) mediated RAFT miniemulsion polymerization: a facile approach for the fabrication of Fe(0)-encapsulated polymeric nanoparticles. Polym Chem 2014. [DOI: 10.1039/c4py00400k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Niu C, Wang Z, Lu G, Krupka TM, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 2012; 34:2307-17. [PMID: 23276658 DOI: 10.1016/j.biomaterials.2012.12.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/09/2012] [Indexed: 02/05/2023]
Abstract
Current strategies for tumor-induced sentinel lymph node detection and metastasis therapy have limitations. In this work, we co-encapsulated iron oxide nanoparticles and chemotherapeutic drug into poly(lactic-co-glycolic acid) (PLGA) microbubbles to form multifunctional polymer microbubbles (MPMBs) for both tumor lymph node imaging and therapy. Fe(3)O(4) nanoparticles and doxorubicin (DOX) co-encapsulated PLGA microbubbles were prepared and filled with perfluorocarbon gas. Enhancement of ultrasound (US)/magnetic resonance (MR) imaging and US triggered drug delivery were evaluated both in vitro and in vivo. The MPMBs exhibited characters like narrow size distribution and smooth surface with a mean diameter of 868.0 ± 68.73 nm. In addition, varying the concentration of Fe(3)O(4) nanoparticles in the bubbles did not significantly influence the DOX encapsulation efficiency or drug loading efficiency. Our in vitro results demonstrated that these MPMBs could enhance both US and MR imaging which was further validated in vivo showing that these MPMBs enhanced tumor lymph nodes signals. The anti-tumor effect of MPMBs mediated chemotherapy was assessed in vivo using end markers like tumor proliferation index, micro blood vessel density and micro lymphatic vessel density, which were shown consistently the lowest after the MPMBs plus sonication treatment compared to controls. In line with these findings, the tumor cell apoptotic index was found the largest after the MPMBs plus sonication treatment. In conclusion, we have successfully developed a doxorubicin loaded superparamagnetic PLGA-Iron Oxide multifunctional theranostic agent for dual-mode US/MR Imaging of lymph node, and for low frequency US triggered therapy of metastasis in lymph nodes, which might provide a strategy for the imaging and chemotherapy of primary tumor and their metastases.
Collapse
Affiliation(s)
- Chengcheng Niu
- Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bettencourt A, Almeida AJ. Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 2012; 29:353-67. [PMID: 22251239 DOI: 10.3109/02652048.2011.651500] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is one of the most widely explored biomedical materials because of its biocompatibility, and recent publications have shown an increasing interest in its applications as a drug carrier. PMMA-based particulate carriers (PMMA(P)) can be prepared either by polymerization methods or from pre-formed polymer-based techniques. Potential biomedical application of these particles includes their use as adjuvant for vaccines and carrier of many drugs as antibiotics and antioxidants via different routes of administration. Release of drugs from PMMA(P) occurs typically in a biphasic way with an incomplete drug release. To improve release profiles, recent strategies are focusing on increasing polymer hydrophilicity by synthesizing functionalized PMMA microspheres or by formulating PMMA composites with hydrophilic polymers. This review examines the current status of preparation techniques, drug release kinetics, biomedical applications and toxicity of these nano/micro PMMA-based particulate carriers.
Collapse
Affiliation(s)
- Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines and Pharmaceutical Sciences-iMed.UL, University of Lisbon , Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | | |
Collapse
|