1
|
Pawar VU, Dessai AD, Nayak UY. Oleogels: Versatile Novel Semi-Solid System for Pharmaceuticals. AAPS PharmSciTech 2024; 25:146. [PMID: 38937416 DOI: 10.1208/s12249-024-02854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Oleogels is a novel semi-solid system, focusing on its composition, formulation, characterization, and diverse pharmaceutical applications. Due to their stability, smoothness, and controlled release qualities, oleogels are frequently utilized in food, cosmetics, and medicinal products. Oleogels are meticulously formulated by combining oleogelators like waxes, fatty acids, ethyl cellulose, and phytosterols with edible oils, leading to a nuanced understanding of their impact on rheological characteristics. They can be characterized by methods like visual inspection, texture analysis, rheological measurements, gelation tests, and microscopy. The applications of oleogels are explored in diverse fields such as nutraceuticals, cosmetics, food, lubricants, and pharmaceutics. Oleogels have applications in topical, transdermal, and ocular drug delivery, showcasing their potential for revolutionizing drug administration. This review aims to enhance the understanding of oleogels, contributing to the evolving landscape of pharmaceutical formulations. Oleogels emerge as a versatile and promising solution, offering substantial potential for innovation in drug delivery and formulation practices.
Collapse
Affiliation(s)
- Vaishnavi U Pawar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Giraud T, Hoschtettler P, Pickaert G, Averlant-Petit MC, Stefan L. Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. NANOSCALE 2022; 14:4908-4921. [PMID: 35319034 DOI: 10.1039/d1nr06131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
3
|
Qi P, Li X, Huang Z, Liu Y, Song A, Hao J. G-quadruplex-based ionogels with controllable chirality for circularly polarized luminescence. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Boback K, Bacchi K, O’Neill S, Brown S, Dorsainvil J, Smith-Carpenter JE. Impact of C-Terminal Chemistry on Self-Assembled Morphology of Guanosine Containing Nucleopeptides. Molecules 2020; 25:E5493. [PMID: 33255230 PMCID: PMC7727710 DOI: 10.3390/molecules25235493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Herein, we report the design and characterization of guanosine-containing self-assembling nucleopeptides that form nanosheets and nanofibers. Through spectroscopy and microscopy analysis, we propose that the peptide component of the nucleopeptide drives the assembly into β-sheet structures with hydrogen-bonded guanosine forming additional secondary structures cooperatively within the peptide framework. Interestingly, the distinct supramolecular morphologies are driven not by metal cation responsiveness common to guanine-based materials, but by the C-terminal peptide chemistry. This work highlights the structural diversity of self-assembling nucleopeptides and will help advance the development of applications for these supramolecular guanosine-containing nucleopeptides.
Collapse
Affiliation(s)
| | | | | | | | | | - Jillian E. Smith-Carpenter
- Department of Chemistry and Biochemistry, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA; (K.B.); (K.B.); (S.O.); (S.B.); (J.D.)
| |
Collapse
|
5
|
Perera MM, Chimala P, Elhusain-Elnegres A, Heaton P, Ayres N. Reversibly Softening and Stiffening Organogels Using a Wavelength-Controlled Disulfide-Diselenide Exchange. ACS Macro Lett 2020; 9:1552-1557. [PMID: 35617082 DOI: 10.1021/acsmacrolett.0c00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wavelength-dependent light-responsive seleno-sulfide dynamic covalent bonds were used to prepare organogels with reversible changes in stiffness. The disulfide cross-link organogels prepared from norbornene-terminated poly(ethylene glycol) (PEG-diNB) and poly(2-hydroxypropyl methacrylate-stat-mercaptoethyl acrylate) (PEG-diNB-poly(HPMA-stat-MEMA)) polymers underwent exchange reactions with 5,5'-diselenide-bis(2-aminobenzoic acid) upon irradiation with UV light. Following irradiation with visible light, the seleno-sulfide bonds were cleaved, reforming disulfide cross-links and the 5,5'-diselenide-bis(2-aminobenzoic acid). Reduction in G' with disulfide-diselenide exchange was consistent with that observed following a thiol-disulfide exchange reaction. Recovery of G' upon disulfide bond formation was 85-95% of the initial value in the as-prepared gel over five cycles of bond cleaving and reformation. This initial study shows the potential of the wavelength-controlled disulfide-diselenide chemistry to develop light-responsive reversible organogels. These organogels have the potential to be used in functional materials such as polymeric actuators or biomimetic soft robotics.
Collapse
Affiliation(s)
- M. Mario Perera
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Prathyusha Chimala
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Abdul Elhusain-Elnegres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Paul Heaton
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
6
|
Zhang Y, He Y, Wojtas L, Shi X, Guo H. Construction of Supramolecular Organogel with Circularly Polarized Luminescence by Self-Assembled Guanosine Octamer. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100211. [PMID: 33179016 PMCID: PMC7654816 DOI: 10.1016/j.xcrp.2020.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gel formation using guanosine self-assembly is an important process in supramolecular chemistry. Here, we report the stepwise construction of circularly polarized luminescent supramolecular organogels from self-assembled guanosine quadruplexes. A lipophilic guanosine derivative (aldG) is designed and synthesized for the formation of a well-defined G8-octamer. The diamine linkers are used to connect G8-octamer units by imine formation to facilitate the construction of the supramolecular gel networks. 1H NMR experiments show that the pre-assembled aldG8-octamer remains intact and is crucial for transparent and stiff organogel formation. With extended conjugation, the aldG organogels exhibit strong green fluorescence emission and circularly polarized properties without the assistance of any external fluorescent dyes, suggesting an alternative approach to construct molecular probes for biological and material applications.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- These authors contributed equally
| | - Ying He
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- These authors contributed equally
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Lead Contact
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
7
|
Li X, Huang Z, Li S, Song A, Hao J, Liu HG. A new approach to construct and modulate G-quadruplex by cationic surfactant. J Colloid Interface Sci 2020; 578:338-345. [PMID: 32535416 DOI: 10.1016/j.jcis.2020.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
HYPOTHESIS G-quadruplex structure has raised increasing attention in supramolecular chemistry as an effective template for ordered functional materials. Thus, it is of practical significance to advance our understanding regarding G-quadruplex structures. Typically, G-quadruplex structures are formed in the presence of suitable metal ions. New methods to construct such structures need to be explored. EXPERIMENTS The supramolecular assembly between CTAB and a guanosine derivative at different molar ratios was systematically studied, including assembly mechanisms, morphology, and macroscopic properties. Cationic surfactants with different alkyl chains were studied as control experiments. FINDINGS A novel strategy to construct G-quadruplex with the promotion of the cationic surfactant CTAB is presented in this work. The structure-property relationships of G-quadruplex gels are characterized by rheology and shrinkage ratio experiments. MacKintosh's theory was used to rationalize the relationship between gel elasticity and water content. The transition of G-quadruplex structures could be easily enabled by modulating CTAB concentration, which promotes the phase transition from gel/sol biphase to homogeneous sol phase. This work will provide a new viewpoint for the construction and modulation of G-quadruplex structures.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China
| | - Zhaohui Huang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China
| | - Shuman Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China
| | - Aixin Song
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China
| | - Jingcheng Hao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China
| | - Hong-Guo Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, PR China.
| |
Collapse
|
8
|
Li X, Sánchez-Ferrer A, Bagnani M, Adamcik J, Azzari P, Hao J, Song A, Liu H, Mezzenga R. Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proc Natl Acad Sci U S A 2020; 117:9832-9839. [PMID: 32317383 PMCID: PMC7211958 DOI: 10.1073/pnas.1919777117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking modes and the spontaneous orientation of G-quadruplex fibrils. Here, the effects of different metal ions and their concentrations on stacking modes of G-quartets are elucidated. Monovalent cations (typically K+) facilitate the formation of G-quadruplex hydrogels with both heteropolar and homopolar stacking modes, showing weak mechanical strength. In contrast, divalent metal ions (Ca2+, Sr2+, and Ba2+) at given concentrations can control G-quartet stacking modes and increase the mechanical rigidity of the resulting hydrogels through ionic bridge effects between divalent ions and borate. We show that for Ca2+ and Ba2+ at suitable concentrations, the assembly of G-quadruplexes results in the establishment of a mesoscopic chirality of the fibrils with a regular left-handed twist. Finally, we report the discovery of nematic tactoids self-assembled from G-quadruplex fibrils characterized by homeotropic fibril alignment with respect to the interface. We use the Frank-Oseen elastic energy and the Rapini-Papoular anisotropic surface energy to rationalize two different configurations of the tactoids. These results deepen our understanding of G-quadruplex structures and G-quadruplex fibrils, paving the way for their use in self-assembly and biomaterials.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Paride Azzari
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China;
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Hongguo Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland;
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Gonnelli A, Pieraccini S, Baldassarri EJ, Funari S, Masiero S, Ortore MG, Mariani P. Metallo-responsive self-assembly of lipophilic guanines in hydrocarbon solvents: a systematic SAXS structural characterization. NANOSCALE 2020; 12:1022-1031. [PMID: 31845695 DOI: 10.1039/c9nr08556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipophilic guanines (LipoGs) in aprotic solvents undergo different self-assembly processes based on different H-bonded motifs. Cylindrical nanotubes made by π-π stacked guanine tetramers (G-quadruplexes) and flat, tape-like aggregates (G-ribbons) have been observed depending on the presence of alkali metal ions. To obtain information on the structural properties and stability of these LipoG aggregates, Small-Angle X-ray Scattering (SAXS) experiments have been performed in dodecane, both in the presence and in the absence of potassium ions. As a result, the occurrence of the two different metallo-responsive architectures (nanoribbons or columnar nanotubes) was confirmed and we reported here for the first time a systematic study on the dependence of the aggregate properties on composition, temperature and molecular unit structure. Even if dodecane was selected to favour LipoG solubility, a strong tendency to self-organize into ordered lyotropic phases was indeed detected.
Collapse
Affiliation(s)
- Adriano Gonnelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Biophysics Research Group, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Stefan L, Monchaud D. Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0132-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Li J, Wei H, Peng Y, Geng L, Zhu L, Cao XY, Liu CS, Pang H. A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem Commun (Camb) 2019; 55:7922-7925. [PMID: 31215917 DOI: 10.1039/c9cc02770j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A multifunctional G-PyB/KCl hydrogel showed outstanding self-healability, high conductivity, and rapid room-temperature phase-selective gelation capacity, and was developed as an electrochemical aptamer sensing platform for the ultrasensitive detection of alpha-fetoprotein.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Snyder JA, Charnay AP, Kohl FR, Zhang Y, Kohler B. DNA-like Photophysics in Self-Assembled Silver(I)–Nucleobase Nanofibers. J Phys Chem B 2019; 123:5985-5994. [PMID: 31283245 DOI: 10.1021/acs.jpcb.9b00660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Joshua A. Snyder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Aaron P. Charnay
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Forrest R. Kohl
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Zhu X, Zou R, Sun P, Wang Q, Wu J. A supramolecular peptide polymer from hydrogen-bond and coordination-driven self-assembly. Polym Chem 2018. [DOI: 10.1039/c7py01901g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A terpyridine- and guanine-functionalized peptide was developed that could form different morphologies by self-assembly or coordination with Fe2+ in dimethyl sulfoxide.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rongfeng Zou
- Division of Theoretical Chemistry and Biology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- AlbaNova University Center
- 106 91 Stockholm
| | - Peng Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan
- China
| | - Qi Wang
- College of Public Health
- Nantong University
- Nantong
- China
| | - Junchen Wu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
14
|
Peters GM, Davis JT. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem Soc Rev 2016; 45:3188-206. [PMID: 27146863 DOI: 10.1039/c6cs00183a] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular or molecular gels are attractive for various applications, including diagnostics, tissue scaffolding and targeted drug release. Gelators derived from natural products are of particular interest for biomedical purposes, as they are generally biocompatible and stimuli-responsive. The building blocks of nucleic acids (i.e. nucleobases, nucleosides, and nucleotides) are desirable candidates for supramolecular gelation as they readily engage in reversible, noncovalent interactions. In this review, we describe a number of organo- and hydrogels formed through the assembly of nucleosides, nucleotides, and their derivatives. While natural nucleosides and nucleotides generally require derivatization to induce gelation, guanosine and its corresponding nucleotides are well known gelators. This unique gelating ability is due to propensity of the guanine nucleobase to self-associate into stable higher-order assemblies, such as G-ribbons, G4-quartets, and G-quadruplexes.
Collapse
Affiliation(s)
- Gretchen Marie Peters
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | | |
Collapse
|
15
|
Lakshmi NV, Mandal D, Ghosh S, Prasad E. Multi-Stimuli-Responsive Organometallic Gels Based on Ferrocene-Linked Poly(Aryl Ether) Dendrons: Reversible Redox Switching and Pb2+-Ion Sensing. Chemistry 2014; 20:9002-11. [DOI: 10.1002/chem.201400241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 01/11/2023]
|
16
|
Novel organogelators based on pyrazine-2,5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Chen S, Ye F, Tang G, Wang X. High Toughness and Light Transmittance of PMMA Composite Prepared viaIn-SituPolymerization with Incorporating Self-Assembled Dendritic Gel Networks. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.864932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Zhou C, Gao W, Yang K, Xu L, Ding J, Chen J, Liu M, Huang X, Wang S, Wu H. A novel glucose/pH responsive low-molecular-weight organogel of easy recycling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13568-13575. [PMID: 24093805 DOI: 10.1021/la4033578] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new phenylboronic acid based gelator was developed to prepare low-molecular-weight organogel (LMOG), which could interact with several solvents to assemble into a three-dimensional nanofiber network. (1)H NMR spectroscopy study suggests that the driving force for the gelation includes hydrogen bonding and π-π stacking. Evaluated by UV-spectroscopy, the gel showed a prompt initial response to glucose at low concentration of 0.012 mmol/mL, which is a critical concentration of venous plasma glucose for diabetes. Significantly, this organogel exhibits excellent sensitivity to glucose among seven sugars tested (i.e., mannitol, galactose, lactose, maltose, sucrose, and fructose). The proposed formation of hydrogen-bonded complexes during the glucose sensing was supported by our energy calculation. Meanwhile, this organogel exhibits pH-response. Importantly, this LMOG could be conveniently recycled and thus be reused.
Collapse
Affiliation(s)
- Chaoyu Zhou
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou 325027, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen X, Fei P, Cavicchi KA, Yang W, Ayres N. The poor solubility of ureidopyrimidone can be used to form gels of low molecular weight N-alkyl urea oligomers in organic solvents. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3087-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Edelsztein VC, Mac Cormack AS, Ciarlantini M, Di Chenna PH. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials. Beilstein J Org Chem 2013; 9:1826-36. [PMID: 24062849 PMCID: PMC3778393 DOI: 10.3762/bjoc.9.213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/12/2013] [Indexed: 11/23/2022] Open
Abstract
Supramolecular gels are an important and interesting class of soft materials that show great potential for many applications. Most of them have been discovered serendipitously, and understanding the supramolecular self-assembly that leads to the formation of the gel superstructure is the key to the directed design of new organogels. We report herein the organogelating property of four stereoisomers of the simple steroid 2,3-dihydroxycholestane. Only the isomer with the trans-diaxial hydroxy groups had the ability to gelate a broad variety of liquids and, thus, to be a super-organogelator for hydrocarbons. The scope of solvent gelation was analysed with regard to two solvent parameters, namely the Kamlet-Taft and the Hansen solubility parameters. The best correlation was observed with the Hansen approach that revealed the existence of two clear gelation zones. We propose a general model of self-assembly through multiple intermolecular hydrogen bonds between the 1,2-dihydroxy system, which is based on experimental data and computational simulations revealing the importance of the di-axial orientation of the hydroxy groups for the one-dimensional self-assembly. Under controlled conditions, the fibrillar superstructure of the organogel was successfully used as a template for the in-situ sol-gel polymerization of tetraethoxysilane and the further preparation of silica nanotubes. We propose that the driving forces for templating are hydrogen bonding and electrostatic interactions between the anionic silicate intermediate species and the self-assembled fibrillar network.
Collapse
Affiliation(s)
- Valeria C Edelsztein
- Departamento de Química Orgánica and UMYMFOR (CONICET-FCEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EGA, Argentina
| | | | | | | |
Collapse
|
21
|
Qi Z, Wu C, Malo de Molina P, Sun H, Schulz A, Griesinger C, Gradzielski M, Haag R, Ansorge-Schumacher MB, Schalley CA. Fibrous Networks with Incorporated Macrocycles: A Chiral Stimuli-Responsive Supramolecular Supergelator and Its Application to Biocatalysis in Organic Media. Chemistry 2013; 19:10150-9. [DOI: 10.1002/chem.201300193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/10/2013] [Indexed: 11/07/2022]
|
22
|
Jiao T, Wang Y, Zhang Q, Zhou J, Gao F. Regulation of substituent groups on morphologies and self-assembly of organogels based on some azobenzene imide derivatives. NANOSCALE RESEARCH LETTERS 2013; 8:160. [PMID: 23566628 PMCID: PMC3626600 DOI: 10.1186/1556-276x-8-160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 05/03/2023]
Abstract
In this paper, new azobenzene imide derivatives with different substituent groups were designed and synthesized. Their gelation behaviors in 21 solvents were tested as novel low-molecular-mass organic gelators. It was shown that the alkyl substituent chains and headgroups of azobenzene residues in gelators played a crucial role in the gelation behavior of all compounds in various organic solvents. More alkyl chains in molecular skeletons in present gelators are favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle, lamella, and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between amide groups and conformations of methyl chains. The present work may give some insight to the design and character of new organogelators and soft materials with special molecular structures.
Collapse
Affiliation(s)
- Tifeng Jiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yujin Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
23
|
Meng L, Liu K, Mo S, Mao Y, Yi T. From G-quartets to G-ribbon gel by concentration and sonication control. Org Biomol Chem 2013; 11:1525-32. [DOI: 10.1039/c3ob27204d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wu J, Lu J, Hu J, Gao Y, Ma Q, Ju Y. Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties. RSC Adv 2013. [DOI: 10.1039/c3ra43306d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
25
|
Behera B, Sagiri SS, Pal K, Srivastava A. Modulating the physical properties of sunflower oil and sorbitan monopalmitate-based organogels. J Appl Polym Sci 2012. [DOI: 10.1002/app.37506] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Alsbaiee A, Beingessner R, Fenniri H. Self-assembled nanomaterials for tissue-engineering applications. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.3.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Qi Z, Malo de Molina P, Jiang W, Wang Q, Nowosinski K, Schulz A, Gradzielski M, Schalley CA. Systems chemistry: logic gates based on the stimuli-responsive gel–sol transition of a crown ether-functionalized bis(urea) gelator. Chem Sci 2012. [DOI: 10.1039/c2sc01018f] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
Behera B, Patil V, Sagiri SS, Pal K, Ray SS. Span-60-based organogels as probable matrices for transdermal/topical delivery systems. J Appl Polym Sci 2011. [DOI: 10.1002/app.35674] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Two-component supramolecular organogels formed by maleic N-monoalkylamides and aliphatic amines. J Colloid Interface Sci 2011; 362:113-7. [DOI: 10.1016/j.jcis.2011.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022]
|
30
|
Lu J, Hu J, Song Y, Ju Y. A New Dual-Responsive Organogel Based on Uracil-Appended Glycyrrhetinic Acid. Org Lett 2011; 13:3372-5. [DOI: 10.1021/ol201129y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinrong Lu
- Key Laboratory Of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jun Hu
- Key Laboratory Of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang Song
- Key Laboratory Of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong Ju
- Key Laboratory Of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|