1
|
Zhou Y, Li S, Sun X, Wang J, Chen H, Xu Q, Ye H, Li S, Shi S, Zhang X. Preparation of novel magnetic ethylene glycol dimethacrylate-based molecularly imprinted polymer for rapid adsorption of phthalate esters from ethanol aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124891. [PMID: 39241951 DOI: 10.1016/j.envpol.2024.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Phthalate esters (PAEs), as emerging pollutants, pose a serious threat to human health and have become a major concern in the fields of environmental protection and food safety. Selective adsorption using molecularly imprinted polymer (MIP) is feasible, but most MIPs use the potentially toxic methacrylic acid (MAA) as a functional monomer, along with other crosslinking agents. In this study, MIP adsorbent was prepared using only ethylene glycol dimethacrylate (EGDMA) as both the functional monomer and crosslinking agent, without the inclusion of MAA. The adsorbent was utilized for the adsorption of PAEs from an ethanol aqueous solution. The results showed that EGDMA-based MIP (EMIP) achieved better adsorption performance of PAEs than MAA-based MIP (MMIP) due to more interactions of EGDMA with PAEs than MAA with them. For the adsorption of dibutyl phthalate (DBP) using EMIP, 95% of the equilibrium adsorption capacity was achieved within the first 15 min. In the isotherm analysis, the theoretical maximum adsorption capacity of EMIP was obtained as high as 159.24 mg/g at 20 °C in an ethanol (10 v%) aqueous solution. Furthermore, the adsorption of EMIP was not affected by the pH of the solution. The adsorption process of EMIP followed the pseudo-second-order kinetic and Freundlich isotherm model. Ethanol had a significant impact on the adsorption of DBP, and the results of molecular simulation could validate this. In addition, the regeneration experiments indicated that EMIP could be recycled 5 times without significant performance change and had a high recovery efficiency of 94.55%.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Company Ltd., Shanxi, 030032, China
| | - Haoxiang Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiangqiang Xu
- Shandong Zhaojin Motian Company Ltd., Shandong, 265400, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shengpeng Shi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Sun X, Wang J, Kang J, Sun J, Li S, Zhang Y, Ye H, Li S, Zhang X. Highly efficient adsorption and removal of phthalate esters by polymers of intrinsic microporosity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136218. [PMID: 39490172 DOI: 10.1016/j.jhazmat.2024.136218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
In recent years, phthalate esters (PAEs) have been found to be endocrine disruptors that pose a serious safety threat to human health. Currently, adsorption is one of the most efficient technologies to remove PAEs, and the development of adsorbent materials that combine high adsorption capacity and short equilibrium time is a challenging problem. In this study, PIM-1, a typical representative of polymers of intrinsic microporosity (PIMs), was prepared through three methods and first used as adsorbents for PAEs removal. PIM-1 prepared under high temperature (HT-PIM-1) exhibited a high capacity of 787 mg/g for dibutyl phthalate (DBP), a prevalent PAE in water, which is significantly higher than most reported adsorbents. Furthermore, more than 90.0 % of the equilibrium adsorption capacity can be reached within 30 mins. In addition, the adsorption of DBP could be inhibited by ethanol due to the enhanced interaction between DBP and ethanol, which could be revealed by molecular simulation. The adsorption mechanism of PAEs on PIM-1 mainly included hydrophobic interactions, π-π interactions, together with the size matching between PAEs and hierarchical pores of PIM-1. This study provides an idea for the application of PIMs for PAEs removal with high adsorption capacity and high efficiency.
Collapse
Affiliation(s)
- Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030032, China
| | - Jun Kang
- Shanxi Kunming Tobacco Co., Ltd., Taiyuan 030032, China
| | - Jingyi Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yingying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Aljubiri SM, Younes AAO, Alosaimi EH, Abdel Daiem MM, Abdel-Salam ET, El-Shwiniy WH. Recycling of Sewage Sludge: Synthesis and Application of Sludge-Based Activated Carbon in the Efficient Removal of Cadmium (II) and Lead (II) from Wastewater. Int J Mol Sci 2024; 25:9866. [PMID: 39337354 PMCID: PMC11432342 DOI: 10.3390/ijms25189866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The limited supply of drinking water has aroused people's curiosity in recent decades. Adsorption is a popular method for removing hazardous substances from wastewater, especially heavy metals, as it is cheap, highly efficient, and easy to use. In this work, a new sludge-based activated carbon adsorbent (thickened samples SBAC1 and un-thickened samples SBAC2) was developed to remove hazardous metals such as cadmium (Cd+2) and lead (Pb+2) from an aqueous solution. The chemical structure and surface morphology of the produced SBAC1 and SBAC2 were investigated using a range of analytical tools such as CHNS, BET, FT-IR, XRD, XRF, SEM, TEM, N2 adsorption/desorption isothermal, and zeta potential. BET surface areas were examined and SBAC2 was found to have a larger BET surface area (498.386 m2/g) than SBAC1 (336.339 m2/g). While the average pore size was 10-100 nm for SBAC1 and 45-50 nm for SBAC2. SBAC1 and SBAC2 eliminated approximately 99.99% of Cd+2 and Pb+2 out the water under all conditions tested. The results of the adsorption of Cd+2 and Pb+2 were in good agreement with the pseudo-second-order equation (R2 = 1.00). Under the experimental conditions, the Cd+2 and Pb+2 adsorption equilibrium data were effectively linked to the Langmuir and Freundlich equations for SBAC1 and SBAC2, respectively. The regeneration showed a high recyclability for the fabricated SBAC1 and SBAC2 during five consecutive reuse cycles. As a result, the produced SBAC1 and SBAC2 are attractive adsorbents for the elimination of heavy metals from various environmental and industrial wastewater samples.
Collapse
Affiliation(s)
- Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Ayman A. O. Younes
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Eid H. Alosaimi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Mahmoud M. Abdel Daiem
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt;
- Civil Engineering Department, College of Engineering, Shaqra University, Al-Duwadmi 11911, Saudi Arabia
| | - Enas T. Abdel-Salam
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa H. El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Tzialla O, Theodorakopoulos GV, Beltsios KG, Pilatos G, Reddy KSK, Srinivasakannan C, Tuci G, Giambastiani G, Karanikolos GN, Katsaros FK, Kouvelos E, Romanos GE. Utilizing Carbonaceous Materials Derived from [BMIM][TCM] Ionic Liquid Precursor: Dual Role as Catalysts for Oxygen Reduction Reaction and Adsorbents for Aromatics and CO 2. Chempluschem 2024; 89:e202300785. [PMID: 38436555 DOI: 10.1002/cplu.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.
Collapse
Affiliation(s)
- Ourania Tzialla
- Department of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - George V Theodorakopoulos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Konstantinos G Beltsios
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou Str., Athens, Zografou, 15780, Greece
| | - George Pilatos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - K Suresh Kumar Reddy
- Renewable and Sustainable Energy Research Center, Technology Innovation Institute (TII), P.O. Box 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 - 50019, Sesto F. no, Florence, Italy
- University of Florence, Department of Chemistry U. "Schiff" - DICUS - and INSTM Research Unit, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Georgios N Karanikolos
- Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), 26504, Patras, Greece
| | - Fotios K Katsaros
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - Evangelos Kouvelos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| | - George Em Romanos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Ag. Paraskevi, Athens, 15310, Greece
| |
Collapse
|
5
|
Smith MN, Stump S, van Bergen SK, Davies HG, Fanning E, Eaton R, Manahan CC, Sergent A, Zarker K. A Hazard-Based Framework for Identifying Safer Alternatives to Classes of Chemicals: A Case Study on Phthalates in Consumer Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:45002. [PMID: 38683745 PMCID: PMC11057665 DOI: 10.1289/ehp13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.
Collapse
Affiliation(s)
- Marissa N. Smith
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Sascha Stump
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Saskia K. van Bergen
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Holly G. Davies
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Elinor Fanning
- Environmental Public Health Sciences, Washington State Department of Health, Tumwater, Washington, USA
| | - Rae Eaton
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Craig C. Manahan
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Amber Sergent
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| | - Ken Zarker
- Hazardous Waste & Toxics Reduction, Washington State Department of Ecology, Lacey, Washington, USA
| |
Collapse
|
6
|
Lago A, Silva B, Tavares T. Sustainable permeable biobarriers for atrazine removal in packed bed biofilm reactors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123033. [PMID: 38030114 DOI: 10.1016/j.envpol.2023.123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The synergy between two supported bacterial biofilms of S. equisimilis and P. putida and a sustainable biocarrier (raw pine) was studied, working both as biobarriers for the treatment of water contaminated with atrazine. Firstly, the effects of ATZ exposure on bacterial growth were evaluated, with Gram-positive S. equisimilis being a more tolerant bacterium to higher amounts of the herbicide. The bioremoval of ATZ by S. equisimilis concentrated biomass was then assessed, reaching around 83.5% after 15 days due to the potential degradation by the biomass and biosorption by the solids, with overlapping of both mechanisms. The optimization of bacterial biofilm attachment onto raw pine prior to bioremoval assays in lab-scale packed bed biofilm reactors was performed by varying initial biomass concentration, inocula growth time and hydrodynamic conditions. Lastly, the optimized biosystems were tested as sustainable remediation designs to treat water contaminated with the selected herbicide. Results reveal an added beneficial effect towards the bioremoval of atrazine using supported biofilms onto raw pine, reaching 90.42% and 79.71% by S. equisimilis and P. putida biofilms, respectively, over 58.31% increase when compared to sorption on fixed bed of pine. The coupling of biosorption/biodegradation favors the bioremoval process significantly.
Collapse
Affiliation(s)
- A Lago
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - B Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS-Associate Laboratory, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
| | - T Tavares
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS-Associate Laboratory, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
7
|
Gulcay-Ozcan E, Iacomi P, Brântuas PF, Rioland G, Maurin G, Devautour-Vinot S. Metal-Organic Frameworks for Phthalate Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48216-48224. [PMID: 37793090 DOI: 10.1021/acsami.3c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Indoor air contamination by phthalate ester (PAE) derivatives has become a significant concern since traces of PAEs can cause endocrine disruption, among other health issues. PAE abatement from the environment is thus mandatory to further ensure a good quality of indoor air. Herein, we explored the physisorption-based capture of volatile PAEs by metal-organic frameworks (MOFs). A high-throughput computational screening approach was first applied on databases compiling more than 20,000 MOF structures in order to identify the best MOFs for adsorbing traces of dimethyl phthalate (DMP), considered as a representative molecule of the family of PAE contaminants. Among the 20 top candidates, MOF-74(Ni), which combines substantial DMP uptake at the 10 ppm concentration level (∼0.20 g g-1) with high adsorption enthalpy at infinite dilution (-ΔHads(DMP),0 = 109.9 kJ mol-1), was revealed as an excellent porous material to capture airborne DMP. This prediction was validated by further experiments: gravimetric sorption isotherms were carried out on MOF-74(Ni), replacing DMP by dimethyl maleate (DMM), a molecule with a higher vapor pressure and indeed easier to manipulate compared to DMP while mimicking the adsorption behavior of DMP by MOFs, as evidenced by Monte Carlo calculations. Notably, saturation of DMM by MOF-74(Ni) (∼0.35 g g-1 at 343 K) occurs at very low equivalent concentration of the sorbate, i.e., 15 ppm, while half of the DMM molecules remain trapped in the MOF pores, even by heating the system up to 473 K under vacuum. This computational-experimental study reveals for the first time the potential of MOFs for the capture of phthalate ester contaminants as vapors of key importance to address indoor air quality issues.
Collapse
Affiliation(s)
- Ezgi Gulcay-Ozcan
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
- Department of Chemical Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Paul Iacomi
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
- Surface Measurement Systems, Unit 5, Wharfside, Rosemont Road, London HA0 4PE, U.K
| | - Pedro F Brântuas
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, Toulouse 31401 Cedex 09, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| | - Sabine Devautour-Vinot
- Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34293, France
| |
Collapse
|
8
|
Adsorption of Phthalate Acid Esters by Activated Carbon: The Overlooked Role of the Ethanol Content. Foods 2022; 11:foods11142114. [PMID: 35885356 PMCID: PMC9323295 DOI: 10.3390/foods11142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Ethanol has great effects on the adsorption of phthalate acid esters (PAEs) on activated carbon (AC), which are usually overlooked and hardly studied. This study investigated the overlooked effects of ethanol on the adsorption of PAEs in alcoholic solutions. The adsorption capacities of dibutyl phthalate (DBP) on AC in solutions with ethanol contents of 30, 50, 70, and 100 v% were only 59%, 43%, 19%, and 10% of that (16.39 mg/g) in water, respectively. The ethanol content increase from 50 v% to 100 v% worsened the adsorption performances significantly with the formation of water–ethanol–DBP clusters (decreasing from 13.99 mg/g to 2.34 mg/g). The molecular dynamics simulation showed that the DBP tended to be distributed farther away from the AC when the ethanol content increased from 0 v% to 100 v% (the average distribution distance increased from 5.25 Å to 15.3 Å). The PAEs with shorter chains were more affected by the presence of ethanol than those with longer chains. Taking DBP as an example, the adsorption capacity of AC in ethanol (0.41 mg/g) is only 2.2% of that in water (18.21 mg/g). The application results in actual Baijiu samples showed that the adsorption of PAEs on AC had important effects on the Baijiu flavors.
Collapse
|
9
|
Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3672-3685. [PMID: 34389956 DOI: 10.1007/s11356-021-15366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.
Collapse
Affiliation(s)
- Matias S Netto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
- Facultad de Ingeniería y Arquitectura, Universidad de Lima, Lima, Peru.
| | - Guilherme L Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
10
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38476-38496. [PMID: 33733409 DOI: 10.1007/s11356-021-13304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Liu Q, Yang J, Li H, Ye J, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X. Activated carbon prepared from catechol distillation residue for efficient adsorption of aromatic organic compounds from aqueous solution. CHEMOSPHERE 2021; 269:128750. [PMID: 33199105 DOI: 10.1016/j.chemosphere.2020.128750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
At present, activated carbon (AC) derived from industrial wastes has a great practical significance. In this work, residue activated carbon (RAC) was successfully synthesized from catechol distillation residue by a simple activation process based on two steps. The optimized RAC (RAC-800, activated at 800 °C) had high specific surface area (1800 m2/g) and large total pore volume (0.91 cm3/g). RAC-800 portrayed the evident increase of the graphitic structure and possessed abundant functional groups. Catechol (CC), phthalic acid (PA) and dimethyl phthalate (DMP) were chosen as typical pollutant to investigate the effect of different functional groups on adsorption aromatic compounds, and the equilibrium adsorption capacity of RAC-800 for CC, PA and DMP was 221.5, 365.0 and 449.9 mg/g, respectively. The adsorption behaviors were systematically studied by the combination of kinetic and thermodynamic model. The adsorption process was dominated by the π-π interaction, assisted by hydrogen bonding, hydrophobic and electrostatic interactions. In addition, regeneration study showed that the adsorption capacity can still remain over 88.5% after five cycles. In total, fine chemical distillation residues are promising to turn into the precursor of activated carbon, which has potential to be used as a good adsorbent for removal of aromatic compounds.
Collapse
Affiliation(s)
- Qing Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Junhao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Huanhuan Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Jiahua Ye
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Zhaoyang Fei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xian Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Zhuxiu Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China
| | - Jihai Tang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 210009, PR China
| | - Mifen Cui
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xu Qiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 210009, PR China.
| |
Collapse
|
12
|
|
13
|
Reshadi MAM, Bazargan A, McKay G. A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138863. [PMID: 32446150 DOI: 10.1016/j.scitotenv.2020.138863] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 05/12/2023]
Abstract
Landfill leachate is a significant environmental threat due to the complexity and variety of its pollutants. There are various physical, chemical, and biological treatment methods proposed for leachate treatment. Adsorption with conventional adsorbents such as activated carbon is a process which has been widely employed with relative success. Magnetic adsorbents are a special type of adsorbents with favorable stability, high adsorption capacities, and excellent recycling and reuse capabilities when compared to conventional sorbents. Research regarding the synthesis and use of magnetic adsorbents has been growing at a rapid pace, exhibiting >8-fold increase in publications in the decade of 2010 to 2020. In the current study, both conventional and magnetic adsorbents for landfill leachate treatment have been comprehensively reviewed and discussed. The application of magnetic adsorbents for landfill leachate treatment is relatively new, with numerous avenues of research open to study. Although the production of magnetic adsorbents is significantly more expensive than conventional adsorbents, when taking into consideration all life cycle costs, they are much more competitive than it initially appears. If environmental impacts are of concern, research should shift towards the use of greener chemicals and processes for magnetic adsorbent synthesis, because preliminary analysis of the current synthesis processes shows a much higher environmental impact compared to conventional adsorbents, in particular in terms of global warming potential and energy use.
Collapse
Affiliation(s)
| | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Iran.
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Qatar
| |
Collapse
|
14
|
Adsorptive Behavior of an Activated Carbon for Bisphenol A Removal in Single and Binary (Bisphenol A—Heavy Metal) Solutions. WATER 2020. [DOI: 10.3390/w12082150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) is an extensively produced and consumed chemical in the world. Due to its widespread use, contamination by this pollutant has increased in recent years, reaching a critical environmental point. This work investigates the feasibility of bisphenol A adsorption from industrial wastewater solutions, testing the reduction of bisphenol A in synthetic solutions by a commercial activated carbon, AC-40, in batch mode. Besides, mixtures of bisphenol A and different heavy metal cations were also studied. So far, no works have reported a complete study about bisphenol A removal by this activated carbon including the use of this material to remove BPA in the presence of metal cations. First, adsorption experiments were performed in batch changing pH, dose of adsorbent, initial bisphenol A concentration and contact time. Results showed greater retention of bisphenol A by increasing the acidity of the medium. Further, the percentage of bisphenol A adsorbed increased with increasing contact time. The selected conditions for the rest of the experiments were pH 5 and a contact time of 48 h. In addition, an increase in retention of bisphenol A when the dose of adsorbent increased was observed. Then, specific experiments were carried out to define the kinetics and the adsorption isotherm. Equilibrium data were adequately fitted to a Langmuir isotherm and the kinetics data fitted well to the pseudo-second-order model. The maximum adsorption capacity provided by Langmuir model was 94.34 mg/g. Finally, the effect of the presence of other heavy metals in water solution on the adsorption of bisphenol A was analyzed. Binary tests revealed competition between the adsorbates and a significant selectivity toward bisphenol A. Finally, the study of the adsorption performance in three consecutive adsorption–desorption cycles showed efficiencies higher than 90% in all cycles, indicating that the activated carbon has good reusability.
Collapse
|
15
|
Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2019-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The adsorption of Diphenolic acid (DPA), 2,4-Dichlorophenoxyacetic acid (2,4-D), and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were examined in aqueous solution using activated carbon rice straw. The rice straw was activated by using two reagents, zinc chloride and phosphoric acid and named as RSZ, RSP, respectively. The results showed that both carbons have a relatively high adsorption capacity. Concerning the adsorption kinetic, the second-order model has better fit than the first model to experimental data. The adsorption yield of both carbons increased in the order: DPA < 2,4-D < MCPA. The pore volume diffusion model satisfactorily fitted the experiment on both carbons. Furthermore, solution pH has a high influence on the adsorption capacity for both carbons. The adsorption mechanism of selected pollutants onto carbon samples has been controlled by dispersion interaction π-π electrons and electrostatic interaction, moreover, the contribution of pore volume diffusion is the controlling mechanism of the overall rate of adsorption.
Collapse
|
16
|
Coimbra R, Calisto V, Ferreira C, Esteves V, Otero M. Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Zhang M, Wang X, Du T, Wang H, Hao H, Wang Y, Li Y, Hao T. Effects of carbon materials on the formation of disinfection byproducts during chlorination: Pore structure and functional groups. WATER RESEARCH 2019; 162:1-10. [PMID: 31254881 DOI: 10.1016/j.watres.2019.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Release of carbon materials (CMs) into water and wastewater treatment systems occurs due to their increasing utilization as adsorbents for water treatment. When the CMs, mixed with natural organic matter (NOM), interact with disinfectants used during water treatment (e.g. chlorine), the released CMs can affect the formation of disinfection byproducts (DBPs). In this study, three common CMs were investigated to reveal their possible effects and the mechanisms of DBP formation during the chlorination of NOM. The experimental results indicate that DBPs generation decreased by 10-40% in the presence of CMs when Suwannee River humic acid (SRHA) was chlorinated. The adsorption of SRHA by CMs was hypothesized as the major cause for the DBPs inhibition. CMs could irreversibly adsorb DBP precursors in their mesopores through π-π bonding and hydrophobic effects. OH groups on the surface of CMs were shown to be critical for DBPs inhibition through linking with the OH or COOH groups on the surface of NOM via hydrogen bonding. The study also showed that water chemistry parameters, such as pH and salinity, can affect DBP formation by changing the adsorption of NOM onto CMs. With diverse NOM components, the presence of CMs resulted in decreased formation of trichloromethane from 57.1 μg/L to 23.8, 38.4, and 40.4 μg/L when coal-made activated carbon (CAC), wheat straw-made BC pyrolyzed at 300 °C (WSBC300), and multiwalled carbon nanotubes (MWCNTs), respectively, were added to surface water; and from 30.6 μg/L to 20.0, 19.2, and 13.2 μg/L when CAC, WSBC300, and MWCNTs, respectively, were added to wastewater.
Collapse
Affiliation(s)
- Min Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuan Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Tingting Du
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Huihui Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Huizhi Hao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yingying Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
18
|
Zhang W, Gago-Ferrero P, Gao Q, Ahrens L, Blum K, Rostvall A, Björlenius B, Andersson PL, Wiberg K, Haglund P, Renman G. Evaluation of five filter media in column experiment on the removal of selected organic micropollutants and phosphorus from household wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:920-928. [PMID: 31279249 DOI: 10.1016/j.jenvman.2019.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ± 6%. Xylit and lignite were less efficient with an average removal of 80 ± 28% and 68 ± 29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ± 27% and 14 ± 2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.
Collapse
Affiliation(s)
- Wen Zhang
- Dept. of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden.
| | - Pablo Gago-Ferrero
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Qiuju Gao
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Lutz Ahrens
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Kristin Blum
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Ande Rostvall
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Berndt Björlenius
- Dept. of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691, Stockholm, Sweden.
| | - Patrik L Andersson
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Karin Wiberg
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Peter Haglund
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Gunno Renman
- Dept. of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden.
| |
Collapse
|
19
|
López-Ramón MV, Ocampo-Pérez R, Bautista-Toledo MI, Rivera-Utrilla J, Moreno-Castilla C, Sánchez-Polo M. Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:767-776. [PMID: 30897435 DOI: 10.1016/j.scitotenv.2019.03.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/15/2023]
Abstract
This study investigated the adsorption of two endocrine-disrupting chemicals, bisphenol A (BPA) and S (BPS), from water using activated carbon clothes (ACCs), as-received and oxidized, in the absence and presence of bacteria, analyzing both kinetic and equilibrium adsorption data. Kinetic study of the different systems showed that the adsorption rate was affected both by the oxidation of the adsorbent and by the presence of bacteria. Bisphenol adsorption kinetics followed a second-order kinetic model, with rate constants between 0.0228 and 0.0013 g min-1 mol-1. ACC was a much better adsorbent of E. coli compared to granular activated carbons, achieving 100% adsorption at 24 h. ACC oxidation reduced the adsorption capacity and the adsorbent-adsorbate relative affinity due to the decrease in carbon surface hydrophobicity. Conversely, the presence of bacteria in aqueous solution increased the ACC surface hydrophobicity and therefore enhanced the adsorption capacity of BPA and BPS on ACC, which was 33% and 24%, respectively. In all cases, more BPS than BPA was removed due to the greater dipolar moment of the former. Results found show that activated carbon clothes in the presence of bacteria can be an adequate process to remove bisphenol A and S from different aqueous systems.
Collapse
Affiliation(s)
- M Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| | - Raúl Ocampo-Pérez
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis de Potosí, 78260 San Luis de Potosí, Mexico
| | | | - José Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Carlos Moreno-Castilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
20
|
Coimbra RN, Escapa C, Otero M. Adsorption Separation of Analgesic Pharmaceuticals from Ultrapure and Waste Water: Batch Studies Using a Polymeric Resin and an Activated Carbon. Polymers (Basel) 2018; 10:E958. [PMID: 30960883 PMCID: PMC6403863 DOI: 10.3390/polym10090958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022] Open
Abstract
The performance of a polymeric resin (Sepabeads SP207, from Resindion, Binasco, Italy) was compared with that of an activated carbon (GPP20, from Chemviron Carbon, Feluy, Belgium) in the adsorption of acetaminophen and ibuprofen from either ultrapure or waste water. Kinetic and equilibrium adsorption experiments were carried out under batch operation conditions, and fittings of the obtained results to different models were determined. The kinetic experimental results fitted the pseudo-first and -second order equations, and the corresponding kinetic rates evidenced that the pharmaceuticals adsorption was faster onto GPP20 than onto Sepabeads SP207, but was mostly unaffected by the aqueous matrix. The equilibrium results fitted the Langmuir-Freundlich isotherm model. The corresponding maximum adsorption capacity (Qm, mg-1) was larger onto GPP20 (202 mg g-1 ≤ Qm ≤ 273 mg g-1) than onto the polymeric resin (7 mg g-1 ≤ Qm ≤ 18 mg g-1). With respect to the parameter KLF (mg g-1 (mg L-1)-1/n), which points to the adsorbent-adsorbate affinity, greater values were determined for the pharmaceuticals adsorption onto GPP20 than onto Sepabeads SP207. For both adsorbents and pharmaceuticals, neither Qm or KLF were affected by the aqueous matrix.
Collapse
Affiliation(s)
- Ricardo N Coimbra
- Department of Applied Chemistry and Physics, Institute of Environment, Natural Resources and Biodiversity (IMARENABIO), Universidad de León, 24001 León, Spain.
| | - Carla Escapa
- Department of Applied Chemistry and Physics, Institute of Environment, Natural Resources and Biodiversity (IMARENABIO), Universidad de León, 24001 León, Spain.
| | - Marta Otero
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3800 Aveiro, Portugal.
| |
Collapse
|
21
|
Kah M, Sigmund G, Xiao F, Hofmann T. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. WATER RESEARCH 2017; 124:673-692. [PMID: 28825985 DOI: 10.1016/j.watres.2017.07.070] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/12/2023]
Abstract
The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested.
Collapse
Affiliation(s)
- Melanie Kah
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14 UZA II, 1090, Vienna, Austria.
| | - Gabriel Sigmund
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14 UZA II, 1090, Vienna, Austria
| | - Feng Xiao
- Department of Civil Engineering, University of North Dakota, Grand Forks, ND, 58202, United States
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14 UZA II, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5178697. [PMID: 28078293 PMCID: PMC5204096 DOI: 10.1155/2016/5178697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/05/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.
Collapse
|
24
|
Wang C, Yan X, Hu X, Zhou M, Ni Z. Metal-azolate framework-6 for fast adsorption removal of phthalic acid from aqueous solution. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. J Colloid Interface Sci 2016; 487:354-359. [PMID: 27794236 DOI: 10.1016/j.jcis.2016.10.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022]
Abstract
Phthalate esters (PAEs) are a group of endocrine disrupting compounds, which have been widely used as plasticizers. To alleviate the environmental and health threats from water resources polluted by PAEs, we prepared phenyl functionalized mesoporous silica materials (ph-SBA-15) were synthesized by a simple post-modification approach for rapid and efficient removal of low concentration of di-n-butyl phthalate (DBP) from aqueous solution. Mesostructure, texture, surface chemistry and surface charges were systemically characterized. The obtained ph-SBA-15 possesses a highly ordered mesostructure, a high surface area (418m2/g), uniform mesopores (6.5nm) and high-density organic groups around 11wt.%. Batch adsorption experiments revealed that phenyl modified SBA-15 had an excellent ability to remove DBP with the maximum adsorption capacity up to ∼40mg/g at 25°C. The thermodynamics and kinetics for the adsorption were also investigated, demonstrating an exothermic, multi-layer and fast adsorption process. In addition, DBP adsorption was found to be sensitive to the pH and the uptake was observed to be greatest at around pH 7.0. Furthermore, this material can be effectively regenerated by ethanol.
Collapse
|
26
|
Abdel daiem MM, Rivera-Utrilla J, Sánchez-Polo M, Ocampo-Pérez R. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:335-342. [PMID: 26282767 DOI: 10.1016/j.scitotenv.2015.07.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPA<BPA<PA<2,4-D<MCPA, which is directly related to: i) molecular size of pollutants; ii) chemical structure of pollutants, and iii) chemical properties of adsorbents. In most cases, the adsorption of contaminants is favored at acid pH (pH<5) due to the establishment of attractive electrostatic interactions. In dynamic regime, the amount of pollutant adsorbed was much higher for PA, followed by DPA, and was approximately similar for BPA, 2,4-D, and MCPA. Finally, the amount of BPA and DPA adsorbed on activated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon.
Collapse
Affiliation(s)
- Mahmoud M Abdel daiem
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain; Environmental Engineering Department, Faculty of Engineering, Zagazig University, 44519 Zagazig, Egypt.
| | - José Rivera-Utrilla
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - Manuel Sánchez-Polo
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosi, Av. Dr. M. Nava No.6, San Luis Potosi, SLP 78210, Mexico.
| |
Collapse
|
27
|
Pouya ES, Abolghasemi H, Esmaieli M, Fatoorehchi H, Hashemi SJ, Salehpour A. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: Kinetic, isotherm and thermodynamic studies. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Khan NA, Jung BK, Hasan Z, Jhung SH. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:194-200. [PMID: 24726184 DOI: 10.1016/j.jhazmat.2014.03.047] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/24/2014] [Accepted: 03/22/2014] [Indexed: 05/26/2023]
Abstract
ZIF-8 (zinc-methylimidazolate framework-8), one of the zeolitic imidazolate frameworks (ZIFs), has been used for the removal of phthalic acid (H2-PA) and diethyl phthalate (DEP) from aqueous solutions via adsorption. The adsorption capacity of the ZIF-8 for H2-PA was much higher than that of a commercial activated carbon or other typical metal-organic frameworks (MOFs). Because the surface area and pore volume of the adsorbents showed no favorable effect on the adsorption of H2-PA, the remarkable adsorption with ZIF-8 suggests a specific favorable interaction (electrostatic interaction) between the positively charged surface of ZIF-8 and the negatively charged PA anions. In addition, acid-base interactions also have a favorable contribution in the adsorption of H2-PA, based on the adsorptive performances of pristine and amino-functionalized MOFs and adsorption over ZIF-8 at acidic condition (pH=3.5). The reusability of ZIF-8 was also demonstrated after simple washing with methanol. On the other hand, ZIF-8 was not effective in adsorbing DEP probably because of little charge of DEP in a water solution.
Collapse
Affiliation(s)
- Nazmul Abedin Khan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Sankyuck-Dong, Daegu 702-701, Republic of Korea
| | - Beom K Jung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Sankyuck-Dong, Daegu 702-701, Republic of Korea
| | - Zubair Hasan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Sankyuck-Dong, Daegu 702-701, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Sankyuck-Dong, Daegu 702-701, Republic of Korea.
| |
Collapse
|
29
|
Liu X, Wang F, Bai S. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:2229-2235. [PMID: 26676011 DOI: 10.2166/wst.2015.453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.
Collapse
Affiliation(s)
- Xiaohong Liu
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China E-mail:
| | - Fang Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China E-mail:
| | - Song Bai
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China E-mail:
| |
Collapse
|
30
|
Sadeghi Pouya E, Abolghasemi H, Assar M, Hashemi SJ, Salehpour A, Foroughi-dahr M. Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Li X, Pignatello JJ, Wang Y, Xing B. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8334-8341. [PMID: 23799778 DOI: 10.1021/es4011042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We studied the pH-dependent adsorption of benzoic acid (BA), phthalic acid (PA), and 2,6-dichloro-4-nitrophenol (DCNP) by hydroxylated, carboxylated, and graphitized carbon nanotubes (CNTs). Adsorption is contributed by formation of a negative charge-assisted H-bond (-)CAHB between a carboxyl group on the solute and a phenolate or carboxylate group on the surface having a comparable pKa. This exceptionally strong H-bond is depicted as (RCO2···H···O-CNTs)(-). Over a limited pH range the free anion undergoes proton exchange with water concurrent with adsorption, releasing hydroxide ion in a stoichiometry of up to 1.0 for BA, 1.7 for PA, and 0.5 for DCNP. Little hydroxide is released upon adsorption by the O-sparse graphitized CNTs. Anion exchange and ligand exchange reactions as a source of hydroxide release were ruled out. The higher stoichiometry for PA indicates involvement of both carboxyl groups with adjacent surface oxyl groups. The lower stoichiometry for DCNP is consistent with steric inhibition of H-bonding by the ortho chlorines. Formation of (-)CAHB helps overcome the unfavorable free energy of proton exchange with water, and results in an upward shift in the pKa in the adsorbed state compared to the dissolved state from 0.9 to 3.1 units. The proposed mechanism is further supported by additional structure-activity considerations. The findings provide new understanding of the interactions between ionizable organic compounds and carbonaceous surfaces, which has implications for noncovalent derivatization of CNTs, fate of ionizable pollutants, and associations of natural organic matter with CNTs and other carbonaceous materials in the environment.
Collapse
Affiliation(s)
- Xiaoyun Li
- College of Resources and Environment, Northwest A&F University , Yangling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
32
|
Song X, Zhang Y, Yan C, Jiang W, Chang C. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon. J Colloid Interface Sci 2013; 389:213-9. [DOI: 10.1016/j.jcis.2012.08.060] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/19/2012] [Accepted: 08/29/2012] [Indexed: 11/15/2022]
|
33
|
Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon. J Colloid Interface Sci 2012; 385:174-82. [DOI: 10.1016/j.jcis.2012.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022]
|
34
|
Abdel daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies--a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 109:164-78. [PMID: 22796723 DOI: 10.1016/j.jenvman.2012.05.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 05/26/2023]
Abstract
This article describes the most recent methods developed to remove phthalic acid esters (PAEs) from water, wastewater, sludge, and soil. In general, PAEs are considered to be endocrine disrupting chemicals (EDCs), whose effects may not appear until long after exposure. There are numerous methods for removing PAEs from the environment, including physical, chemical and biological treatments, advanced oxidation processes and combinations of these techniques. This review largely focuses on the treatment of PAEs in aqueous solutions but also reports on their treatment in soil and sludge, as well as their effects on human health and the environment.
Collapse
Affiliation(s)
- Mahmoud M Abdel daiem
- Inorganic Chemistry Department, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|