1
|
Cui S, Qi Y, Zhu Q, Wang C, Sun H. A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160584. [PMID: 36455724 DOI: 10.1016/j.scitotenv.2022.160584] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) are common antibiotics that are widely present in the environment and can easily migrate in the environment, so they pose an environmental risk. Minerals and organic matter influence the antibiotic migration and transformation in sewage treatment plants, activated sludge, surface water, and soil environment. In the present paper, the influence of the process and mechanism of minerals and organic matter on the adsorption, degradation, and plant uptake of SAs in soil were summarized. In the impact process of mineral and organic matter on the SAs migration and transformation, the pH value is undoubtedly the most important factor because it determines the ionic state of SAs. In terms of influence mechanisms, the minerals absorb SAs well via cation exchange, complexation, H-bonding, and cation bridging. Mineral photodegradation is also one of the primary removal methods for SAs. Soil organic matter (SOM) can significantly increase the SAs adsorption. The adsorption forces of SAs and SOM or dissolved organic matter (DOM) were very similar, but SOM decreased SAs mobility in the environment, while DOM increased SAs availability. DOM generated active substances and aided in the photodegradation of SAs. This review describes the effects of minerals and organic matter on the fate of SAs in soil, which is useful in controlling the migration and transformation of SAs in the soil environment.
Collapse
Affiliation(s)
- Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Chang PH, Liu P, Sarkar B, Mukhopadhyay R, Yang QY, Tzou YM, Zhong B, Li X, Owens G. Unravelling the mechanism of amitriptyline removal from water by natural montmorillonite through batch adsorption, molecular simulation and adsorbent characterization studies. J Colloid Interface Sci 2021; 598:379-387. [PMID: 33915416 DOI: 10.1016/j.jcis.2021.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022]
Abstract
Amitriptyline (AMI) is one of the most common tricyclic antidepressant personal care medications. Due to its environmental persistence and bioaccumulation, release of AMI into the environment via wastewater streams in elevated levels could lead to significant ecological and human health impacts. In this study, the adsorption of AMI by montmorillonite (SWy-2), a naturally abundant smectite clay with sodium ions as the main interlayer cations, was investigated. Maximum AMI adsorption (276 mg/g) occurred at pH 7-8. After adsorption, examination of the adsorbent's X-ray diffraction pattern indicated that interlayer expansion had occurred, where chemical stoichiometry confirmed cation exchange as the principal adsorption mechanism. AMI adsorption reached equilibrium within 4 h, with kinetic data best fitting the pseudo-second order kinetic model (R2 = 0.98). AMI adsorption was unaffected by solution pH in the range 2-11, where adsorption was endothermic, and molecular simulations substantiated by Fourier transform infrared spectroscopy and thermogravimetric investigations indicated that the orientation of AMI molecules in the interlayer was via an amine group and a benzene ring. Overall this research shows that SWy-2 has significant potential as a low cost, effective, and geologically derived natural material for AMI removal in wastewater systems.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Pan Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China.
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Rd., Taichung 40227, Taiwan
| | - Bo Zhong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
3
|
Interactions between Active Ingredient Ranitidine and Clay Mineral Excipients in Pharmaceutical Formulations. MATERIALS 2020; 13:ma13235558. [PMID: 33291243 PMCID: PMC7730526 DOI: 10.3390/ma13235558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Excipients play an important role in pharmaceutical formulations. Many clay minerals, because of their large specific surface area and inert behaviour in reactions with active ingredients, are commonly used as excipients. In this study, the uptake of ranitidine (RT), the active ingredient of Zantac, on and released from palygorskite (Pal), kaolinite (Kao), and talc was evaluated under different physicochemical conditions. The results showed that the uptake of RT on these minerals was limited to the external surface areas only. Cation exchange and electrostatic interactions were responsible for the RT uptake on Pal and Kao, resulting in a monolayer sorption. In contrast, multilayer RT uptake was found on the talc surfaces. Under different desorbing conditions, significant amounts of sorbed RT remained on the solid surface after 5 h of desorption. The results suggest that the sorptive interactions between the active ingredients and the excipients may not be neglected in pharmaceutical formulations, should these minerals be used as additives and/or excipients.
Collapse
|
4
|
Wu M, Zhao S, Tang M, Jing R, Shao Y, Liu X, Dong Y, Li M, Liao Q, Lv G, Zhang Q, Meng Z, Liu A. Adsorption of sulfamethoxazole and tetracycline on montmorillonite in single and binary systems. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Study on the Adsorption Behavior between an Imidazolium Ionic Liquid and Na-Montmorillonite. Molecules 2019; 24:molecules24071396. [PMID: 30970610 PMCID: PMC6479560 DOI: 10.3390/molecules24071396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022] Open
Abstract
Interactions between 1-butyl-3-methylimidazolium tetrafluoroborate (IL), an ionic liquid, and Na-montmorillonite (Na-MMT) were studied under different kinetic conditions to investigate the adsorption behavior of IL by Na-MMT. The adsorption of IL by Na-MMT was rapid, with a fast rate, reaching a capacity of 0.43 mmol/g, lower than Na-MMT's cation exchange capacity (CEC) of 0.90 mmol/g. Meanwhile, the highest adsorption rate occurred at the IL concentration of 1000 mg/L. The exchangeable cation of Na-MMT could not be completely substituted by the cation group of IL regardless of the IL concentration. Stoichiometric desorption experiments confirmed that the cation exchange was the dominating adsorption mechanism for the IL adsorption by Na-MMT. The pH value of the solution between 2 and 11 had a negligible effect on the adsorption amount of IL by Na-MMT. The cation group of IL interacted into the interlayer of Na-MMT successfully, resulting in the change in the wettability of Na-MMT. A bilayer formation of the cationic group should occur in the interlayer of the modified Na-MMT and the configuration of IL was dependent on the adsorption amount of IL. Furthermore, the thermal stability of the modified Na-MMT was also dependent on the adsorption amount of IL.
Collapse
|
6
|
Wiranidchapong C, Kieongarm W, Managit C, Phrompittayarat W. Thermal, mechanical and drug release characteristics of an acrylic film using active pharmaceutical ingredient as non-traditional plasticizer. Drug Dev Ind Pharm 2015; 42:644-53. [PMID: 26133082 DOI: 10.3109/03639045.2015.1062513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to investigate thermal and mechanical properties as well as in vitro drug release of Eudragit® RL (ERL) film using chlorpheniramine maleate (CPM) as either active pharmaceutical ingredient or non-traditional plasticizer. Differential scanning calorimeter was used to measure the glass transition temperature (Tg) of 0-100% w/w CPM in ERL physical mixture. Instron testing machine was used to investigate Young's modulus, tensile stress and tensile strain (%) of ERL film containing 20-60% w/w CPM. Finally, a Franz diffusion cell was used to study drug release from ERL films obtained from four formulations, i.e. CRHP0/0, CRHP0/5, CRHP2/0 and CRHP2/5. The Tg of ERL was decreased when the weight percentage of CPM increased. The reduction of the Tg could be described by Kwei equation, indicating the interaction between CPM and ERL. Modulus and tensile stress decreased whereas tensile strain (%) increased when weight percentage of CPM increased. The change of mechanical properties was associated with the reduction of the Tg when weight percentage of CPM increased. ERL films obtained from four formulations could release the drug in no less than 10 h. Cumulative amount of drug release per unit area of ERL film containing only CPM (CRHP0/0) was lower than those obtained from the formulations containing traditional plasticizer (CRHP0/5), surfactant (CRHP2/0) or both of them (CRHP2/5). The increase of drug release was a result of the increase of drug permeability through ERL film and drug solubility based on traditional plasticizer and surfactant, respectively.
Collapse
Affiliation(s)
| | - Waraporn Kieongarm
- a Faculty of Pharmacy , Srinakharinwirot University , Nakhon-Nayok , Thailand and
| | - Chittima Managit
- a Faculty of Pharmacy , Srinakharinwirot University , Nakhon-Nayok , Thailand and
| | | |
Collapse
|
7
|
Binding sites of chlorpheniramine on 1:1 layered kaolinite from aqueous solution. J Colloid Interface Sci 2014; 424:16-21. [DOI: 10.1016/j.jcis.2014.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
|
8
|
Interactions between sulfa drug sulfadiazine and hydrophobic talc surfaces. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|