1
|
Xu M, Zhang X, Bai Y, Wang X, Yang J, Hu N. Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion. APL Bioeng 2024; 8:026103. [PMID: 38638144 PMCID: PMC11026109 DOI: 10.1063/5.0205100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Cell electrofusion is a key process in many research fields, such as genetics, immunology, and cross-breeding. The electrofusion efficiency is highly dependent on the buffer osmotic pressure properties. However, the mechanism by which the buffer osmotic pressure affects cell electrofusion has not been theoretically or numerically understood. In order to explore the mechanism, the microfluidic structure with paired arc micro-cavities was first evaluated based on the numerical analysis of the transmembrane potential and the electroporation induced on biological cells when the electrofusion was performed on this structure. Then, the numerical model was used to analyze the effect of three buffer osmotic pressures on the on-chip electrofusion in terms of membrane tension and cell size. Compared to hypertonic and isotonic buffers, hypotonic buffer not only increased the reversible electroporation area in the cell-cell contact zone by 1.7 times by inducing a higher membrane tension, but also significantly reduced the applied voltage required for cell electroporation by increasing the cell size. Finally, the microfluidic chip with arc micro-cavities was fabricated and tested for electrofusion of SP2/0 cells. The results showed that no cell fusion occurred in the hypertonic buffer. The fusion efficiency in the isotonic buffer was about 7%. In the hypotonic buffer, the fusion efficiency was about 60%, which was significantly higher compared to hypertonic and isotonic buffers. The experimental results were in good agreement with the numerical analysis results.
Collapse
Affiliation(s)
- Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuefeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Chen X, Liu S, Shen M, Gao Z, Hu S, Zhao Y. Dielectrophoretic assembly and separation of particles and cells in continuous flow. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4485-4493. [PMID: 37610139 DOI: 10.1039/d3ay00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Dielectrophoretic (DEP) separation has been recognized as a practical tool in the separation of cells and particles for clinical diagnosis, the pharmaceutical industry and environmental monitoring. Assembly of particles and cells under DEP force is a common phenomenon and has an influence on their separation but has not been understood fully. Encouraged by these aspects, we developed a microfluidic device with a bipolar electrode array to investigate the assembly and separation of particles and cells at a large scale. First, we studied the assembly and evolution mechanisms of particles of one type under an AC electric field. Then, we investigated the interaction and assembly of multiple particles with dissimilar properties under DEP force. Depending on the development of microfluidic devices, we visualize the assembly process of yeast cells at the electrode rims and of polystyrene particles at the channel centers, and explore the influence of pearl chain formation on their separation. With increasing flow velocity from 288 to 720 μL h-1, the purity of 5 μm polystyrene particles surpasses 94.9%. Furthermore, we studied the DEP response of Scenedesmus sp. and C. vulgaris, and explored the influence of cell chains on the isolation of C. vulgaris. The purity of Scenedesmus sp. and C. vulgaris witnessed a decrease from 95.7% to 90.8% when the flow rate increased from 288 to 864 μL h-1. Finally, we investigated the extension of the electric field under chains of Oocystis sp. at the electrode rims by studying chain formation and capture of C. vulgaris, and studied its effect on cell chain length, recovered cell purity and cell concentration. When chains of Oocystis sp. were formed, the purity of C. vulgaris kept unchanged and the concentration decreased from 2793 cells per μL to 2039 cells per μL. This work demonstrates continuous DEP-based assembly and separation of particles and cells, which facilitates high-efficiency isolation of targeted cells.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Ziwei Gao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Sheng Hu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| |
Collapse
|
3
|
Atay A, Beşkök A, Çetin B. DC‐electrokinetic motion of colloidal cylinder(s) in the vicinity of a conducting wall. Electrophoresis 2022; 43:1263-1274. [DOI: 10.1002/elps.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Atakan Atay
- Microfluidics & Lab‐on‐a‐chip Research Group Mechanical Engineering Department Bilkent University Ankara Turkey
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology Bilkent University Ankara Turkey
| | - Ali Beşkök
- Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Barbaros Çetin
- Microfluidics & Lab‐on‐a‐chip Research Group Mechanical Engineering Department Bilkent University Ankara Turkey
- UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology Bilkent University Ankara Turkey
| |
Collapse
|
4
|
Huang Z, Wu Z, Zhou T, Shi L, Liu Z, Huang J. Multi-particle interaction in AC electric field driven by dielectrophoresis force. Electrophoresis 2021; 42:2189-2196. [PMID: 34117650 DOI: 10.1002/elps.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/11/2022]
Abstract
When the dielectrophoresis technology is used to manipulate micron-sized particles, the interaction between particles should not be ignored because of the particle-particle interaction. Especially, when multiple particles (number of particles is above 2) are simultaneously manipulated, the interaction between neighboring particles will affect the results of the manipulation. This research investigates the interaction of particles caused dielectrophoresis effect by the Arbitrary Lagrangian-Eulerian (ALE) method based on the hypothesis of the thin layer of the electric double layer at the microscale. The mathematics model can be solved simultaneously by the finite element method for the AC electric field, the flow field around the suspended particles and the particle mechanics at the micrometer scale. In this study, the particle conductivity and the direction of the electric field are investigated, we find that particle conductivity and electric field direction pose an impact on particle movement, and the research reveal the law of microparticle dielectrophoresis movement, which could offer theoretical and technology support to profoundly understand the precise manipulation of particles in microfluidic chips by the dielectrophoresis effect.
Collapse
Affiliation(s)
- Zhiwei Huang
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Zhihao Wu
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Zhenyu Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) 130033, Chinese Academy of Science, Changchun, Jilin, P. R. China
| | - Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, P. R. China
| |
Collapse
|
5
|
Zhao Y, Brcka J, Faguet J, Zhang G. Elucidating the Mechanisms of Two Unique Phenomena Governed by Particle-Particle Interaction under DEP: Tumbling Motion of Pearl Chains and Alignment of Ellipsoidal Particles. MICROMACHINES 2018; 9:mi9060279. [PMID: 30424212 PMCID: PMC6187656 DOI: 10.3390/mi9060279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022]
Abstract
Particle-particle interaction plays a crucial role in determining the movement and alignment of particles under dielectrophoresis (DEP). Previous research efforts focus on studying the mechanism governing the alignment of spherical particles with similar sizes in a static condition. Different approaches have been developed to simulate the alignment process of a given number of particles from several up to thousands depending on the applicability of the approaches. However, restricted by the simplification of electric field distribution and use of identical spherical particles, not much new understanding has been gained apart from the most common phenomenon of pearl chain formation. To enhance the understanding of particle-particle interaction, the movement of pearl chains under DEP in a flow condition was studied and a new type of tumbling motion with unknown mechanism was observed. For interactions among non-spherical particles, some preceding works have been done to simulate the alignment of ellipsoidal particles. Yet the modeling results do not match experimental observations. In this paper, the authors applied the newly developed volumetric polarization and integration (VPI) method to elucidate the underlying mechanism for the newly observed movement of pearl chains under DEP in a flow condition and explain the alignment patterns of ellipsoidal particles. The modeling results show satisfactory agreement with experimental observations, which proves the strength of the VPI method in explaining complicated DEP phenomena.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA.
| | - Jozef Brcka
- Tokyo Electron Technology Center, America, LLC, US-Technology Development Center, Austin, TX 78741, USA.
| | - Jacques Faguet
- Tokyo Electron Technology Center, America, LLC, US-Technology Development Center, Austin, TX 78741, USA.
| | - Guigen Zhang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA.
| |
Collapse
|
6
|
Çetin B, Öner SD, Baranoğlu B. Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle. Electrophoresis 2017; 38:1407-1418. [PMID: 28164365 DOI: 10.1002/elps.201600461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/21/2017] [Accepted: 01/21/2017] [Indexed: 11/08/2022]
Abstract
Dielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manipulation. For the design of a DEP-based microfluidic device, simulation of the particle trajectory within the microchannel network is crucial. There are basically two approaches: (i) point-particle approach and (ii) finite-sized particle approach. In this study, many aspects of both approaches are discussed for the simulation of direct current DEP, alternating current DEP, and traveling-wave DEP applications. Point-particle approach is implemented using Lagrangian tracking method, and finite-sized particle is implemented using boundary element method. The comparison of the point-particle approach and finite-sized particle approach is presented for different DEP applications. Moreover, the effect of particle-particle interaction is explored by simulating the motion of closely packed multiple particles for the same applications, and anomalous-DEP, which is a result of particle-wall interaction at the close vicinity of electrode surface, is illustrated.
Collapse
Affiliation(s)
- Barbaros Çetin
- Microfluidics & Lab-on-a-chip Research Group, Mechanical Engineering Department, Bilkent University, Ankara, Turkey
| | - S Doğan Öner
- Microfluidics & Lab-on-a-chip Research Group, Mechanical Engineering Department, Bilkent University, Ankara, Turkey
| | - Besim Baranoğlu
- Department of Manufacturing Engineering, Atılım University, Ankara, Turkey.,Computational Science and Engineering Laboratory, Atılım University, Ankara, Turkey
| |
Collapse
|
7
|
Hossan MR, Gopmandal PP, Dillon R, Dutta P. A comprehensive numerical investigation of DC dielectrophoretic particleparticle interactions and assembly. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Bornhoeft LR, Castillo AC, Smalley PR, Kittrell C, James DK, Brinson BE, Rybolt TR, Johnson BR, Cherukuri TK, Cherukuri P. Teslaphoresis of Carbon Nanotubes. ACS NANO 2016; 10:4873-4881. [PMID: 27074626 DOI: 10.1021/acsnano.6b02313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.
Collapse
Affiliation(s)
- Lindsey R Bornhoeft
- Department of Chemistry and Physics, University of Tennessee-Chattanooga , 615 McCallie Avenue, Chattanooga, Tennessee 37403, United States
- Department of Biomedical Engineering, Texas A&M University , 101 Bizzell Street, College Station, Texas 77843, United States
| | | | - Preston R Smalley
- Second Baptist School , 6410 Woodway Drive, Houston, Texas 77057, United States
| | | | | | | | - Thomas R Rybolt
- Department of Chemistry and Physics, University of Tennessee-Chattanooga , 615 McCallie Avenue, Chattanooga, Tennessee 37403, United States
| | | | - Tonya K Cherukuri
- Department of Chemistry and Physics, University of Tennessee-Chattanooga , 615 McCallie Avenue, Chattanooga, Tennessee 37403, United States
| | - Paul Cherukuri
- Department of Chemistry and Physics, University of Tennessee-Chattanooga , 615 McCallie Avenue, Chattanooga, Tennessee 37403, United States
| |
Collapse
|
9
|
Tseng S, Huang CH, Hsu JP. Electrophoresis of two spheres: Influence of double layer and van der Waals interactions. J Colloid Interface Sci 2015; 451:170-6. [PMID: 25897853 DOI: 10.1016/j.jcis.2015.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Considering recent applications of electrophoresis conduced in nanoscaled devices, where particle-particle interaction can play a role, we studied for the first time the electrophoresis of two rigid spheres along their center line, taking account of the hydrodynamic, electric, and van der Waals interactions between them. Under the conditions of constant surface potential and surface charge density, the influences of the level of surface potential/charge density, the bulk salt concentration, and the particle-particle distance on their electrokinetic behaviors are examined. Numerical simulation reveals that these behaviors are much more complicated and interesting than those of isolated particles. In particular, we show that care must be taken in choosing an appropriate particle concentration in relevant experiment to avoid obtaining unreliable mobility data.
Collapse
Affiliation(s)
- Shiojenn Tseng
- Department of Mathematics, Tamkang University, Tamsui, Taipei 25137, Taiwan
| | - Chih-Hua Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Cheng TL, Wen YH. Iterative spectral method for solving electrostatic or magnetostatic problems in complex and evolving heterostructures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:053307. [PMID: 26066279 DOI: 10.1103/physreve.91.053307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 06/04/2023]
Abstract
Electrostatic or magnetostatic problems involving complex heterogeneity are nontrivial for modeling and simulation. Most existing numerical methods focus on sharp interface models and the computational cost increases with increasing complexity of the geometry. Here we develop an iterative spectral method, the bound charge successive approximation algorithm, to solve electrostatic or magnetostatic heterogeneity problems in the context of diffuse-interface modeling. As tests and verifications, this algorithm is applied to calculation of the depolarization factor of an ellipsoid, and simulation of random dielectric mixtures and the dielectophoretic motion of multiple particles. The algorithm shows excellent efficiency and the computational cost mainly depends on the permittivity or permeability contrast in the whole system, regardless of the complexity of the geometry. In particular, for evolving heterostructures the solution of bound charge in one time step can be used as input for the next, which could further significantly shorten the iteration (approximation) process, making it practical to simulate the long-range electrostatic or magnetostatic interaction in complex and evolving heterostructures.
Collapse
Affiliation(s)
- Tian-Le Cheng
- National Energy Technology Laboratory, 1450 Queen Ave S.W., Albany, Oregon 97321, USA
| | - You-Hai Wen
- National Energy Technology Laboratory, 1450 Queen Ave S.W., Albany, Oregon 97321, USA
| |
Collapse
|
11
|
Ai Y, Zeng Z, Qian S. Direct numerical simulation of AC dielectrophoretic particle–particle interactive motions. J Colloid Interface Sci 2014; 417:72-9. [DOI: 10.1016/j.jcis.2013.11.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/09/2013] [Accepted: 11/11/2013] [Indexed: 11/26/2022]
|
12
|
Modeling and simulation of dielectrophoretic particle-particle interactions and assembly. J Colloid Interface Sci 2012; 394:619-29. [PMID: 23348000 DOI: 10.1016/j.jcis.2012.12.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 11/23/2022]
Abstract
Electric field induced particle-particle interactions and assembly are of great interest due to their useful applications in micro devices. The behavior of particles becomes more complex if multiple particles interact with each other at the same time. In this paper, we present a numerical study of two dimensional DC dielectrophoresis based particle-particle interactions and assembly for multiple particles using a hybrid immersed interface-immersed boundary method. The immersed interface method is employed to capture the physics of electrostatics in a fluid media with suspended particles. Particle interaction based dielectrophoretic forces are obtained using Maxwell's stress tensor without any boundary or volume integration. This electrostatic force distribution mimics the actual physics of the immersed particles in a fluid media. The corresponding particle response and hydrodynamic interactions are captured through the immersed boundary method by solving the transient Navier-Stokes equations. The interaction and assembly of multiple electrically similar and dissimilar particles are studied for various initial positions and orientations. Numerical results show that in a fluid media, similar particles form a chain parallel to the applied electric field, whereas dissimilar particles form a chain perpendicular to the applied electric field. Irrespective of initial position and orientation, particles first align themselves parallel or perpendicular to the electric field depending on the similarity or dissimilarity of particles. The acceleration and deceleration of particles are also observed and analyzed at different phases of the assembly process. This comprehensive study can be used to explain the multiple particle interaction and assembly phenomena observed in experiments.
Collapse
|