1
|
Chiang KT, Lin SH, Ye YZ, Zeng BH, Cheng YL, Lee RH, Lin KYA, Yang H. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays. J Colloid Interface Sci 2023; 650:81-93. [PMID: 37393770 DOI: 10.1016/j.jcis.2023.06.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Optical coatings with reversibly tunable antireflective characteristics hold a tremendous potential for next generation optical energy-related applications. Bioinpsired by the camouflage behavior of small yellow leafhoppers, silica hollow sphere/shape memory polymer composites are self-assembled using a non-lithography-based approach. The average visible transmittance of the as-patterned hierarchical structure array-covered substrate is increased by ca. 6.3% at normal incident, and even improved by more than 20% for an incident angle of 75°. Interestingly, the broadband omnidirectional antireflection performance can be reversibly erased and recovered by applying external stimuli under ambient conditions. To gain a better understanding, its reversibility, mechanical robustness, and the structure-shape effect on the antireflective properties are systematically investigated in this research.
Collapse
Affiliation(s)
- Kuan-Ting Chiang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Yu-Zhe Ye
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Bo-Han Zeng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| |
Collapse
|
2
|
Tian G, Cai W, Huang C, Xiang J, Gao Y, Xiao Y, Zhang L, Cheng P, Zhang J, Tang N. A facile fabrication of acid-proof membranes with superhydrophobic high adhesion in air. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Ge-Zhang S, Yang H, Ni H, Mu H, Zhang M. Biomimetic superhydrophobic metal/nonmetal surface manufactured by etching methods: A mini review. Front Bioeng Biotechnol 2022; 10:958095. [PMID: 35992341 PMCID: PMC9388738 DOI: 10.3389/fbioe.2022.958095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
As an emerging fringe science, bionics integrates the understanding of nature, imitation of nature, and surpassing nature in one aspect, and it organically combines the synergistic complementarity of function and structure-function integrated materials which is of great scientific interest. By imitating the microstructure of a natural biological surface, the bionic superhydrophobic surface prepared by human beings has the properties of self-cleaning, anti-icing, water collection, anti-corrosion and oil-water separation, and the preparation research methods are increasing. The preparation methods of superhydrophobic surface include vapor deposition, etching modification, sol-gel, template, electrostatic spinning, and electrostatic spraying, which can be applied to fields such as medical care, military industry, ship industry, and textile. The etching modification method can directly modify the substrate, so there is no need to worry about the adhesion between the coating and the substrate. The most obvious advantage of this method is that the obtained superhydrophobic surface is integrated with the substrate and has good stability and corrosion resistance. In this article, the different preparation methods of bionic superhydrophobic materials were summarized, especially the etching modification methods, we discussed the detailed classification, advantages, and disadvantages of these methods, and the future development direction of the field was prospected.
Collapse
Affiliation(s)
| | - Hong Yang
- College of Science, Northeast Forestry University, Harbin, China
| | - Haiming Ni
- College of Science, Northeast Forestry University, Harbin, China
| | - Hongbo Mu
- College of Science, Northeast Forestry University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Mai C, Yang L, Lv C, Tian J, Gu Q, Hu J, Jiang Y, Zhang H. Simple preparation and study of superhydrophobic surface of triple‐scale raspberry‐like composite particles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chongyang Mai
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Li Yang
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Chengcheng Lv
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Junwen Tian
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Qintian Gu
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Jian Hu
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Yan Jiang
- School of Material Science and Engineering Changzhou University Changzhou China
- Jiangsu Chenguang Paint Co., Ltd Changzhou China
| | - Hongwen Zhang
- School of Material Science and Engineering Changzhou University Changzhou China
| |
Collapse
|
5
|
Yao M, Zhang P, Nie J, He Y. The Superhydrophobic Fluorine‐Containing Material Prepared Through Biomimetic UV Lithography for Oil–Water Separation and Anti‐Bioadhesion. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Miao Yao
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Pingping Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Jun Nie
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Yong He
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| |
Collapse
|
6
|
Ma YY, Qian DJ. Visual Luminescent Probes Constructed by Eu 3+ Complex-Functionalized Silica Nanocomposites and Their Langmuir-Blodgett Films at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14092-14103. [PMID: 33170711 DOI: 10.1021/acs.langmuir.0c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The trivalent europium ion (Eu3+) has garnered a great deal of interest for the design of luminescent materials possessing compound-independent emission bands, strong luminescent intensity, and long emission lifetimes. We herein introduce a synthetic methodology capable of constructing visual luminescent probes from Eu3+ complex-functionalized silica nanocomposites and their Langmuir-Blodgett (LB) films at interfaces. In order to facilitate the coordinative stabilization of Eu3+ over carrier surfaces, silica nanoparticles (nanoSiO2) were pregrafted with terpyridyl (TPy) to make nanoSiO2TPy linkers. Then, a well-designed coordination reaction of nanoSiO2TPy with EuCl3 and 2,6-pyridinedicarboxylic acid (DPA) was carried out at solid-liquid and air-water interfaces, where our desired material (denoted as nanoSiO2TPy@EuDPA) and its corresponding LB film are obtained. The presence of TPy and DPA interacting with Eu3+ plays a key role in regulating the chemical nature of the particle surface, hence giving rise to closely packed nanocomposite arrays in the film. As a result, the improvement in uniformity and stability is achieved alongside the enhancement in emission intensity and lifetime. With such advantageous optical properties, we find them workable as facile, green, and affordable luminescent sensors, by which a range of common toxic anions (Cr2O72-, MnO4-, and PO43-) can be visually and quantitatively recognized. Notably, the LB film-based material could afford a higher Ksv value (1.53 × 105 M-1), a lower detection limit (0.157 μM), and better recyclability than its original powder analogue, showcasing its utility as a more promising candidate for practical use.
Collapse
Affiliation(s)
- Yue-Yang Ma
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
7
|
Wang J, Tu T, Chen M, Qian D. Interfacial Self‐Assembly of Closely Packed Nanoparticle Arrays of Silica@Multiporphyrin Hybrids as Light‐Sensitizers for Dye Degradation and Viologen Photochromism. Chem Asian J 2019; 14:3035-3045. [DOI: 10.1002/asia.201900803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Wang
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Tao Tu
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Meng Chen
- Department of Materials ScienceFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Dong‐Jin Qian
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 P. R. China
| |
Collapse
|
8
|
Xiao Z, Wang Q, Yao D, Yu X, Zhang Y. Enhancing the Robustness of Superhydrophobic Coatings via the Addition of Sulfide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6650-6656. [PMID: 31014069 DOI: 10.1021/acs.langmuir.9b00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Micro/nano hierarchical structures with special wettability impart a wide spectrum of unique properties to the superhydrophobic surfaces that are applicable in different potential fields. Therefore, it is necessary to develop advanced superhydrophobic materials with excellent wear-resistance properties. In this study, PDMS-based robust superhydrophobic coatings, which used MoS2 or WS2 as a solid lubricant, PDMS as a binder, and SiO2 as a filler, were prepared on glass substrate by the one-step air spaying method. Lamellar MoS2 and WS2 with high crystallinity had intrinsic hydrophobic properties. The MoS2@SiO2-PDMS (MSP) and WS2@SiO2-PDMS (WSP) coatings with very rough textures showed good water-repellent behavior with water contact angles of 167.8 and 166.2°, respectively. The results demonstrated that the addition of microsized MoS2 or WS2 could easily format micro/nano second-level hierarchical structures, thus realizing the superhydrophobic properties. The friction coefficient decreased gradually with the increasing in MoS2 or WS2. A 4:1 ratio of SiO2 to MoS2/WS2 could cause the samples to preserve their superhydrophobic properties even after 100 cycles on the abraser. As a result, superhydrophobic coatings with excellent wear resistance will be good candidates for water-repellent surfaces to meet practical emerging needs in industry applications.
Collapse
Affiliation(s)
- Zhen Xiao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Qiaoling Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Daozhou Yao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , P. R. China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering , Southeast University , Nanjing 211189 , P. R. China
| |
Collapse
|
9
|
Li P, Dou X, Schönherr H. Micropatterning and nanopatterning with polymeric materials for advanced biointerface‐controlled systems. POLYM INT 2019. [DOI: 10.1002/pi.5770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| | - Xiaoqiu Dou
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiaotong University Shanghai China
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| |
Collapse
|
10
|
Telecka A, Li T, Ndoni S, Taboryski R. Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties. RSC Adv 2018. [DOI: 10.1039/c8ra00414e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the use of wafer-scale nanolithography based on block-copolymer (BCP) self-assembly for the fabrication of surfaces with enhanced wetting properties.
Collapse
Affiliation(s)
- Agnieszka Telecka
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| | - Tao Li
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
- Department of Electronic and Electrical Engineering
- University College London
| | - Sokol Ndoni
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
- Center for Nanostructured Graphene, CNG
- Technical University of Denmark
| | - Rafael Taboryski
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Denmark
| |
Collapse
|
11
|
Hang T, Chen HJ, Xiao S, Yang C, Chen M, Tao J, Shieh HP, Yang BR, Liu C, Xie X. TiO 2 nanowire-templated hierarchical nanowire network as water-repelling coating. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171431. [PMID: 29308265 PMCID: PMC5750032 DOI: 10.1098/rsos.171431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
Collapse
Affiliation(s)
- Tian Hang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Shuai Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Jun Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Han-ping Shieh
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
- Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Bo-ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; The First Affiliated Hospital of Sun Yat-sen University; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Gong J, Wu N. Electric-Field Assisted Assembly of Colloidal Particles into Ordered Nonclose-Packed Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5769-5776. [PMID: 28514847 DOI: 10.1021/acs.langmuir.7b00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonclose-packed colloidal arrays have many potential applications ranging from plasmonic sensors, light trapping for photovoltaics, to transparent electrodes. However, scalable fabrication of those structures remains a challenge. In this Article, we investigate the robustness of an electric-field assisted approach systematically. A monolayer of nonclose-packed crystalline array is first created under a low-frequency alternating-current electric field in solution. We then apply a sequence of direct-current pulses to fix the particle array onto the substrate so that it remains intact even after both field removal and solvent evaporation. Key process parameters such as the alternating-current field strength, direct-current magnitude, particle concentration, and solvent-evaporation rate that affect both ordering and fixing of colloidal particles have been studied systematically. We find that direct currents with an intermediate magnitude induce electrophoretic motion of particles toward the substrate and facilitate their permanent adhesion on the substrate due to strong van der Waals attraction. A higher current, however, causes lateral aggregation of particles arising from electroosmotic flow of solvent and destroys the periodic ordering between particles. This approach, in principle, can be conveniently adapted into the continuous convective assembly process, thus making the fabrication of nonclose-packed colloidal arrays scalable.
Collapse
Affiliation(s)
- Jingjing Gong
- Department of Chemical and Biological Engineering, Colorado School of Mines 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
13
|
Han Y, He L, Luo X, Huang X, Shi K. Several surfaces with special wettability: Influence on spreading and motion of W/O emulsion droplets. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1310655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yunrui Han
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, China
| | - Limin He
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, China
- Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology, China University of Petroleum, Qingdao, China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, China
- Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum, Qingdao, China
| | - Xin Huang
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, China
| | - Kaiyue Shi
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, China
| |
Collapse
|
14
|
Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings. J Colloid Interface Sci 2017; 490:174-180. [DOI: 10.1016/j.jcis.2016.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/19/2016] [Indexed: 11/22/2022]
|
15
|
Kothary P, Dou X, Fang Y, Gu Z, Leo SY, Jiang P. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach. J Colloid Interface Sci 2016; 487:484-492. [PMID: 27816014 DOI: 10.1016/j.jcis.2016.10.081] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
Abstract
Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays.
Collapse
Affiliation(s)
- Pratik Kothary
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xuan Dou
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yin Fang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhuxiao Gu
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sin-Yen Leo
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Lash MH, Jordan JC, Blevins LC, Fedorchak MV, Little SR, McCarthy JJ. Non-Brownian Particle-Based Materials with Microscale and Nanoscale Hierarchy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Lash MH, Jordan JC, Blevins LC, Fedorchak MV, Little SR, McCarthy JJ. Non-Brownian Particle-Based Materials with Microscale and Nanoscale Hierarchy. Angew Chem Int Ed Engl 2015; 54:5854-8. [DOI: 10.1002/anie.201500273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/12/2022]
|
18
|
Tang Y, Yang J, Yin L, Chen B, Tang H, Liu C, Li C. Fabrication of superhydrophobic polyurethane/MoS2 nanocomposite coatings with wear-resistance. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Webb HK, Crawford RJ, Ivanova EP. Wettability of natural superhydrophobic surfaces. Adv Colloid Interface Sci 2014; 210:58-64. [PMID: 24556235 DOI: 10.1016/j.cis.2014.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity.
Collapse
|