1
|
Yang Q, Wu Y, Lu X. Dual temperature/mechanical-responsive photonic crystal ionogels assembled by soft nanogels. J Colloid Interface Sci 2025; 688:703-713. [PMID: 40024102 DOI: 10.1016/j.jcis.2025.02.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
In this paper, inspired by biological skin, photonic crystal ionogels with tuning stretching response and temperature response were cleverly constructed. By the method of emulsion precipitation polymerization, we firstly fabricated a series of nanogels composed of poly(N-isopropylacrylamide-co-N-(1-naphthyl) maleic acid) (P(NIPAM-co-NNMA)). The photonic crystals were constructed through the self-assembly of P(NIPAM-co-NNMA) nanogels in a mixing solvent of water and ionic liquid (IL) 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM Otf). The phase transition temperature (Tp) of the nanogels was increased with an increase of the ionic liquid BMIM Otf in the mixing solvent. The photonic crystal ionogels (PIGs) were prepared by locking the photonic crystals via another polymer networks of poly (N,N-dimethylacrylamide) (PDMA). With decreasing ionic liquid, the structural color gradually becomes bright but the stretching strength and the elongation decreased. As the ratio of IL to water decreased to 2.9:1, the photonic crystal ionogels looked bright and the ionogels demonstrated a good elongation at break nearing 364%. As the ionogels were stretched, the structural color exhibited a blue-shift. Very interestingly, the structural color of the 100% stretching-ionogels was still stable as the content of PDMA was in a range of 15 wt% to 17 wt%. Furthermore, the composite device formed by integrating the temperature-responsive photonic crystal ionogels with carbon nanotubes (PIG-CNTs) films not only demonstrates electro-thermal conversion performance but also the ability to directly capture visual signals. This study provides a general and enlightening design strategy for the construction of high performance of photonic crystal ionogels.
Collapse
Affiliation(s)
- Qian Yang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Anhui Microdelivery Smart Microcapsule Sc. & Tech. Co. Ltd, 1188 Xihu First Road, Tongling, Anhui 244000, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China.
| |
Collapse
|
2
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Li X, Li H, Su H, Tan X, Lin X, Wu Y, Jiang L, Xiao T, Tan X. Substrate-Independent Superhydrophobic Coating Capable of Photothermal-Induced Repairability for Multiple Damages Fabricated via Simple Blade Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9449-9461. [PMID: 38659090 DOI: 10.1021/acs.langmuir.3c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Repairable superhydrophobic surfaces have promising application potential in many fields. However, so far, it is still a challenge to develop a superhydrophobic surface with repairability for multiple types of damage through a simple method. In this paper, a repairable superhydrophobic coating was obtained on various substrates by blade-coating mixtures of polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), and multiwalled carbon nanotubes (MWCNTs) modified with dopamine (PDA) and octadecylamine (ODA). The obtained coating has a good liquid-repellent property with a water contact angle above 150° and a water sliding angle of ∼6° and possesses an excellent absorbance (∼97%) in the wavelength range of 250-2500 nm. Due to its high absorbance, the coating displays an outstanding photothermal effect with a temperature rise of ∼65 °C under irradiation by 1.0 kW/m2 of simulated sunlight. Furthermore, after being degraded by multiple stimuli, including plasma treatment, acid/alkali/oil immersion, sand impact, and the icing-thawing cycle, the coating can recover superhydrophobicity via sunlight irradiation, demonstrating the good photothermal-induced repairability of the coating. It can be expected that the good water-repellent property, photothermal effect, and repairability give this coating a promising prospect in practical applications.
Collapse
Affiliation(s)
- Xinyi Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Hao Li
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Haoqiang Su
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xin Tan
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xiang Lin
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Yahui Wu
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Lihua Jiang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Ting Xiao
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| | - Xinyu Tan
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, P. R. China
| |
Collapse
|
4
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Synthesis of quercetin-loaded hyaluronic acid-conjugated pH/redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles for breast cancer targeted therapy. Int J Biol Macromol 2024; 263:130168. [PMID: 38365162 DOI: 10.1016/j.ijbiomac.2024.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
In the current study, a combination of precipitation polymerization and modified sol-gel methods were developed to prepare the novel hyaluronic acid-decorated pH and redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles with a core-shell structure for controlled drug release. The nanocarriers have a proper particle size of <200 nm, high negative zeta potential greater than -30 mV, controllable diameter, and tunable shell thickness. The prepared nanoparticles were able to entrap over 70 % of quercetin with a drug loading of >10 %, due to the mesoporous shell. In vitro drug release profiles indicated that the systems had good stability under normal physiological media, while the cumulative release was significantly accelerated at the simulated tumor tissue condition, which shows pH and redox-dependent drug release. In vitro cell viability and apoptosis assay proved that the obtained nanomaterials possess relatively good biocompatibility, and drug-loaded targeted nanoparticles exhibited greater cytotoxicity on MCF-7 human breast cancer cells than free drug and non-targeted nanocarriers due to the enhanced cellular uptake of nanoparticles via CD44 receptors overexpressed. All these findings demonstrated that proposed nanocarriers might be promising as a smart drug delivery system to improve the antitumor efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran.
| |
Collapse
|
5
|
Ghalehkhondabi V, Fazlali A, Soleymani M. Temperature and pH-responsive PNIPAM@PAA Nanospheres with a Core-Shell Structure for Controlled Release of Doxorubicin in Breast Cancer Treatment. J Pharm Sci 2023; 112:1957-1966. [PMID: 37076101 DOI: 10.1016/j.xphs.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Stimuli-responsive polymers have been of great interest in the fabrication of advanced drug delivery systems. In this study, a facile approach was developed to synthesize a dually temperature/pH-responsive drug delivery system with a core-shell structure to control the release of doxorubicin (DOX) at the target site. For this purpose, poly(acrylic acid) (PAA) nanospheres were first synthesized using the precipitation polymerization technique and were used as pH-responsive polymeric cores. Then, poly(N-isopropylacrylamide) (PNIPAM) with thermo-responsivity properties was coated on the outer surface of PAA cores via seed emulsion polymerization technique to render monodisperse PNIPAM-coated PAA (PNIPAM@PAA) nanospheres. The optimized PNIPAM@PAA nanospheres with an average particle size of 116.8 nm (PDI= 0.243), had a high negative surface charge (zeta potential= -47.6 mV). Then, DOX was loaded on PNIPAM@PAA nanospheres and the entrapment efficiency (EE) and drug loading (DL) capacity were measured to be 92.7% and 18.5%, respectively. The drug-loaded nanospheres exhibited a low leakage at neutral pH and physiological temperature, but drug release significantly enhanced at acidic pH (pH= 5.5), indicating the tumor-environment responsive drug release behavior of the prepared nanospheres. Also, kinetics studies showed that, the sustained release of DOX from PNIPAM@PAA nanospheres was consistent with the Fickian diffusion mechanism. Moreover, the anticancer efficacy of DOX-loaded nanospheres was evaluated in vitro against MCF-7 breast cancer cells. The obtained results revealed that, the incorporation of DOX into PNIPAM@PAA nanospheres increases its cytotoxicity against cancer cells compared to the free DOX. Our results suggest that, PNIPAM@PAA nanospheres can be considered as a promising vector to release anticancer drugs with dual-stimuli responsivity to pH and temperature.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 38156-88349, Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 38156-88349, Iran.
| |
Collapse
|
6
|
Folic-Acid-Conjugated Thermoresponsive Polymeric Particles for Targeted Delivery of 5-Fluorouracil to CRC Cells. Int J Mol Sci 2023; 24:ijms24021364. [PMID: 36674883 PMCID: PMC9861804 DOI: 10.3390/ijms24021364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is the fourth most common cancer worldwide and the third most frequently diagnosed form of cancer associated with high mortality rates. Recently, targeted drug delivery systems have been under increasing attention owing to advantages such as high therapeutic effectiveness with a significant depletion in adverse events. In this report, we describe the biocompatible and thermoresponsive FA-conjugated PHEA-b-PNIPAAm copolymers as nanocarriers for the delivery of 5-FU. The block copolymers were obtained using RAFT (Reversible Addition-Fragmentation chain Transfer) polymerization and were characterized by methods such as SEC (Size Exclusion Chromatography), NMR (Nuclear Magnetic Resonance), UV-Vis (Ultraviolet-Visible), FT-IR (Fourier Transform Infrared) spectroscopy, and TGA (Thermogravimetric Analysis). Nanoparticles were formed from polymers with and without the drug-5-fluorouracil, which was confirmed using DLS (Dynamic Light Scattering), zeta potential measurements, and TEM (Transmission Electron Microscopy) imaging. The cloud points of the polymers were found to be close to the temperature of the human body. Eventually, polymeric carriers were tested as drug delivery systems for the safety, compatibility, and targeting of colorectal cancer cells (CRC). The biological evaluation indicated high compatibility with the representative host cells. Furthermore, it showed that proposed nanosystems might have therapeutic potential as mitigators for 5-FU-induced monocytopenia, cardiotoxicity, and other chemotherapy-associated disorders. Moreover, results show increased cytotoxicity against cancer cells compared to the drug, including a line with a drug resistance phenotype. Additionally, the ability of synthesized carriers to induce apoptosis and necrosis in treated CRC cells has been confirmed. Undoubtedly, the presented aspects of colorectal cancer therapy promise future solutions to overcome the conventional limitations of current treatment regimens for this type of cancer and to improve the quality of life of the patients.
Collapse
|
7
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
8
|
Dual responsive molecularly imprinted polymers based on UiO-66-DOX for selective targeting tumor cells and controlled drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr Polym 2022; 279:119013. [PMID: 34980356 DOI: 10.1016/j.carbpol.2021.119013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
The unique natural advantages of polysaccharide materials have attracted attention in biomedical applications. The abundant modifiable functional groups on the polysaccharide materials surface can facilitate the synthesis of various multifunctional drug delivery carriers. Especially in tumor therapy, the designs of polysaccharide-based drug delivery carriers are diverse. Therefore, this review summarized several latest types of polysaccharide-based drug carriers designs, and focused on the latest design strategies and considerations of drug carriers with polysaccharides as the main structure. It is expected to provide some design ideas and inspiration for subsequent polysaccharide-based drug delivery systems.
Collapse
|
10
|
Folic acid-conjugated pH-responsive poly(methacrylic acid) nanospheres for targeted delivery of anticancer drugs to breast cancer cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Ghiman R, Pop R, Rugina D, Focsan M. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ni X, Li C, Lei Y, Shao Y, Zhu Y, You B. Design of a Smart Self-Healing Coating with Multiple-Responsive Superhydrophobicity and Its Application in Antibiofouling and Antibacterial Abilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57864-57879. [PMID: 34807561 DOI: 10.1021/acsami.1c15239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the restoration of the superhydrophobic surfaces after the damage in nature such as lotus leaf and clover, smart self-healing coating with controllable release of loaded healing agents is both of scientific and technological interest. Herein, a smart self-healing coating with superhydrophobicity was gained through blending UV/NIR/acid/base multiple-responsive ZnO-encapsulated mesoporous polydopamine (MPDA) microspheres (zinc oxide-encapsulated mesoporous polydopamine microspheres) with silicone latex and hydrophobic nanoparticles. The hydrophobic and micro/nanostructured ZnO-encapsulated MPDA microspheres provided UV/NIR/acid/base multiple response sources for the smart self-healing coating, combining the photocatalytic activity and acid/base solubility of ZnO nanoparticles, zwitterionic characteristic of amino-modified silicone oil (ASO), as well as the photothermal conversion abilities and charge characteristics of PDA. The ZnO nanoparticles simultaneously acted as the protective layer for the stimuli-responsive microspheres and functional filler in the coating, contributing to realize the controllable and long-period release of loaded hydrophobic ASO and the further antibacterial functionalization for the coating. The super/high hydrophobicity and antibiofouling performances of the coating could be self-healed by UV, NIR, acid, or base stimuli, attributing to the release of ASO from the microspheres. Then, large-area, rapid, and controllable healing superiority could be achieved on the coating with the combined multiple responses under different conditions. Robust environmental endurances for superhydrophobic coating were also confirmed under harsh environments by directly exposing to UV-accelerated weathering and immersing into various solutions (including strong acid/base, salt, and artificial seawater solution). This smart coating has high application prospects due to its environmentally friendly nature, excellent self-healing, and multifunctional characteristics, and the multiple-responsive ZnO-encapsulated MPDA microspheres can be used for the functionalization of other materials.
Collapse
Affiliation(s)
- Xingxing Ni
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Chenxi Li
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Yang Lei
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo You
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
13
|
Zeng Y, Zhu C, Tao L. Stimuli-Responsive Multifunctional Phenylboronic Acid Polymers Via Multicomponent Reactions: From Synthesis to Application. Macromol Rapid Commun 2021; 42:e2100022. [PMID: 33713503 DOI: 10.1002/marc.202100022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive polymers undergo changes under different environmental conditions. Among them, phenylboronic acid (PBA) containing polymers (PBA-polymers) are unique, because they can selectively react with diols to generate borates that are sensitive to pH, sugars, and H2 O2 , and can be effectively used to synthesize smart drug carriers and self-healing hydrogels. Recently, multifunctional PBA-polymers (MF-PBA-polymers) have been developed using multicomponent reactions (MCRs) to introduce PBA groups into polymer structures. These MF-PBA-polymers have features similar to those of traditional PBA-polymers; moreover, they exhibit additional properties, such as fluorescence, antimicrobial activity, and antioxidant capability, when different MCRs are used. In this mini review, the preparation of these MF-PBA-polymers are summarized and the new properties/functions that have been introduced into these polymers using different MCRs are discussed. The uses of these MF-PBA-polymers as fluorescent cell anticoagulants, drug carriers, and gelators of functional self-healing hydrogels have been discussed. Additionally, the challenges encountered during their preparation are discussed and also the future developments in this field are touched upon.
Collapse
Affiliation(s)
- Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chongyu Zhu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Xia J, Lu D, Han Y, Wang J, Hong Y, Zhao P, Fang Q, Lin Q. Facile multifunctional IOL surface modification via poly(PEGMA-co-GMA) grafting for posterior capsular opacification inhibition. RSC Adv 2021; 11:9840-9848. [PMID: 35423496 PMCID: PMC8695425 DOI: 10.1039/d1ra00201e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 01/25/2023] Open
Abstract
Posterior capsule opacification (PCO) is a significant complication of intraocular lens (IOL) implantation in cataract surgery, in which the adhesion and proliferation of lens epithelial cells (LECs) on the implanted IOL surface play an important role. The surface modification of IOL to prevent LEC adhesion and proliferation is a practical way to reduce the incidence of PCO. In this study, a multifunctional binary copolymer of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) was synthesized (poly(PEGMA-co-GMA), PPG) and chemically grafted onto the aminolyzed IOL surface, utilizing the coupling reaction of epoxy and amino groups. Doxorubicin (DOX) was subsequently immobilized on the surface coating via the reaction of epoxy and amino groups as well. Taking advantages of the hydrophilicity of the PEG segments in the copolymer coating and the anti-proliferative effects of the DOX, a multifunctional surface coating was easily established by the synthesized copolymer PPG. Such anti-proliferative drug immobilized hydrophilic coating modification may effectively reduce the cell adhesion and proliferation and thus it is hypothesized to have great potential in PCO inhibition. The synthesis of PPG was confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR) and Fourier transform infrared spectroscopy (FTIR). The surface coating immobilization was demonstrated by X-ray photoelectron spectroscopy (XPS). The in vitro drug release profiles and the cell behaviors were also investigated to validate the multifunctional coating inhibition effect on cellular adhesion and antiproliferation. Finally, the in vivo ocular implantation was carried out on rabbit eyes to evaluate the effect of the coating modified IOL on the inhibition of postoperative PCO. It followed that such multifunctional coating modification can effectively inhibit the adhesion and proliferation of LECs and significantly reduce the incidence of PCO. All these results reveal that such PPG copolymer modification provides a facile yet effective way to inhibit PCO formation after IOL implantation. Drug eluting and hydrophilic intraocular lens surface coating was facilely fabricated via poly(PEGMA-co-GMA) grafting. Such a multifunctional coating reduced posterior capsular opacification incidence after implantation effectively.![]()
Collapse
Affiliation(s)
- Jiayi Xia
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Duoduo Lu
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Yuemei Han
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Jiahao Wang
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Yueze Hong
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Peiyi Zhao
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Qiuna Fang
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Quankui Lin
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| |
Collapse
|
15
|
Zhao L, Shi L, Wang J, Zhang Q, Yang X, Lu Y. Degradable inorganic/polymer core-shell microspheres for pH-triggered release of indole-3-acetic acid. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1563087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Linlin Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Luqing Shi
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
16
|
Wang M, Long J, Zhang S, Liu F, Zhang X, Zhang X, Sun L, Ma L, Yu C, Wei H. Folate-Targeted Anticancer Drug Delivery via a Combination Strategy of a Micelle Complex and Reducible Conjugation. ACS Biomater Sci Eng 2020; 6:1565-1572. [PMID: 33455375 DOI: 10.1021/acsbiomaterials.9b01920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugation of various active targeting ligands to the surface of nanocarriers to realize specific recognition by the corresponding receptors localized on the membrane of the cancer cells has provided a powerful means toward enhanced cancer therapy. Folic acid (FA) is one of the most used targeting ligands due to the overexpressed FA receptors in many cancer cell lines. However, conjugation of hydrophobic FA to the surface of nanocarriers usually alters the hydrophilic/hydrophobic balance of the stabilized nanoparticles, leading to their thermodynamic instability and subsequent formation of aggregates, which apparently compromises the in vivo long circulation and minimized side effects of nanocarriers. The currently leading strategy to overcome this issue is to incorporate a protecting hydrophilic stealth that can be deshielded to expose the targeting ligand at the desired tumor site, which generally involves multistep chemical modifications, conjugations, and purifications. To develop a simple alternative toward FA-mediated enhanced anticancer drug delivery, a combination strategy of micelle complex and reducible conjugation was reported in this study. FA was first conjugated to the terminus of the hydrophilic block of a reduction-sensitive miktoarm star-shaped amphiphilic copolymer, PCL3-SS-POEGMA1, with the previously optimized star structure by click coupling via a reducible disulfide link. The resulting PCL3-SS-POEGMA1-SS-FA was further mixed with the parent PCL3-SS-POEGMA1 to afford a micelle complex with both reducibly conjugated and relatively low amount of FA-targeting ligands toward excellent FA-mediated targeted drug delivery without compromised salt stability in vitro and in vivo. Therefore, the combined strategy developed herein provides a simple and powerful means to promote FA-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Mingqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Jinrong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Simin Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiaolong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xianshuo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Lu Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
17
|
Guo S, Carvalho WSP, Wong D, Serpe MJ. Alkanethiol Molecular Barriers for Controlling Small Molecule Release Kinetics from a Microgel-Based Reservoir Device. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47446-47455. [PMID: 31804062 DOI: 10.1021/acsami.9b18043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(N-isopropylacrylamide)-co-acrylic acid microgel-based reservoir devices were constructed by "sandwiching" a single layer of microgels between two thin Au layers (all on a glass support). The microgels were loaded with the model drug crystal violet (CV) utilizing the electrostatic interactions between deprotonated acrylic acid (AAc) and the positively charged CV; release can be triggered from the microgels by neutralizing the deprotonated AAc groups at acidic conditions. Alkanethiols of different alkyl chain lengths and polarities were immobilized on the upper Au layer of the device, and the release rate of the model drug CV from the microgel layer, after acid neutralization, was assessed. We found that the CV release rate was the highest when the alkyl chain length was short and contained a hydrophilic moiety. Conversely, the release rate was hindered by the presence of thiols with long alkyl chain lengths and with no hydrophilic moiety. We explain this phenomenon by quantifying the thiol's ability to hinder acid penetration into the microgel layer, and the ability of free CV to pass through the upper Au layer and into the solution. Utilizing various thiols and mixed thiol layers, we are able to tune release profiles from these reservoir devices to potentially achieve array devices with precisely tuned small molecule release profiles.
Collapse
Affiliation(s)
- Siyuan Guo
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | | | - Daniel Wong
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Serpe
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
18
|
Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:395-405. [PMID: 30688110 DOI: 10.1080/21691401.2018.1559176] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A single outcome in a biological procedure at the time of cancer therapy is due to multiple changes happening simultaneously. Hence to mimic such complex biological processes, an understanding of stimuli responsiveness is needed to sense specific changes and respond in a predictable manner. Such responses due to polymers may take place either simultaneously at the site or in a sequential manner from preparation to transporting pathways to cellular compartments. The present review comprehends the stimuli-responsive polymers and multi-responsiveness with respect to cancer therapy. It focuses on the exploitation of different stimuli like temperature, pH and enzymes responsiveness in a multi-stimuli setting. Nanogels and micelles being two of the most commonly used responsive polymeric carriers have also been discussed. The role of multiple stimuli delivery system is significant due to multiple changes happening in the near surroundings of cancer cells. These responsive materials are able to mimic some biological processes and recognize at the molecular level itself to manipulate development of custom-designed molecules for targeting cancer cells.
Collapse
Affiliation(s)
- Anil M Pethe
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| | - Khushwant S Yadav
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| |
Collapse
|
19
|
Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J Control Release 2019; 296:93-106. [PMID: 30664976 DOI: 10.1016/j.jconrel.2019.01.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
At present, chemotherapy remains to be one of the most important therapeutic approaches for malignant tumors. The tumor microenvironment(TME)-responsive intelligent drug delivery systems are still the hot research topics in delivering chemotherapeutic drugs. Camptothecin (CPT) possesses very strong antitumor activities, but its clinical application is hindered by its poor water-solubility and serious toxic side effects. Herein, a new intelligent and TME-responsive P(CPT-MAA) prodrug nanogel was developed for delivering CPT and reducing its side effects. P(CPT-MAA) prodrug nanogels were prepared with methacrylic acid (MAA), CPT monomer (CPTM) and N,N'-methylenebisacrylamide (Bis) via distillation-precipitation polymerization, in which CPT was covalently conjugated into the nanogels via redox-responsive disulfide linker. The as-prepared nanogels were spherical shapes with uniform size and narrow size distribution. With the help of redox-responsive property of disulfide linker and pH-responsive property of PMAA, the release of CPT from prodrug nanogels was redox/pH-dual dependent and could be accelerated by the increased concentration of GSH and the decreased pH value, which were favorable to realize the "on-demand" drug release in tumor cell and tumor tissue microenvironment. Furthermore, P(CPT-MAA) prodrug nanogels exhibited superior antitumor activity both in vitro and in vivo without observed side effects. Hence, the prepared P(CPT-MAA) prodrug nanogels may be a promise delivery system for chemotherapeutic agents.
Collapse
|
20
|
Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. J Control Release 2019; 294:355-371. [DOI: 10.1016/j.jconrel.2018.12.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023]
|
21
|
Guo B, Liao C, Liu X, Yi J. Preliminary study on conjugation of formononetin with multiwalled carbon nanotubes for inducing apoptosis via ROS production in HeLa cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2815-2826. [PMID: 30233144 PMCID: PMC6135071 DOI: 10.2147/dddt.s169767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background The present work was conducted to prepare and evaluate multiwalled carbon nanotube–formononetin (MWCNT-FMN) composite for sustained delivery and inducing apop-tosis via reactive oxygen species (ROS) production in HeLa cells. Methods The composite was prepared by solution mixing with short carboxylic group-functionalized multiwalled carbon nanotubes (MWCNT-COOH). Then the composite was characterized by laser particle size analysis, Fourier transform infrared spectrometry, X-ray diffractometry, differential scanning calorimetry, and scanning electron microscopy. Drug release rates in vitro were determined by dialysis method. The in vitro cytotoxicity study was performed using water soluble tetrazolium assay. The cellular apoptosis assay, ROS, and mitochondrial membrane potential (MMP) of HeLa cells were investigated by acridine orange and ethidium bromide double dye, 2′,7′-dichlorodihydrofluorescein diacetate, and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide probe, respectively. Results The entrapment efficiency was 28.77%±0.15%, and the loading capacity was 12.05%±0.20%. The release of MWCNT-FMN was sustained, and the cumulative release rate of formononetin (FMN) from MWCNT-COOH was higher at pH 7.4 than at pH 5.3. The in vitro cytotoxicity assay demonstrated that FMN, MWCNT-COOH, and MWCNT-FMN had no significant effects on the proliferation and viability of mouse fibroblast 3T3 cells over 48 hours, while the cell growth inhibition of the three samples showed concentration-dependent for HeLa cells. Biological assay suggested FMN and MWCNT-FMN could induce apoptosis in HeLa cells, meanwhile the cells exhibited stronger ROS signal and more depolarized MMP than that of the control group. Conclusion These results preliminarily demonstrated that MWCNT-FMN exerted anticancer efficacy through cellular apoptosis induced by ROS-mediated mitochondrial dysfunctions in HeLa cells.
Collapse
Affiliation(s)
- Bohong Guo
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Cancheng Liao
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Xiaohong Liu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Jun Yi
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| |
Collapse
|
22
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
23
|
Liu X, Xu D, Liao C, Fang Y, Guo B. Development of a promising drug delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Liu W, Li P, Zhang H. Preparation of thermosensitive microcapsules and application on the controllable drug delivery of ibuprofen. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1405349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
- Tianjin Colouroad Coatings & Chemicals Co. Ltd, Tianjin, China
| | - Peisen Li
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Hongmei Zhang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|
25
|
Characterization and cytotoxicity of PLGA nanoparticles loaded with formononetin cyclodextrin complex. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Li M, Thapa P, Rajaputra P, Bio M, Peer CJ, Figg WD, You Y, Woo S. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system. J Pharmacokinet Pharmacodyn 2017; 44:521-536. [PMID: 28913666 DOI: 10.1007/s10928-017-9543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Pritam Thapa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Pallavi Rajaputra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Moses Bio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
27
|
Duan L, Wang Y, Zhang Y, Wang Z, Li Y, He P. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1323215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lanlan Duan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yifeng Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Zhiguo Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
28
|
Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:242-248. [DOI: 10.1016/j.msec.2017.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
29
|
Zhao M, Gao M, Dai C, Zou C, Yang Z, Wu X, Liu Y, Wu Y, Fang S, Lv W. Investigation of Novel Triple-Responsive Wormlike Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4319-4327. [PMID: 28391678 DOI: 10.1021/acs.langmuir.7b01011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart wormlike micelles with stimuli-tunable rheological properties may be useful in a variety of applications, such as in molecular devices and sensors. The formation of triplestimuli-responsive systems so far has been a challenging and important issue. In this work, a novel triplestimuli (photo-, pH-, and thermoresponsive) wormlike micelle is constructed with N-cetyl-N-methylmorpholinium bromide and trans-cinnamic acid (CA). The corresponding multiresponsive behaviors of wormlike micellar system were revealed using cryogenic transmission electron microscopy, a rheometer, and 1H NMR. The rheological properties of wormlike micellar system under different temperatures, pH conditions, and UV irradiation times are measured. As confirmed by 1H NMR, chemical structure of a CA molecule can be altered by the multiple stimulation from an exotic environment. We expect it to be a good model for triple-responsive wormlike micelles, which is helpful to understand the mechanism of triple-responsiveness and widen their applications.
Collapse
Affiliation(s)
- Mingwei Zhao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Mingwei Gao
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Caili Dai
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Chenwei Zou
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Zhe Yang
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Xuepeng Wu
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Yifei Liu
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Yining Wu
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Sisi Fang
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| | - Wenjiao Lv
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) , Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
30
|
Dong L, Shi C, Guo L, Yang T, Sun Y, Cui X. Fabrication of redox and pH dual-responsive magnetic graphene oxide microcapsules via sonochemical method. ULTRASONICS SONOCHEMISTRY 2017; 36:437-445. [PMID: 28069231 DOI: 10.1016/j.ultsonch.2016.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, the biocompatible redox and pH dual-responsive magnetic graphene oxide microcapsules (MGOMCs) were prepared by a simple sonochemical method. The disulfide bonds cross-linked the wall of MGOMCs were formed from the hydrosulfuryl on the surface of thiolated graphene oxide, which was synthesized by functionalizing graphene oxide with cysteine, showed an excellent redox-responsive property to control drugs release. Moreover, oleic acid modified Fe3O4 nanoparticles were encapsulated into the microcapsules successfully with the hydrophobic drugs dispersed in the hydroxy silicone oil. The MGOMCs possess distinguished magnetic property and pH-responsive ability. Besides, the microcapsules could be engulfed by Hela cells successfully due to the appropriate size and flexible shell. The MGOMCs could be a good carrier for hydrophobic drugs, especially the anticancer drugs.
Collapse
Affiliation(s)
- Linlin Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Lanlan Guo
- College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, PR China
| | - Ting Yang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
31
|
Preparation and evaluation of pH -responsive charge-convertible ternary complex FA-PEI-CCA/PEI/DNA with low cytotoxicity and efficient gene delivery. Colloids Surf B Biointerfaces 2017; 152:58-67. [DOI: 10.1016/j.colsurfb.2017.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
|
32
|
Li B, Shan M, Di X, Gong C, Zhang L, Wang Y, Wu G. A dual pH- and reduction-responsive anticancer drug delivery system based on PEG–SS–poly(amino acid) block copolymer. RSC Adv 2017. [DOI: 10.1039/c7ra04254j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dual pH- and reduction-responsive anticancer drug delivery system was developed by conjugating mPEG with a poly(amino acid) derivative using a disulfide linker.
Collapse
Affiliation(s)
- Bingqiang Li
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Meng Shan
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiang Di
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Chu Gong
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Lihua Zhang
- College of Pharmacy
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yanming Wang
- College of Pharmacy
- Nankai University
- Tianjin 300071
- P. R. China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
33
|
Liu T, Hu J, Ma X, Kong B, Wang J, Zhang Z, Guo DS, Yang X. Hollow double-layered polymer nanoparticles with S-nitrosothiols for tumor targeted therapy. J Mater Chem B 2017; 5:7519-7528. [DOI: 10.1039/c7tb01715d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tumor targeted hollow double-layered polymer nanoparticles (HDPNs) withS-nitrosothiols for nitric oxide (NO)-release as chemotherapy were described.
Collapse
Affiliation(s)
- Tuanwei Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education, Shandong Normal University
| | - Jingjing Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education, Shandong Normal University
| | - Xiaoye Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education, Shandong Normal University
| | - Bing Kong
- Department of Anesthesiology
- Shandong Maternal and Child Health Hospital
- Jinan 250014
- P. R. China
| | - Jilan Wang
- Department of Anesthesiology
- Shandong Provincal Hospital Affiliated to Shandong University
- Jinan 250014
- P. R. China
| | - Zhide Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education, Shandong Normal University
| | - Dian-Shun Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education, Shandong Normal University
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
34
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
35
|
Feuser PE, Arévalo JMC, Junior EL, Rossi GR, da Silva Trindade E, Rocha MEM, Jacques AV, Ricci-Júnior E, Santos-Silva MC, Sayer C, de Araújo PHH. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:185. [PMID: 27787810 DOI: 10.1007/s10856-016-5796-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.
Collapse
Affiliation(s)
- Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Enio Lima Junior
- Laboratório de Resonancias Magnéticas, Centro Atómico Bariloche & CONICET, San Carlos de Bariloche, Argentina
| | | | | | | | - Amanda Virtuoso Jacques
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Ricci-Júnior
- Department of Pharmacy, Federal University of Rio Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro H Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
36
|
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
37
|
Kuila A, Maity N, Chatterjee DP, Nandi AK. Phase Behavior of Poly(vinylidene fluoride)-graft-poly(diethylene glycol methyl ether methacrylate) in Alcohol-Water System: Coexistence of LCST and UCST. J Phys Chem B 2016; 120:2557-68. [PMID: 26859626 DOI: 10.1021/acs.jpcb.5b11736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thermoresponsive polymer poly(diethylene glycol methyl ether methacrylate) (PMeO2MA) is grafted from poly(vinylidene fluoride) (PVDF) backbone by using a combined ATRC and ATRP technique with a high conversion (69%) of the monomer to produce the graft copolymer (PD). It is highly soluble polymer and its solution property is studied by varying polarity in pure solvents (water, methanol, isopropanol) and also in mixed solvents (water-methanol and water-isopropanol) by measuring the hydrodynamic size (Z-average) of the particles by dynamic light scattering (DLS). The variation of Z-average size with temperature of the PD solution (0.2%, w/v) indicates a lower critical solution temperature (LCST)-type phase transition (T(PL)) in aqueous medium, an upper critical solution temperature (UCST)-type phase transition (T(PU)) in isopropanol medium, and no such phase transition for methanol solution. In the mixed solvent (water + isopropanol) at 0-20% (v/v) isopropanol the TPL increases, whereas the T(PU) decreases at 92-100% with isopropanol content. For the mixture 20-90% isopropanol, PD particles having larger sizes (400-750 nm) exhibit neither any break in Z-average size-temperature plot nor any cloudiness, indicating their dispersed swelled state in the medium. In the methanol + water mixture with methanol content of 0-30%, T(PL) increases, and at 40-60% both UCST- and LCST-type phase separations occur simultaneously, but at 70-90% methanol the swelled state of the particles (size 250-375 nm) is noticed. For 50 vol % methanol by varying polymer concentration (0.07-0.2% w/v) we have drawn a quasibinary phase diagram that indicates an approximate inverted hourglass phase diagram where a swelled state exists between two single phase boundary produced from LCST- and UCST-type phase transitions. An attempt is made to understand the phase separation process by temperature-dependent (1)H NMR spectroscopy along with transmission electron microscopy.
Collapse
Affiliation(s)
- Atanu Kuila
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | - Nabasmita Maity
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | - Dhruba P Chatterjee
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| |
Collapse
|
38
|
Yang H, Wang Q, Huang S, Xiao A, Li F, Gan L, Yang X. Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7729-7738. [PMID: 26960600 DOI: 10.1021/acsami.6b01602] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Efficient accumulation and intracellular drug release in cancer cells remain a crucial challenge in developing ideal anticancer drug delivery systems. Here, poly(N-isopropylacrylamide)-ss-acrylic acid (P(NIPAM-ss-AA)) nanogels based on NIPAM and AA cross-linked by N,N'-bis(acryloyl)cystamine (BAC) were constructed by precipitation polymerization. The nanogels exhibited pH/redox dual responsive doxorubicin (DOX) release behavior in vitro and in tumor cells, in which DOX release from nanogels was accelerated in lysosomal pH (pH 4.5) and cytosolic reduction (10 mM GSH) conditions. Moreover, intracellular tracking of DOX-loaded nanogels confirmed that after the nanogels and the loaded DOX entered the cells simultaneously mainly via lipid raft/caveolae-mediated endocytosis, DOX-loaded nanogels were transported to lysosomes and then the loaded DOX was released to nucleus triggered by lysosomal pH and cytoplasmic high GSH. MTT analysis showed that DOX-loaded nanogels could efficiently inhibit the proliferation of HepG2 cells. In vivo animal studies demonstrated that DOX-loaded nanogels were accumulated and penetrated in tumor tissues more efficiently than free DOX. Meanwhile, DOX-loaded nanogels exhibited stronger tumor inhibition activity and fewer side effects. This study indicated that pH/redox dual-responsive nanogels might present a prospective platform for intracellular drug controlled release in cancer therapy.
Collapse
Affiliation(s)
- Hao Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Qin Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Shan Huang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Ai Xiao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Fuying Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, and §School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
39
|
Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016; 85:152-67. [PMID: 26871891 DOI: 10.1016/j.biomaterials.2016.01.061] [Citation(s) in RCA: 637] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy.
Collapse
|
40
|
Polymeric nanostructures with pH-labile core for controlled drug release. J Colloid Interface Sci 2016; 462:176-82. [DOI: 10.1016/j.jcis.2015.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
|
41
|
Recent progresses in bioadhesive microspheres via transmucosal administration. Colloids Surf B Biointerfaces 2015; 140:361-372. [PMID: 26774569 DOI: 10.1016/j.colsurfb.2015.12.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/05/2015] [Accepted: 12/26/2015] [Indexed: 01/04/2023]
Abstract
Based on the advantages of adhesion preparations and the application status of microspheres (MSs) in mucous delivery, this paper primarily reviews the bioadhesive MSs via transmucosal administration routes, including the mucosa in alimentary tract and other lumens. Particularly, the detailed researches about of celladhesive MSs and some new-style bioadhesive MSs are mentioned. Furthermore, this review attempts to reveal the advances of bioadhesive MSs as cell-selective bioadhesion systems and the stimuli-responsive MSs as location-specific drug delivery systems. Although these MSs show powerful strength, some far-sighted ideas should be brought on agendas. In the future, mechanisms should be put under tight scrutiny and more attention should be focused on the excellent bioadhesive materials and the 'second generation mucoadhesives'. Meaningful clinical applications of these novel MSs are also of current concerns and need more detailed researches.
Collapse
|
42
|
Wang T, Guan B, Wang X, Li X, Zhang Y, Qiao ZA, Liu Y, Huo Q. Mesostructured TiO2 Gated Periodic Mesoporous Organosilica-Based Nanotablets for Multistimuli-responsive Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5907-5911. [PMID: 26418053 DOI: 10.1002/smll.201501835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/03/2015] [Indexed: 06/05/2023]
Abstract
A multistimuli-responsive drug carrier is designed and successfully synthesized by self-assembly of thiol-modified periodic mesoporous organosilica (PMO) nanoparticles, coated gold nanoparticles (AuNPs), and mesostructured titanium dioxide (TiO2). Dye-loaded PMO-Au@TiO2 nanotablets are shown to respond to environmental changes (pH, temperature, and light) to achieve controlled release.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Ye Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Qisheng Huo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
43
|
Zeng J, Du P, Liu L, Li J, Tian K, Jia X, Zhao X, Liu P. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Mol Pharm 2015; 12:4188-99. [DOI: 10.1021/acs.molpharmaceut.5b00342] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jin Zeng
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pengcheng Du
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lei Liu
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiagen Li
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Tian
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Jia
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xubo Zhao
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
44
|
Movagharnezhad N, Moghadam PN. Folate-decorated carboxymethyl cellulose for controlled doxorubicin delivery. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3768-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zhou T, Zhao X, Liu L, Liu P. Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug. NANOSCALE 2015; 7:12051-12060. [PMID: 26118938 DOI: 10.1039/c5nr00758e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A facile and efficient method was developed to prepare the monodisperse biodegradable PEGylated pH and reduction dual-stimuli sensitive poly[methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate-co-N,N-bis(acryloyl)cystamine] (PMPB) nanohydrogels with dried particle size below 200 nm via one-step distillation precipitation polymerization as a drug delivery system (DDS) for the controlled release of a wide-spectrum anti-cancer drug, doxorubicin hydrochloride (DOX). Under normal physiological media, the nanohydrogels possessed high drug encapsulation efficiency (more than 96%) within 48 h and exhibited good stability with a trifle premature drug release. However, rapid DOX release was achieved at lower pH or in the presence of reductive reagent glutathione (GSH) with a cumulative release of more than 85% within 30 h. Furthermore, the nanohydrogels manifested nontoxicity on HepG2 cells at a concentration of 10 μg mL(-1) or lower. Based on the excellent characteristics of the nanohydrogels, such as low toxicity, impressive biodegradability, sharp dual responsiveness, adequate drug loading capacity and a high drug encapsulation efficiency, they were supposed to have potential application in the area of cancer therapy.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | | | | | | |
Collapse
|
46
|
Maji T, Banerjee S, Biswas Y, Mandal TK. Dual-Stimuli-Responsive l-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01099] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tanmoy Maji
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Sanjib Banerjee
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Yajnaseni Biswas
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Tarun K. Mandal
- Polymer
Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
47
|
Synthesis of folic acid functionalized redox-responsive magnetic proteinous microcapsules for targeted drug delivery. J Colloid Interface Sci 2015; 450:325-331. [PMID: 25840270 DOI: 10.1016/j.jcis.2015.03.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022]
Abstract
Folic acid (FA) functionalized magnetic bovine serum albumin (BSA) microcapsules (FA-MBMCs) were prepared by a facile sonochemical method, in which FA molecule was immobilized onto the outer walls of microcapsules as a targeting ligand and oleic acid (OA) modifying Fe3O4 magnetic nanoparticles (OA-Fe3O4 MNPs) were wrapped into the microcapsules. The obtained FA-MBMCs possessed a nice spherical morphology with the mean size of 1.4 μm. FA-MBMCs also showed an excellent magnetic and molecular dual-targeted property. Besides, the reductant-triggered diffusion of coumarin 6 suggested superior drug controlled release of FA-MBMCs.
Collapse
|
48
|
Liu T, Zhang W, Song T, Yang X, Li C. Hollow double-layered polymer microspheres with pH and thermo-responsive properties as nitric oxide-releasing reservoirs. Polym Chem 2015. [DOI: 10.1039/c5py00001g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TheN-diazeniumdiolated hollow double-layered P(AmEMA-co-EGDMA)/P(NIPAAm-co-DMAEMA-co-EGDMA) microspheres (NO as 3.0 μmol mg−1) show a steady NO release behavior in a wide range of pHs (5–9) and temperatures (20–55 °C).
Collapse
Affiliation(s)
- Tuanwei Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Wei Zhang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Tao Song
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Xinlin Yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
| |
Collapse
|
49
|
Cellet TSP, Pereira GM, Muniz EC, Silva R, Rubira AF. Hydroxyapatite nanowhiskers embedded in chondroitin sulfate microspheres as colon targeted drug delivery systems. J Mater Chem B 2015; 3:6837-6846. [DOI: 10.1039/c5tb00856e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An inorganic/organic hybrid material with a triggering mechanism for specific drug delivery at the colon is synthesized.
Collapse
Affiliation(s)
- T. S. P. Cellet
- Departamento de Química
- Universidade Estadual de Maringá
- CEP: 87020-900 – Maringá
- Brazil
| | - G. M. Pereira
- Departamento de Química
- Universidade Estadual de Maringá
- CEP: 87020-900 – Maringá
- Brazil
| | - E. C. Muniz
- Departamento de Química
- Universidade Estadual de Maringá
- CEP: 87020-900 – Maringá
- Brazil
| | - R. Silva
- Departamento de Química
- Universidade Estadual de Maringá
- CEP: 87020-900 – Maringá
- Brazil
| | - A. F. Rubira
- Departamento de Química
- Universidade Estadual de Maringá
- CEP: 87020-900 – Maringá
- Brazil
| |
Collapse
|
50
|
Petersen RC. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite. METALS 2014; 4:549-569. [PMID: 25635227 PMCID: PMC4307950 DOI: 10.3390/met4040549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of the article is to present recent developments in material
research with bisphenyl-polymer/carbon-fiber-reinforced composite that have
produced highly influential results toward improving upon current titanium bone
implant clinical osseointegration success. Titanium is now the standard
intra-oral tooth root/bone implant material with biocompatible interface
relationships that confer potential osseointegration. Titanium produces a
TiO2 oxide surface layer reactively that can provide chemical
bonding through various electron interactions as a possible explanation for
biocompatibility. Nevertheless, titanium alloy implants produce corrosion
particles and fail by mechanisms generally related to surface interaction on
bone to promote an inflammation with fibrous aseptic loosening or infection that
can require implant removal. Further, lowered oxygen concentrations from poor
vasculature at a foreign metal surface interface promote a build-up of
host-cell-related electrons as free radicals and proton acid that can encourage
infection and inflammation to greatly influence implant failure. To provide
improved osseointegration many different coating processes and alternate polymer
matrix composite (PMC) solutions have been considered that supply new designing
potential to possibly overcome problems with titanium bone implants. Now for
important consideration, PMCs have decisive biofunctional fabrication
possibilities while maintaining mechanical properties from addition of
high-strengthening varied fiber-reinforcement and complex fillers/additives to
include hydroxyapatite or antimicrobial incorporation through thermoset polymers
that cure at low temperatures. Topics/issues reviewed in this manuscript include
titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber
implant results discussing osseointegration with biocompatibility related to
nonpolar molecular attractions with secondary bonding, carbon fiber in
vivo properties, electrical semiconductors, stress transfer,
additives with low thermal PMC processing and new coating possibilities.
Collapse
Affiliation(s)
- Richard C Petersen
- Restorative Sciences, Biomaterials and Biomedical Engineering, University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South, Birmingham, AL 35294, USA; ; Tel.: +1-205-934-6898
| |
Collapse
|