1
|
Wysocki M, Stachowiak W, Smolibowski M, Olejniczak A, Niemczak M, Shamshina JL. Rethinking the Esterquats: Synthesis, Stability, Ecotoxicity and Applications of Esterquats Incorporating Analogs of Betaine or Choline as the Cation in Their Structure. Int J Mol Sci 2024; 25:5761. [PMID: 38891947 PMCID: PMC11171562 DOI: 10.3390/ijms25115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.
Collapse
Affiliation(s)
- Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Mikołaj Smolibowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (W.S.); (M.S.); (A.O.)
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Wojcieszak M, Syguda A, Karolak M, Pałkowski Ł, Materna K. Quaternary ammonium salts based on caprylic acid as antimicrobial and surface-active agents. RSC Adv 2023; 13:34782-34797. [PMID: 38035245 PMCID: PMC10685092 DOI: 10.1039/d3ra07127h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
In this work, amidequats and esterquats based on caprylic acid were investigated as promising compounds with surface properties and biological activity that are in harmony with the principles of green chemistry. Herein, caprylic acid, which is an essential component of the above compounds, is a noteworthy natural resource. Structural analysis was performed with the amphiphilic cations of the tested amidequats and esterquats, revealing two distinct factors, i.e., the elongation of the alkyl chain and the presence of two different functional groups; these factors undoubtedly affect the desired biological activity. These compounds were synthesized and characterized in terms of their physicochemical properties, among which surface activity is pivotal. In addition, the surfaces of the tested compounds were investigated through a detailed topographical analysis. The obtained results suggested that the esterquats exhibited higher surface activity, wettability and foamability than the amidequats. Antimicrobial studies, on the other hand, are not as conclusive. For shorter chains, esterquats are more active than amidequats, while for longer chains (over C12), the trend was the opposite. The amidequats and esterquats presented in this research may be a potential good replacement for antimicrobial formulations or as alternatives to surface-active agents used in industry.
Collapse
Affiliation(s)
- Marta Wojcieszak
- Poznan University of Technology, Faculty of Chemical Technology Berdychowo 4 60-965 Poznan Poland
| | - Anna Syguda
- Poznan University of Technology, Faculty of Chemical Technology Berdychowo 4 60-965 Poznan Poland
| | - Maciej Karolak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Nicolaus Copernicus University Jurasza 2 85-089 Bydgoszcz Poland
| | - Łukasz Pałkowski
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Nicolaus Copernicus University Jurasza 2 85-089 Bydgoszcz Poland
| | - Katarzyna Materna
- Poznan University of Technology, Faculty of Chemical Technology Berdychowo 4 60-965 Poznan Poland
| |
Collapse
|
3
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
4
|
Kula N, Lamch Ł, Futoma-Kołoch B, Wilk KA, Obłąk E. The effectiveness of newly synthesized quaternary ammonium salts differing in chain length and type of counterion against priority human pathogens. Sci Rep 2022; 12:21799. [PMID: 36526659 PMCID: PMC9757636 DOI: 10.1038/s41598-022-24760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Quaternary ammonium salts (QAS) commonly occur as active substances in disinfectants. QAS have the important property of coating abiotic surfaces, which prevents adhesion of microorganisms, thus inhibiting biofilm formation. In this study, a group of nine monomeric QAS, differing in the structure and length of the aliphatic chain (C12, C14, C16) and the counterion (methylcarbonate, acetate, bromide), were investigated. The study included an analysis of their action against planktonic forms as well as bacterial biofilms. The compounds were tested for their anti-adhesion properties on stainless steel, polystyrene, silicone and glass surfaces. Moreover, mutagenicity analysis and evaluation of hemolytic properties were performed. It was found that compounds with 16-carbon hydrophobic chains were the most promising against both planktonic forms and biofilms. Tested surfactants (C12, C14, C16) showed anti-adhesion activity but it was dependent on the type of the surface and strain used. The tested compounds at MIC concentrations did not cause hemolysis of sheep blood cells. The type of counterion was not as significant for the activity of the compound as the length of the hydrophobic aliphatic chain.
Collapse
Affiliation(s)
- Natalia Kula
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
5
|
Xu Y, Chen H, Liu X, Sun L, Fang Y. Enzymatic demulsification of long-chain alkanoylcholine-based oil-in-water emulsions and microemulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lundberg D, Stjerndahl M, Holmberg K. Ester‐based surfactants: Are they stable enough? J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Lundberg
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Maria Stjerndahl
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Krister Holmberg
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
7
|
Warszyński P, Szyk-Warszyńska L, Wilk KA, Lamch Ł. Adsorption of cationic multicharged surfactants at liquid/gas interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mir AW, Shaheen A, Wani MR, Arif R. Synthesis, micellization and cytotoxic studies of ester‐functionalized imidazolium gemini surfactants. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ab Waheed Mir
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Arifa Shaheen
- Department of Chemistry Aligarh Muslim University Aligarh India
| | | | - Rabia Arif
- Department of Chemistry Aligarh Muslim University Aligarh India
| |
Collapse
|
9
|
Ethyl Lauroyl Arginate, an Inherently Multicomponent Surfactant System. Molecules 2021; 26:molecules26195894. [PMID: 34641438 PMCID: PMC8512375 DOI: 10.3390/molecules26195894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022] Open
Abstract
Ethyl lauroyl arginate (LAE) is an amino acid-based cationic surfactant with low toxicity and antimicrobial activity. It is widely used as a food preservative and component for food packaging. When stored, LAE decomposes by hydrolysis into surface-active components Nα-lauroyl–l-arginine (LAS) or dodecanoic (lauric) acid. There are only a limited number of reports considering the mechanism of surface activity of LAE. Thus, we analysed the surface tension isotherm of LAE with analytical standard purity in relation to LAE after prolonged storage. We used quantum mechanical density functional theory (DFT) computations to determine the preferred hydrolysis path and discuss the possibility of forming highly surface-active heterodimers, LAE-dodecanoate anion, or LAE-LAS. Applying molecular dynamics simulations, we determined the stability of those dimers linked by electrostatic interactions and hydrogen bonds. We used the adsorption model of surfactant mixtures to successfully describe the experimental surface tension isotherms. The real part surface dilational modulus determined by the oscillation drop method follows a diffusional transport mechanism. However, the nonlinear response of the surface tension could be observed for LAE concentration close to and above Critical Micelle Concentration (CMC). Nonlinearity originates from the presence of micelles and the reorganisation of the interfacial layer.
Collapse
|
10
|
Hafidi Z, El Achouri M, O Sousa FF, Pérez L. Antifungal activity of amino-alcohols based cationic surfactants and in silico, homology modeling, docking and molecular dynamics studies against lanosterol 14-α-demethylase enzyme. J Biomol Struct Dyn 2021; 40:7762-7778. [PMID: 33754947 DOI: 10.1080/07391102.2021.1902396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fungi are being responsible for causing serious infections in humans and animals. The opportunistic microorganisms provoke environmental contaminations in health and storage facilities to represent a serious concern to health security. The present work investigates the antifungal activity of two amino-alcohols based cationic surfactants such as CnEtOH, CnPrOH (with n = 14 and 16 are the carbon numbers of alkyl chain and EtOH = Ethanol and PrOH = Propanol) against a collection of different Candida species (Candida tropicalis, Candida albicans, Candida auris, Cyberlindnera jadinii, Candida parapsilosis, Candida glabrata and Candida rugosa) respectively. The amino-alcohols based cationic surfactants exhibited good antifungal activity against all Candida strains tested with minimum inhibitory concentrations (MIC) ranging from 0.002 to 0.30 mM. The MIC evaluation shows an increase as a function of the hydrophobicity of all inhibitors against the majority of the Candida strains tested. The different location of the alcoholic OH function in the polar head shows the influence on the availability of N+ responsible for electrostatic interactions with the candidate's cell walls, which remains a very important step in the mode of action of quaternary ammonium cationic surfactants. Hence, a 3D structure of lanosterol 14-α-demethylase enzyme from C. auris was constructed by homology modeling using an online SWISS-MODEL server. The predicted model was analyzed by serval servers. Furthermore, a molecular docking study was carried out to better understand the binding mechanism of lanosterol homologous protein with surfactant ligands. Then, the docked complexes lanosterol-surfactants were refined by the molecular dynamic simulation to analyze their interaction behavior during the simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zakaria Hafidi
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Ecole Normale supérieure-Rabat, Mohammed V University in Rabat, Centre des Sciences des Matériaux, Rabat, Morocco.,Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain
| | - Mohammed El Achouri
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Ecole Normale supérieure-Rabat, Mohammed V University in Rabat, Centre des Sciences des Matériaux, Rabat, Morocco
| | - Francisco F O Sousa
- Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain.,Graduate Program on Pharmaceutical Innovation, Department of Biological & Health Sciences, Federal University of Amapa, Rodovia Juscelino Kubitschek, Macapa, Amapá, Brazil
| | - Lourdes Pérez
- Surfactants and Nanobiotechnology Department, IQAC, CSIC, Barcelona, Spain
| |
Collapse
|
11
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Faustino C, Martins T, Duarte N, Ribeiro MH. Self‐Assembly of Lipoaminoacids‐DNA Based on Thermodynamic and Aggregation Properties. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Célia Faustino
- Faculty of PharmacyResearch Institute for Medicines (iMed.ULisboa), Universidade de Lisboa Av. Prof. Gama Pinto 1649‐003 Lisbon Portugal
| | - Tiago Martins
- Faculty of PharmacyResearch Institute for Medicines (iMed.ULisboa), Universidade de Lisboa Av. Prof. Gama Pinto 1649‐003 Lisbon Portugal
| | - Noélia Duarte
- Faculty of PharmacyResearch Institute for Medicines (iMed.ULisboa), Universidade de Lisboa Av. Prof. Gama Pinto 1649‐003 Lisbon Portugal
| | - Maria H. Ribeiro
- Faculty of PharmacyResearch Institute for Medicines (iMed.ULisboa), Universidade de Lisboa Av. Prof. Gama Pinto 1649‐003 Lisbon Portugal
| |
Collapse
|
13
|
Liu D, Yang X, Liu P, Mao T, Shang X, Wang L. Synthesis and characterization of gemini ester surfactant and its application in efficient fabric softening. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lamch Ł, Witek K, Jarek E, Obłąk E, Warszyński P, Wilk KA. New mild amphoteric sulfohydroxybetaine-type surfactants containing different labile spacers: Synthesis, surface properties and performance. J Colloid Interface Sci 2020; 558:220-229. [DOI: 10.1016/j.jcis.2019.09.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
|
15
|
Janek T, Rodrigues LR, Gudiña EJ, Burger J. Synergistic effect of hen egg white lysozyme and lysosomotropic surfactants on cell viability and membrane permeability. Colloids Surf B Biointerfaces 2019; 185:110598. [PMID: 31683205 DOI: 10.1016/j.colsurfb.2019.110598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
The interactions between two types of quaternary ammonium surfactants (N,N,N-trimethyl-2-(dodecanoyloxy)ethaneammonium bromide (DMM-11) and N,N,N-trimethyl-2-(dodecanoyloxy)propaneammonium bromide (DMPM-11)) and hen egg white lysozyme were studied through several techniques, including isothermal titration calorimetry (ITC), circular dichroism (CD) and fluorescence spectroscopy, and surface tension measurement. The average number of surfactants interacting with each molecule of lysozyme was calculated from the biophysical results. Moreover, the CD results showed that the conformation of lysozyme changed in the presence of DMM-11 and DMPM-11. The studies drew a detailed picture on the physicochemical nature of interactions between both surfactants and lysozyme. Both DMM-11 and DMPM-11, with and without lysozyme were studied against three target microorganisms, including Gram-negative (Escherichia coli) and Gram-positive (Enterococcus hirae and Enterococcus faecalis) bacteria. The results revealed a broad spectrum of antibacterial nature of surfactant/lysozyme complexes, as well as their effect on the membrane damage, hence providing the basis to further explore DMM-11 and DMPM-11 combined with lysozyme as possible antibacterial tools.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Eduardo J Gudiña
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Joanna Burger
- Department of Inorganic Chemistry, Wroclaw Medical University, 50-556, Wrocław, Poland
| |
Collapse
|
16
|
Janek T, Czeleń P, Gudiña EJ, Rodrigues LR, Czyżnikowska Ż. Biomolecular interactions of lysosomotropic surfactants with cytochrome c and its effect on the protein conformation: A biophysical approach. Int J Biol Macromol 2019; 126:1177-1185. [DOI: 10.1016/j.ijbiomac.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
|
17
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
18
|
Ibragimova O, Kleiv RA. Development of an Ultraviolet-Spectrophotometric Method for Analysis of Esterquat-Containing Flotation Collectors in Aqueous Solutions. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga Ibragimova
- Department of Geosciences and Petroleum Engineering; Norwegian University of Science and Technology; Trondheim Norway
| | - Rolf Arne Kleiv
- Department of Geosciences and Petroleum Engineering; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
19
|
Paluch E, Piecuch A, Obłąk E, Lamch Ł, Wilk KA. Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants. Colloids Surf B Biointerfaces 2018; 164:34-41. [PMID: 29413614 DOI: 10.1016/j.colsurfb.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr)2 compounds. The strongest growth inhibition was caused by Cn(DAPACl)2 series, which MICs ranged from 6.5 to 16 μM. The influence of dicephalic surfactants on Candida albicans biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction of fungal adhesion was also observed, especially to the glass surface. One of the compounds (C14(DAPACl)2) caused DNA leakage from C. albicans cells. Further studies showed the impact of dicephalic surfactants on ROS production, accumulation of lipid droplets and filament formation. This study points to the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation or as disinfectants. The results give an insight into the possible mechanism of action of newly synthesized dicephalic surfactants in yeast cells.
Collapse
Affiliation(s)
- E Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - A Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - E Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | - Ł Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - K A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Mirgorodskaya AB, Valeeva FG, Lukashenko SS, Kushnazarova RA, Prokop'eva TM, Zubareva TM, Mikhailov VA, Zakharova LY. Dicationic hydroxylic surfactants: Aggregation behavior, guest-host interaction and catalytic effect. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin. Colloids Surf B Biointerfaces 2017; 159:750-758. [DOI: 10.1016/j.colsurfb.2017.08.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/05/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
|
22
|
Szczepanowicz K, Para G, Wilk KA, Warszyński P. Co-adsorption of polyanions and esterquat surfactants; effect on formation and stability of micellar core nanocapsules. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Bazylińska U, Frąckowiak R, Brzózka Z, Wilk KA. The effect of anionic dicephalic surfactants on fabrication of varied-core nanocarriers for sustained release of porphyrin photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:169-179. [PMID: 27915030 DOI: 10.1016/j.jphotobiol.2016.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/05/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Double-headed anionic surfactants could provide a profound group of efficient stabilizers of new template-mediated nanocarriers for effective encapsulation and sustained release of highly hydrophobic photosensitizers, and therefore their improved therapeutic activity in photodynamic therapy (PDT) protocols. We have thus encapsulated porphyrin-origin dyes, i.e., verteporfin (VP) and meso-tetraphenylporphyrin (TPP) in different types of sodium alkyliminobisacetates, Cn(COONa)2-stabilized nanosystems including biocompatible poly(l-glutamic acid)/poly(l-lysine) - PGA/PLL, multilayer nanocapsules (NCs). The latter were prepared via a layer-by-layer (LbL) approach with either solid (nanoprecipitated), or liquid (nanoemulsion-templated) oil core while zeta potential measurements enabled to evaluate progress of the polyelectrolytes LbL deposition on both cores and the NCs' stability. Backscattering profiles (BS) confirmed the long-lasting stability of the optimized nanosystems, which size (<200nm), polidyspersity and morphology were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM) techniques. Our studies indicated that the encapsulation of VP and TPP in the both type of multilayer NCs increases their solubility in aqueous solution and protects them from the surrounding medium. Mainly, it reduces the photobleaching rate of these porphyrin-type photosensitizers and improves their photochemical properties during irradiation in regards to the free (non-encapsulated) molecules. As far as the core-type is considered, both nanoemulsion-loaded porphyrins, photobleached ca. 15-20% faster than the solid nanoparticle analogs. By using 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA) as a singlet oxygen (1O2) scavenger molecule, the enhanced generation of reactive species was evaluated for the both encapsulated photosensitizers in comparison to their native form. In vitro sustained release under physiological conditions or in the presence of human serum albumin (HSA) was achieved in favor of the solid core NCs for VP and TPP. The designed NCs - offering better chemical and physical stability, high loading capacity for the cargo and ability to release it in a controlled and continuous manner - can be considered as efficacious nanocarriers for PDT.
Collapse
Affiliation(s)
- Urszula Bazylińska
- Departament of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Renata Frąckowiak
- Departament of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Zbigniew Brzózka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Departament of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
24
|
Carbohydrate-surfactant interactions in aqueous and mixed organic solvents at various temperatures: Volumetric, compressibility and acoustical studies. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|