1
|
Wu L, Wei S, Cheng X, He N, Kang X, Zhou H, Cai Y, Ye Y, Li P, Liang C. Release of ions enhanced the antibacterial performance of laser-generated, uncoated Ag nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114131. [PMID: 39094211 DOI: 10.1016/j.colsurfb.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Identifying the antibacterial mechanisms of elemental silver at the nanoscale remains a significant challenge due to the intertwining behaviors between the particles and their released ions. The open question is which of the above factor dominate the antibacterial behaviors when silver nanoparticles (Ag NPs) with different sizes. Considering the high reactivity of Ag NPs, prior research has primarily concentrated on coated particles, which inevitably hinder the release of Ag+ ions due to additional chemical agents. In this study, we synthesized various Ag NPs, both coated and uncoated, using the laser ablation in liquids (LAL) technique. By analyzing both the changes in particle size and Ag+ ions release, the impacts of various Ag NPs on the cellular activity and morphological changes of gram-negative (E. coil) and gram-positive (S. aureus) bacteria were evaluated. Our findings revealed that for uncoated Ag NPs, smaller particles exhibited greater ions release efficiency and enhanced antibacterial efficacy. Specifically, particles approximately 1.5 nm in size released up to 55 % of their Ag+ ions within 4 h, significantly inhibiting bacterial growth. Additionally, larger particles tended to aggregate on the bacterial cell membrane surface, whereas smaller particles were more likely to be internalized by the bacteria. Notably, treatment with smaller Ag NPs led to more pronounced bacterial morphological changes and elevated levels of intracellular reactive oxygen species (ROS). We proposed that the bactericidal activity of Ag NPs stems from the synergistic effect between particle-cell interaction and the ionic silver, which is dependent on the crucial parameter of particle size.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| |
Collapse
|
2
|
Mateos H, Mallardi A, Oliver M, Dell'Aglio M, Giannone P, Palazzo G. Cooperative aggregation of gold nanoparticles on phospholipid vesicles is electrostatically driven. Phys Chem Chem Phys 2024; 26:23103-23115. [PMID: 39177151 DOI: 10.1039/d4cp02060j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Gold nanoparticles (AuNP) are known to aggregate on the surface of lipid vesicles, yet the molecular mechanism behind this phenomenom remains unclear. In this work, we have investigated the binding behaviour of AuNPs, synthesized with pulsed laser ablation, to phospholipid vesicles under varying conditions of ionic strength (KCl concentration) and NP to vesicle ratios. Our observations reveal a strong influence of electrolyte concentration on AuNP aggregation mediated by vesicles. Notably, cluster formation is observed even at less than one AuNP per vesicle ratio at low enough ionic strengths. These results evidence a binding mechanism governed by electrostatic attraction with a distinct cooperative behaviour at very low salt concentrations, resulting in a significant increase in nanoparticle clustering. This behaviour is quantitatively analysed through a model that incorporates the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, considering the electrical double layer attraction between dissimilar, non-oppositely charged objects. This study not only provides insight into the fundamental understanding of nanoparticle-vesicle interactions but also suggests potential strategies for controlling nanoparticle assembly in biological and synthetic systems by tuning the ionic strength.
Collapse
Affiliation(s)
- Helena Mateos
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Marcella Dell'Aglio
- CNR-IFN (National Research Council - Institute for Photonics and Nanotechnologies), c/o Physics Department, University of Bari, Via Amendola 173, 70126 Bari, Italy
| | - Pamela Giannone
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| | - Gerardo Palazzo
- Dipartimento di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari "Aldo Moro", via Orabona n. 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Ahmed W, Suliman A, Khan GA, Qayyum H. Electrostatically enabled dye reduction using laser synthesized gold nanoparticles. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
5
|
Vendamani V, Beeram R, Neethish M, Rao SN, Rao SV. Wafer-scale Silver Nanodendrites with Homogeneous Distribution of Gold Nanoparticles for Biomolecules Detection. iScience 2022; 25:104849. [PMID: 35996576 PMCID: PMC9391580 DOI: 10.1016/j.isci.2022.104849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
We report the fabrication and demonstrate the superior performance of robust, cost-effective, and biocompatible hierarchical Au nanoparticles (AuNPs) decorated Ag nanodendrites (AgNDs) on a Silicon platform for the trace-level detection of antibiotics (penicillin, kanamycin, and ampicillin) and DNA bases (adenine, cytosine). The hot-spot density dependence studies were explored by varying the AuNPs deposition time. These substrates’ potential and versatility were explored further through the detection of crystal violet, ammonium nitrate, and thiram. The calculated limits of detection for CV, adenine, cytosine, penicillin G, kanamycin, ampicillin, AN, and thiram were 348 pM, 2, 28, 2, 56, 4, 5, and 2 nM, respectively. The analytical enhancement factors were estimated to be ∼107 for CV, ∼106 for the biomolecules, ∼106 for the explosive molecule, and ∼106 for thiram. Furthermore, the stability of these substrates at different time intervals is being reported here with surface-enhanced Raman spectroscopy/scattering (SERS) data obtained over 120 days. Wafer-scale surface-enhanced Raman spectroscopy/scattering (SERS) substrate of Ag nanodendrites decorated with Au nanoparticles prepared Trace level detection of antibiotics achieved Versatility of these substrates demonstrated by detecting explosive, dye molecules Typical enhancement factors achieved were 105–107
Collapse
Affiliation(s)
- V.S. Vendamani
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Reshma Beeram
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - M.M. Neethish
- Department of Physics, Pondicherry University, Puducherry 605014, Puducherry, India
| | - S.V.S. Nageswara Rao
- Centre for Advanced Studies in Electronics Science and Technology (CASEST), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - S. Venugopal Rao
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
- Corresponding author
| |
Collapse
|
6
|
Kay KE, Batista LMF, Tibbetts KM, Ferri JK. Stability of Uncapped Gold Nanoparticles Produced Via Laser Synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
He N, Wei S, Hu T, Ye Y, Cai Y, Liu J, Li P, Liang C. Surface-Plasmon-Mediated Alloying for Monodisperse Au-Ag Alloy Nanoparticles in Liquid. Inorg Chem 2022; 61:12449-12457. [PMID: 35904272 DOI: 10.1021/acs.inorgchem.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmonic noble-metal nanoparticles with broadly tunable optical properties and catalytically active surfaces offer a unique opportunity for photochemistry. Resonant optical excitation of surface-plasmon generates high-energy hot carriers, which can participate in photochemical reactions. Although the surface-plasmon-driven catalysis on molecules has been extensively studied, surface-plasmon-mediated synthesis of bimetallic nanomaterials is less reported. Herein, we perform a detailed investigation on the formation mechanism and colloidal stability of monodisperse Au-Ag alloy nanoparticles synthesized through irradiating the intermixture of Au nanochains and AgNO3 solution with a nanosecond pulsed laser. It is revealed that the Ag atoms can be extracted from AgNO3 solution by surface-plasmon-generated hot electrons and alloy with Au atoms. Particularly, the obtained Au-Ag alloy nanoparticles without any surfactants or ligands exhibit superior stability that is confirmed by experiments as well as DLVO-based theoretical simulation. Our work would provide novel insights into the synthesis of potentially useful bimetallic nanoparticles via surface-plasmon-medicated alloying.
Collapse
Affiliation(s)
- Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taiping Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Molina NY, Pungsrisai T, O'Dell ZJ, Paranzino B, Willets KA. The Hidden Role of the Supporting Electrode for Creating Heterogeneity in Single Entity Electrochemistry. ChemElectroChem 2022. [DOI: 10.1002/celc.202200245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Natalia Y. Molina
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Tipsiri Pungsrisai
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Zachary J. O'Dell
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Bianca Paranzino
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| | - Katherine A. Willets
- Department of Chemistry Temple University 1901N. 13th Street Philadelphia PA 19122 USA
| |
Collapse
|
9
|
Xiang Q, Wu Z, Tian EK, Nong S, Liao W, Zheng W. Gold Nanoparticle Drug Delivery System: Principle and Application. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, gold nanoparticles (GNPs) have gradually become a major choice of drug delivery cargoes due to unique properties. Compared to traditional bulk solid gold, GNPs have basic physical and chemical advantages, such as a larger surface area-to-volume ratio and easier surface
modification. Furthermore, these have excellent biocompatibility, can induce the directional adsorption and enrichment of biological macromolecules, help retain biological macromolecule activity, and cause low harm to the human body. All these make GNPs good drug delivery cargoes. The present
study introduces the properties of GNPs, including factors that affect the properties and synthesis. Then, focus was given on the application in drug delivery, not only on the molecular mechanism, but also on the clinical application. Furthermore, the properties and applications of peptide
GNPs were also introduced. Finally, the challenges and prospects of GNPs for drug delivery were summarized.
Collapse
Affiliation(s)
- Qianrong Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Er-Kang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Shiqi Nong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, West China School of Stomatology, Chengdu 610064, China
| | - Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Dell'Aglio M, Salajková Z, Mallardi A, Sportelli MC, Kaiser J, Cioffi N, De Giacomo A. Sensing nanoparticle-protein corona using nanoparticle enhanced Laser Induced Breakdown Spectroscopy signal enhancement. Talanta 2021; 235:122741. [PMID: 34517609 DOI: 10.1016/j.talanta.2021.122741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Recently nanoparticle enhanced Laser Induced Breakdown Spectroscopy (NELIBS) is getting a growing interest as an effective alternative method for improving the analytical performance of LIBS. On the other hand, the plasmonic effect during laser ablation can be used for a different task rather than elemental analysis. In this paper, the dependence of NELIBS emission signal enhancement on nanoparticle-protein solutions dried on a reference substrate (metallic titanium) was investigated. Two proteins were studied: Human Serum Albumin (HSA) and Cytochrome C (CytC). Both proteins have a strong affinity for the gold nanoparticles (AuNPs) due to the bonding between the single free exterior thiol (associated with a cysteine residue) and the gold surface to form a stable protein corona. Then, since the protein sizes are vastly different, a different number of protein units is needed to cover AuNP surface to form a protein layer. The NP-protein solution was dropped and dried onto the titanium substrate. Then the NELIBS signal enhancement of Ti emission lines was correlated to the solution characteristics as determined with Dynamic Light Scattering (DLS), Surface Plasmon Resonance (SPR) spectroscopy and Laser Doppler Electrophoresis (LDE) for ζ-potential determination. Moreover, the dried solutions were studied with TEM (Transmission Electron Microscopy) for the inspection of the inter-particle distance. The structural effect of the NP-protein conjugates on the NELIBS signal reveals that NELIBS can be used to determine the number of protein units required to form the nanoparticle-protein corona with good accuracy. Although the investigated NP-protein systems are simple cases in biological applications, this work demonstrates, for the first time, a different use of NELIBS that is beyond elemental analysis and it opens the way for sensing the nanoparticle protein corona.
Collapse
Affiliation(s)
- Marcella Dell'Aglio
- CNR-NANOTEC, Institute of Nanotechnology, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy.
| | - Zita Salajková
- Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy; Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Antonia Mallardi
- CNR-IPCF, Institute for Chemical-Physical Processes, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy.
| | | | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Nicola Cioffi
- Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Alessandro De Giacomo
- CNR-NANOTEC, Institute of Nanotechnology, c/o Chemistry Department, Via Orabona 4, 70125, Bari, Italy; Department of Chemistry, University of Bari, Via Orabona 4, 70125, Bari, Italy; CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
11
|
Sanjuan-Navarro L, Cortés-Bautista S, Moliner-Martínez Y, Campíns-Falcó P. In-tube solid phase microextraction coupled to miniaturized liquid chromatography for both, noble metal nanoparticle assessment and sensitive plasmonic assay development. Anal Chim Acta 2021; 1171:338665. [PMID: 34112440 DOI: 10.1016/j.aca.2021.338665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Colorimetric localized surface plasmon resonance (LSPR) as analytical response is applied for a wide number of chemical sensors and biosensors. However, the dependence of different factors, such as size distribution of nanoparticles (NPs), shape, dielectric environment, inter-particle distance and matrix, among others, can provide non-reliable results by UV-vis spectrometry in complex matrices if NP assessment is not carried out, particularly at low levels of analyte concentrations. Miniaturized liquid chromatography, capillary (CapLC) and nano (NanoLC), coupled on line with in-tube solid phase microextraction (IT-SPME) is proposed for the first time for both, controlling suitability of used noble metal NP dispersions and developing plasmonic assays. Several capped noble NPs and target analytes were tested from variations in the chromatographic profiles obtained by using diode array detection. The IT-SPME step, which influenced the chromatographic fingerprint provided by noble NP dispersions, was studied by asymmetrical flow field flow fractionation (AF4) too. We monitored NP aggregation induced by interaction with several analytes like acids and spermine (SPN). Assessment of NPs was achieved in less than 10 min and it permitted to develop suitable plasmonic tests. Here, it was also demonstrated that these assays can be followed by IT-SPME-miniaturized LC-DAD and more sensitivity and selectivity than those provided by UV-Vis spectrometry were achieved. Analysing urine samples to determine SPN as a cancer biomarker as a proof of concept is presented.
Collapse
Affiliation(s)
- L Sanjuan-Navarro
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, 46100, Burjassot, Spain
| | - S Cortés-Bautista
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, 46100, Burjassot, Spain
| | - Y Moliner-Martínez
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, 46100, Burjassot, Spain
| | - P Campíns-Falcó
- MINTOTA Research Group, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
12
|
Lévy A, De Anda Villa M, Laurens G, Blanchet V, Bozek J, Gaudin J, Lamour E, Macé S, Mignon P, Milosavljević AR, Nicolas C, Patanen M, Prigent C, Robert E, Steydli S, Trassinelli M, Vernhet D, Veteläinen O, Amans D. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Pure and Saline Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5783-5794. [PMID: 33939435 DOI: 10.1021/acs.langmuir.1c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pulsed laser ablation in liquid (PLAL) is a powerful method for producing nanoparticle colloids with a long-term stability despite the absence of stabilizing organic agents. The colloid stability involves different reactivities and chemical equilibria with complex ionic-specific effects at the nanoparticle/solvent interface which must be strongly influenced by their chemical composition. In this work, the surface composition of PLAL-produced gold nanoparticles in alkaline and saline (NaBr) water is investigated by X-ray photoelectron spectroscopy on free-flying nanoparticles, exempt from any substrate or radiation damage artifact. The Au 4f photoelectron spectra with a depth profiling investigation are used to evaluate the degree of nanoparticle surface oxidation. In alkaline water, the results preclude any surface oxidation contrary to the case of nanoparticles produced in NaBr solution. In addition, the analysis of Br 3d core-level photoelectron spectra agrees with a clear signature of Br on the nanoparticle surface, which is confirmed by a specific valence band feature. This experimental study is supported by DFT calculations, evaluating the energy balance of halide adsorption on different configurations of gold surfaces including oxidation or adsorbed salts.
Collapse
Affiliation(s)
- Anna Lévy
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Manuel De Anda Villa
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Gaétan Laurens
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière, University of Lyon, F-69622 Villeurbanne, France
| | - Valérie Blanchet
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), University of Bordeaux, UMR5107, F-33405 Talence, France
| | - John Bozek
- L'Orme des Merisiers, Synchrotron SOLEIL, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Jérôme Gaudin
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), University of Bordeaux, UMR5107, F-33405 Talence, France
| | - Emily Lamour
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Stéphane Macé
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Pierre Mignon
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière, University of Lyon, F-69622 Villeurbanne, France
| | | | - Christophe Nicolas
- L'Orme des Merisiers, Synchrotron SOLEIL, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Christophe Prigent
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Emmanuel Robert
- L'Orme des Merisiers, Synchrotron SOLEIL, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Sébastien Steydli
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Martino Trassinelli
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Dominique Vernhet
- Institut des Nanosciences de Paris, Sorbonne Université, Campus Pierre et Marie Curie, CNRS UMR7588, 75005 Paris, France
| | - Onni Veteläinen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - David Amans
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière, University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
13
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
14
|
Stability evolution of ultrafine Ag nanoparticles prepared by laser ablation in liquids. J Colloid Interface Sci 2020; 585:444-451. [PMID: 33097224 DOI: 10.1016/j.jcis.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022]
Abstract
Understanding the stability evolution of the silver nanoparticles (Ag NPs) in colloid has great benefits for its controllable preparation, storage and application. Herein, uncapped Ag NPs with diameter of 1.66 ± 0.37 nm are obtained by laser ablation of Ag target in deionized water, corresponding surface plasma resonance (SPR) bands, ζ potential and particle size distribution are monitored to investigate uncapped Ag NPs' stability evolution. Due to negatively charged surface, uncapped Ag NPs show an excellent dispersion stability in 70 days without any external disturbance. But its dispersion stability and structure stability are destroyed easily by an oscillation treatment, resulting in a tardy growth and the formation of one-dimensional Ag nanochain. In addition, the chemical stability of uncapped Ag NPs is dramatically varied by a displacement reaction with an inserted copper wire. As comparison, two typical cationic and anionic surfactant molecules, N-hexadecyl trimethyl ammonium chloride (CTAC) and sodium dodecyl benzene sulfonate (SDBS) are severally used to prepare surface capped Ag NPs. With same treatment of Ag colloid, both two kinds of capped Ag NPs display better dispersion stability and structure stability than uncapped Ag NPs. Moreover, CTAC capped Ag NPs keep a better chemical stability than SDBS capped Ag NPs.
Collapse
|
15
|
Effect of the Surface Chemical Composition and of Added Metal Cation Concentration on the Stability of Metal Nanoparticles Synthesized by Pulsed Laser Ablation in Water. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal nanoparticles (NPs) made of gold, silver, and platinum have been synthesized by means of pulsed laser ablation in liquid aqueous solution. Independently from the metal nature, all NPs have an average diameter of 10 ± 5 nm. The ζ-potential values are: −62 ± 7 mV for gold, −44 ± 2 mV for silver and −58 ± 3 for platinum. XPS analysis demonstrates the absence of metal oxides in the case of gold and silver NPs. In the case of platinum NPs, 22% of the particle surface is ascribed to platinum oxidized species. This points to a marginal role of the metal oxides in building the negative charge that stabilizes these colloidal suspensions. The investigation of the colloidal stability of gold NPs in the presence of metal cations shows these NPs can be destabilized by trace amounts of selected metal ions. The case of Ag+ is paradigmatic since it is able to reduce the NP ζ-potential and to induce coagulation at concentrations as low as 3 μM, while in the case of K+ the critical coagulation concentration is around 8 mM. It is proposed that such a huge difference in destabilization power between monovalent cations can be accounted for by the difference in the reduction potential.
Collapse
|
16
|
De Anda Villa M, Gaudin J, Amans D, Boudjada F, Bozek J, Evaristo Grisenti R, Lamour E, Laurens G, Macé S, Nicolas C, Papagiannouli I, Patanen M, Prigent C, Robert E, Steydli S, Trassinelli M, Vernhet D, Lévy A. Assessing the Surface Oxidation State of Free-Standing Gold Nanoparticles Produced by Laser Ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11859-11871. [PMID: 31453695 DOI: 10.1021/acs.langmuir.9b02159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The surface chemistry of gold nanoparticles produced by the pulsed laser ablation in liquids method is investigated by X-ray photoelectron spectroscopy (XPS). The presence of surface oxide expected on these systems is investigated using synchrotron radiation in conditions close to their original state in solvent but free from substrate or solvent effects which could affect the interpretation of spectroscopic observations. For that purpose we performed the experiment on a controlled free-standing nanoparticle beam produced by combination of an atomizer and an aerodynamic lens system. These results are compared with those obtained by the standard situation of deposited nanoparticles on silicon substrate. An accurate analysis based on Bayesian statistics concludes that the existence of oxide in the free-standing conditions cannot be solely confirmed by the recorded core-level 4f spectra. If present, our data indicate an upper limit of 2.15 ± 0.68% of oxide. However, a higher credence to the hypothesis of its existence is brought by the structureless valence profile of the free-standing beam. Moreover, the cross-comparison with the deposited nanoparticles case clearly evidences an important misleading substrate effect. Experiment with free-standing nanoparticles is then demonstrated to be the right way to further investigate oxidation states on Au nanoparticles.
Collapse
Affiliation(s)
- Manuel De Anda Villa
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Jérôme Gaudin
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications) , Univeristy of Bordeaux , UMR5107 , F-33405 Talence , France
| | - David Amans
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière , Univeristy of Lyon , F-69622 Villeurbanne , France
| | - Fahima Boudjada
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière , Univeristy of Lyon , F-69622 Villeurbanne , France
| | - John Bozek
- L'Orme des Merisiers , Synchrotron SOLEIL , Saint-Aubin, BP 48 , F-91192 Gif-sur-Yvette Cedex , France
| | - Robert Evaristo Grisenti
- GSI Helmholtzzentrum für Schwerionenforschung GmbH , Planckstrasse 1 , 64291 Darmstadt , Germany
- Institut für Kernphysik , J. W. Goethe-Universität , Max-von-Laue-strasse 1 , 60438 Frankfurt am Main , Germany
| | - Emily Lamour
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Gaétan Laurens
- Université Claude Bernard Lyon 1, UMR5306 CNRS, Institut Lumière Matière , Univeristy of Lyon , F-69622 Villeurbanne , France
| | - Stéphane Macé
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Christophe Nicolas
- L'Orme des Merisiers , Synchrotron SOLEIL , Saint-Aubin, BP 48 , F-91192 Gif-sur-Yvette Cedex , France
| | - Irene Papagiannouli
- CNRS, CEA, CELIA (Centre Lasers Intenses et Applications) , Univeristy of Bordeaux , UMR5107 , F-33405 Talence , France
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science , University of Oulu , P.O. Box 3000, FI-90014 Oulu , Finland
| | - Christophe Prigent
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Emmanuel Robert
- L'Orme des Merisiers , Synchrotron SOLEIL , Saint-Aubin, BP 48 , F-91192 Gif-sur-Yvette Cedex , France
| | - Sébastien Steydli
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Martino Trassinelli
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Dominique Vernhet
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| | - Anna Lévy
- Institut des Nanosciences de Paris , Sorbonne Université-Pierre et Marie Curie , CNRS UMR7588 , 75005 Paris , France
| |
Collapse
|
17
|
Determining the Composite Structure of Au-Fe-Based Submicrometre Spherical Particles Fabricated by Pulsed-Laser Melting in Liquid. NANOMATERIALS 2019; 9:nano9020198. [PMID: 30717489 PMCID: PMC6409745 DOI: 10.3390/nano9020198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Submicrometre spherical particles made of Au and Fe can be fabricated by pulsed-laser melting in liquid (PLML) using a mixture of Au and iron oxide nanoparticles as the raw particles dispersed in ethanol, although the detailed formation mechanism has not yet been clarified. Using a 355 nm pulsed laser to avoid extreme temperature difference between two different raw particles during laser irradiation and an Fe₂O₃ raw nanoparticle colloidal solution as an iron source to promote the aggregation of Au and Fe₂O₃ nanoparticles, we performed intensive characterization of the products and clarified the formation mechanism of Au-Fe composite submicrometre spherical particles. Because of the above two measures (Fe₂O₃ raw nanoparticle and 355 nm pulsed laser), the products-whether the particles are phase-separated or homogeneous alloys-basically follow the phase diagram. In Fe-rich range, the phase-separated Au-core/Fe-shell particles were formed, because quenching induces an earlier solidification of the Fe-rich component as a result of cooling from the surrounding ethanol. If the particle size is small, the quenching rate becomes very rapid and particles were less phase-separated. For high Au contents exceeding 70% in weight, crystalline Au-rich alloys were formed without phase separation. Thus, this aggregation control is required to selectively form homogeneous or phase-separated larger submicrometre-sized particles by PLML.
Collapse
|
18
|
Exceptionally stable silver nanoparticles synthesized by laser ablation in alcoholic organic solvent. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Rapid Room-Temperature Synthesis of Gold Nanoparticles Using Sargentgloryvine Stem Extract and Their Photocatalytic Activity. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0985-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A, Lugarà PM, Palazzo G, Cioffi N. The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics (Basel) 2018; 7:E67. [PMID: 30060553 PMCID: PMC6164857 DOI: 10.3390/antibiotics7030067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) are well-known for their antimicrobial effects and several groups are proposing them as active agents to fight antimicrobial resistance. A wide variety of methods is available for nanoparticle synthesis, affording a broad spectrum of chemical and physical properties. In this work, we report on AgNPs produced by laser ablation synthesis in solution (LASiS), discussing the major features of this approach. Laser ablation synthesis is one of the best candidates, as compared to wet-chemical syntheses, for preparing Ag nano-antimicrobials. In fact, this method allows the preparation of stable Ag colloids in pure solvents without using either capping and stabilizing agents or reductants. LASiS produces AgNPs, which can be more suitable for medical and food-related applications where it is important to use non-toxic chemicals and materials for humans. In addition, laser ablation allows for achieving nanoparticles with different properties according to experimental laser parameters, thus influencing antibacterial mechanisms. However, the concentration obtained by laser-generated AgNP colloids is often low, and it is hard to implement them on an industrial scale. To obtain interesting concentrations for final applications, it is necessary to exploit high-energy lasers, which are quite expensive. In this review, we discuss the pros and cons of the use of laser ablation synthesis for the production of Ag antimicrobial colloids, taking into account applications in the food packaging field.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Margherita Izzi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Annalisa Volpe
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Maurizio Clemente
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Antonio Ancona
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Pietro Mario Lugarà
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
21
|
Slepička P, Přibyl M, Fajstavr D, Ulbrich P, Siegel J, Řezníčková A, Švorčík V. Grafting of platinum nanostructures on biopolymer at elevated temperature. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Dell'Aglio M, Santagata A, Valenza G, De Stradis A, De Giacomo A. Study of the Effect of Water Pressure on Plasma and Cavitation Bubble Induced by Pulsed Laser Ablation in Liquid of Silver and Missed Variations of Observable Nanoparticle Features. Chemphyschem 2017; 18:1165-1174. [DOI: 10.1002/cphc.201601231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | - Antonio Santagata
- CNR-ISM, FLASH-IT Unit, Tito Scalo, C.da S. Loja-Zona Industriale-; 85050 Tito Scalo PZ Italy
| | - Gabriele Valenza
- University of Bari; Chemistry Department; Via Orabona 4 70125 Bari Italy
| | | | - Alessandro De Giacomo
- CNR-NANOTEC, Bari; Via Amendola 122/D- 70126 Bari Italy
- University of Bari; Chemistry Department; Via Orabona 4 70125 Bari Italy
| |
Collapse
|
23
|
Taccogna F, Dell’Aglio M, Rutigliano M, Valenza G, De Giacomo A. On the growth mechanism of nanoparticles in plasma during pulsed laser ablation in liquids. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1361-6595/aa595b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Haghighi FH, Hadadzadeh H, Farrokhpour H. Investigation of the in situ generation of oxide-free copper nanoparticles using pulsed-laser ablation of bulk copper in aqueous solutions of DNA bases. RSC Adv 2016. [DOI: 10.1039/c6ra22038j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pulsed-laser ablation method was used as a facile and green approach to prepare oxide-free copper nanoparticles, and was performed by laser ablation of a copper target in aqueous solutions of the DNA bases.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Department of Molecular Biotechnology
| | - Hassan Hadadzadeh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Hossein Farrokhpour
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|