1
|
Ding M, Dou L, Bu T, Li Z, Mao Y, Dang M, Huang X, Song L, Wang Z, Zhang X. Nanometal surface energy transfer-based lateral flow immunoassay for T2 toxin detection. Biosens Bioelectron 2024; 267:116779. [PMID: 39288706 DOI: 10.1016/j.bios.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.
Collapse
Affiliation(s)
- Mingyue Ding
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, 22 Xinong Road, Yangling, 712100, China
| | - Tong Bu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Zizhe Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Meng Dang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
2
|
Zhou B, Khan IM, Ding X, Niazi S, Zhang Y, Wang Z. Fluorescent DNA-Silver nanoclusters in food safety detection: From synthesis to application. Talanta 2024; 273:125834. [PMID: 38479031 DOI: 10.1016/j.talanta.2024.125834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
In recent years, the conventional preparation of silver nanoclusters (AgNCs) has attracted much attention due to their ultra-small size, tunable fluorescence, easy-to-engineer, as well as biocompatible material. Moreover, its great affinity towards cytosine bases on single-stranded DNA has led to the construction of biosensors, especially aptamers, for a broad variety of applications in food safety and environmental protection. In past years, numerous researchers paid attention to the construction of AgNCs aptasensor. Therefore, this review will be an effort to summarize the synthetic strategy along with the influences of factors on synthesis, categorize the sensing mechanism of aptamer-functionalized AgNCs biosensors, as well as their specific applications in food safety detection including heavy metal, toxin, and foodborne pathogenic bacteria. Furthermore, a brief conclusion and outlook regarding the prospects and challenges of their applications in food safety were drawn in line with the developments in DNA-AgNCs.
Collapse
Affiliation(s)
- Bingxuan Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Xiaowei Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
3
|
Khan MA, Hoque A, Islam MS, Ghosh S, Alam MA. Coumarin Derivative and Gold Nanoparticle Conjugate as a Selective Fluorescent Sensor for Mercury Ion in Real Sample. J Fluoresc 2024:10.1007/s10895-024-03709-6. [PMID: 38647961 DOI: 10.1007/s10895-024-03709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
A biphenyl based coumarin fluorescent molecule, N,N'-bis(7-diethylamino-2-oxo-2 H-chromen-3-yl)methylene)biphenyl-2-2'-dicarbohydrazide (molecule 1) has been synthesized and characterised. Photophysical studies of 1 exhibit solvent polarity dependent absorption and emission maxima. Citrate capped gold nanoparticles (AuNPs) have been mixed with molecule 1 for the preparation of AuNPs/1 conjugate. The association constant of the AuNPs/1 conjugate has been calculated to 4.54 × 104 M- 1. The AuNPs/1 conjugate has been found to detect Hg2+ ion selectively by fluorescence enhancement. While addition of molecule 1 into the solution of AuNPs, fluorescence intensity of 1 quenched. On addition of several monovalent, divalent and trivalent metal ion into the solution of AuNPs/1 conjugate separately, there was no change in fluorescence intensity of 1 has been observed. However, upon addition of Hg2+ ion into the solution of AuNPs/1 conjugate, the fluorescence intensity enhancement occurred, indicating released of 1 from the surface of AuNPs and probably aggregation of AuNPs took place in presence of Hg2+ ion. The AuNPs/1 conjugate has been found to have a detection limit of 2.3 × 10- 9 M for Hg2+ ion in aqueous solvent. Meanwhile, the AuNPs/1 conjugate have also been successfully applied for the determination of Hg2+ in real water samples.
Collapse
Affiliation(s)
- Mehebub Ali Khan
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Anamika Hoque
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Md Sanaul Islam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India
| | - Soumen Ghosh
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India.
| | - Md Akhtarul Alam
- Department of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, 700160, India.
| |
Collapse
|
4
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
5
|
Wang S, Zang W, Peng M, Miao L, Wu A, Zhang Y. Multicolor detection of glutathione by manganese dioxide nanosheets and gold nanotetrapods based on an anti-etching mechanism. Talanta 2024; 268:125366. [PMID: 37925881 DOI: 10.1016/j.talanta.2023.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Glutathione (GSH) is a crucial non-protein thiol and an indispensable endogenous antioxidant. The aberrant expression of GSH in plasma and cytosol is closely related to numerous diseases, including cancer. Therefore, establishing a sensitive method for analyzing GSH has important application value for biomedical research and clinical medical detection. Herein, A method for the rapid and simple detection of GSH was proposed, which is based on an anti-etching mechanism by utilizing gold nanotetrapods (Au NTPs) and manganese dioxide nanosheets (MnO2 NSs). In the absence of GSH, Au NTPs solution can cause a distinct color change from gray-green to red through the etching effect of MnO2 NSs. However, in the presence of GSH, the redox reaction between GSH and MnO2 NSs inhibits the etching of Au NTPs by MnO2 NSs, and Au NTPs solution maintains persistent gray-green color. The colorimetric probe exhibited excellent selectivity for GSH. The limits of detection for GSH were 43.5 nM (UV-vis spectrum) and 0.25 μM (naked eyes). The sensing technique exhibited excellent linearity between wavelength shift and GSH concentration within the range of 0.25 μM-1.5 μM. The outcomes of GSH detection in actual biological samples demonstrate that this probe has the potential to be applied to GSH detection in intricate biological samples.
Collapse
Affiliation(s)
- Shengwen Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wen Zang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Minjie Peng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Lijing Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
7
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
8
|
Guan X, Wang B, Zhang Y, Qi G, Chen L, Jin Y. Monitoring Stress Response Difference in Nucleolus Morphology and ATP Content Changes during Hyperthermia Cell Apoptosis with Plasmonic Fluorescent Nanoprobes. Anal Chem 2022; 94:13842-13851. [PMID: 36174112 DOI: 10.1021/acs.analchem.2c02464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleolus, as a main "cellular stress receptor", is the hub of the stress response driving cancer development and has great research value in the field of organelle-targeting photothermal therapy. However, there are few studies focused on monitoring nucleolar stress response and revealing how the energy metabolism of cells regulates the nucleolar stress response during photothermal therapy. Herein, by designing a nucleolus-targeting and ATP- and photothermal-responsive plasmonic fluorescent nanoprobe (AuNRs-CDs) based on gold nanorods (AuNRs) and fluorescent carbon quantum dots (CDs), we achieved real-time fluorescence imaging of nucleus morphology while monitoring changes of ATP content at the subcellular level. We found that the green fluorescence diminished at 5 min of photothermal therapy, and the nucleolus morphology began to shrink and became smaller in cancerous HepG2 cells. In contrast, there is no significant change of green fluorescence in the nucleolar region of normal HL-7702 cells. ATP content monitoring also showed similar results. Apparently, in response to photothermal stimuli, cancerous cells produce more ATP (energy) along with obvious change in nucleolus morphology and state compared to normal cells under the hyperthermia-induced cell apoptosis. The developed AuNRs-CDs as a nucleolus imaging nanoprobe and effective photothermal agent present promising applications for nucleolar stress studies and targeted photothermal therapy.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P.R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
9
|
Ding J, Xu W, Tan J, Liu Z, Huang G, Wang S, He Z. Fluorescence Detection of Cancer Stem Cell Markers Using a Sensitive Nano-Aptamer Sensor. Front Chem 2022; 10:920123. [PMID: 35815217 PMCID: PMC9257163 DOI: 10.3389/fchem.2022.920123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen CD133 is a glycoprotein present on the surface of cancer stem cells (CSCs), which is a key molecule to regulate the fate of stem cells and a functional marker of stem cells. Herein, a novel fluorescence “turn-on” nano-aptamer sensor for quantifying CD133 was designed using hybridization between CD133-targeted aptamers and partially complementary paired RNA (ssRNA), which were modified on the surface of quantum dots (QDs) and gold nanoparticles (AuNPs), respectively. Owing to the hybridization of aptamers and ssRNA, the distance between QDs and AuNPs was shortened, which caused fluorescence resonance energy transfer (FRET) between them, and the florescence of QDs was quenched by AuNPs. When CD133 competitively replaced ssRNA and was bound to aptamers, AuNPs-ssRNA could be released, which led to a recovery of fluorescent signals of QDs. The increase in the relative value of fluorescence intensity was investigated to linearly correlate with the CD133 concentration in the range of 0–1.539 μM, and the detection limit was 6.99 nM. In confocal images of A549 cells, the CD133 aptamer sensor was further proved applicable in lung cancer cell samples with specificity, precision, and accuracy. Compared with complicated methods, this study provided a fresh approach to develop a highly sensitive and selective detection sensor for CSC markers.
Collapse
Affiliation(s)
- Jie Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| | - Weiqiang Xu
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Jing Tan
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Zhifang Liu
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| | - Zhiwei He
- The First Dongguan Affiliated Hospital, School of Basic Medical Science, Guangdong Medical University, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| |
Collapse
|
10
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Kato H, Nakamura A. Particle density determination using resonant mass measurement method combined with asymmetrical flow field-flow fractionation method. J Chromatogr A 2020; 1631:461557. [PMID: 32961378 DOI: 10.1016/j.chroma.2020.461557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
A novel characterization system using a combinational analysis of the resonant mass measurement (RMM) and asymmetrical flow field-flow fractionation (AF4) methods is developed as a hybrid analytical tool for the particle density of mixtures of different-sized materials. The function of the RMM method is to determine the particle mass by observing the shift in frequency proportional to the particle mass. However, to determine the density of particles using the RMM method, information on the size or size distribution is necessary. Because the size distribution of the particles could influence the accuracy of the determination of the density of the particles, this study addresses the weak point of the RMM method using the AF4 method. First, AF4 is used to fractionate the narrow-sized distributed particles as an effective sample preparation method before the RMM assessment. Moreover, the accurate size distribution determined by the AF4 method with multi-angle light scattering analysis supports the reliable density determination by the RMM method on the transformation from the mass distribution of the particles to the density distribution. Using our developed combinational analytical method of RMM and AF4 methods for mixed particle samples (different sizes and different materials), the densities of the respective particles are evaluated. This approach clearly resolved the problems of the RMM method using a combination analysis with the AF4 method for RMM assessment on the density of particles. The investigated analysis method can have an important role in developing new applications of colloidal nano- and micro-materials in industrial and biological research.
Collapse
Affiliation(s)
- Haruhisa Kato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan.
| | - Ayako Nakamura
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
| |
Collapse
|
12
|
Ly NH, Joo SW. Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 2020; 8:186-198. [DOI: 10.1039/c9tb01598a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanomaterials (AuNMs) have been widely implemented for the purpose of bioimaging of cancer and tumor cells in combination with Raman spectral markers.
Collapse
Affiliation(s)
| | - Sang-Woo Joo
- Department of Chemistry
- Soongsil University
- Seoul 06978
- Korea
- Department of Information Communication, Materials
| |
Collapse
|
13
|
Kato H, Nakamura A, Banno H. Determination of number-based size distribution of silica particles using centrifugal field-flow fractionation. J Chromatogr A 2019; 1602:409-418. [PMID: 31171356 DOI: 10.1016/j.chroma.2019.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
Abstract
Determination of the number-based size distribution of silica particles using the centrifugal field-flow fractionation (CF3) method was investigated. Since the accurate determination of the number-based size distribution of materials is essential in the fields of nanotechnology and biotechnology, the establishment of a robust evaluation method is attractive. We explored optimization of the fractionation conditions for CF3 using silica particles. Using pure water media as the eluent, a band broadening effect was clearly found, and this effect became stronger with higher initial centrifugal field strengths. After addition of 0.05 wt% aqueous FL-70 as a dispersant in the eluent, size fractionation could be performed effectively at higher centrifugal field strengths, providing excellent size separation results. After optimization of the CF3 separation condition, we determined the number-based size distribution of silica particles using three methods: FE-SEM only, CF3 with multi-angle light scattering (CF3-MALS), and a combined CF3 with FE-SEM method (CF3-FE-SEM). To meaningfully compare the CF3-MALS results with the other two methods, we transformed the light scattering intensity to particle numbers using Mie theory. The determined number-based mean sizes of silica particles by the three methods agreed well; however, the evaluated standard deviation of the number-based size distribution of silica particles by the CF3-MALS method was slightly different. This was attributed to the unreliable sizing by MALS of smaller sized particles or low particle concentrations. The combined CF3-FE-SEM method provided near equal accuracy as the costly FE-SEM only and allowed for a significantly faster methodology because CF3 separation reduced the number of silica particles required for an accurate sizing down to just 50 particles per fraction.
Collapse
Affiliation(s)
- Haruhisa Kato
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Ayako Nakamura
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hidekuni Banno
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
14
|
Hao N, Nie Y, Xu Z, Zhang JXJ. Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization. J Colloid Interface Sci 2019; 542:370-378. [PMID: 30771632 DOI: 10.1016/j.jcis.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Microfluidic reactors represent a new frontier in the rational design and controllable synthesis of functional micro-/nanomaterials. Herein, we develop a continuous and ultrafast flow synthesis method to obtain triangular silver (tAg) nanoplatelet using a short range two-loop spiral-shaped laminar flow microfluidic reactor, with one inlet flow containing AgNO3, trisodium citrate, and H2O2 and the other NaBH4. The effect of the reactant concentration and flow rate on the structural changes of tAg is examined. Through the same miniaturized microreactor, hierarchical core-shell Ag@SiO2 can be produced with tunable silica shell thickness using one inlet flow containing the as-synthesized Ag nanoparticles together with tetraethyl orthosilicate and the other ammonia. The enhanced cellular internalization efficiency of triangular nanoplatelets by PANC-1 and MCF-7 cells is further confirmed in comparison with the spherical ones. These results not only bring new insights for engineering nanomaterials from microreactors but also facilitate the rational design of functional nanostructures for enhancing their biological performance.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Zhe Xu
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States.
| |
Collapse
|
15
|
Pujar G, Deshapande N, Khazi IAM, Inamdar SR. Solvatochromism of a highly conjugated novel donor-π-acceptor dipolar fluorescent probe and its application in surface-energy transfer with gold nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Fratoddi I, Cartoni A, Venditti I, Catone D, O'Keeffe P, Paladini A, Toschi F, Turchini S, Sciubba F, Testa G, Battocchio C, Carlini L, Proietti Zaccaria R, Magnano E, Pis I, Avaldi L. Gold nanoparticles functionalized by rhodamine B isothiocyanate: A new tool to control plasmonic effects. J Colloid Interface Sci 2018; 513:10-19. [DOI: 10.1016/j.jcis.2017.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/12/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
|
17
|
Rodzik-Czałka Ł, Lewandowska-Łańcucka J, Gatta V, Venditti I, Fratoddi I, Szuwarzyński M, Romek M, Nowakowska M. Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system – Synthesis, characterization and potential applications. J Colloid Interface Sci 2018; 514:479-490. [DOI: 10.1016/j.jcis.2017.12.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
|
18
|
Qiu L, Zhao L, Xing C, Zhan Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress. Toxins (Basel) 2017; 9:toxins9110349. [PMID: 29143760 PMCID: PMC5705964 DOI: 10.3390/toxins9110349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.
Collapse
|
20
|
Xing TY, Zhao J, Weng GJ, Zhu J, Li JJ, Zhao JW. Specific Detection of Carcinoembryonic Antigen Based on Fluorescence Quenching of Hollow Porous Gold Nanoshells with Roughened Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36632-36641. [PMID: 29023105 DOI: 10.1021/acsami.7b11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The detection of tumor biomarkers in the early stage is highly desirable for the therapy of cancer. However, rapid, low-cost, sensitive, and selective detection of biomarkers remains a challenge owing to the sequence homology, short length, and low abundance. This Research Article describes the synthesis of a novel carcinoembryonic antigen (CEA) probe using hollow porous gold nanoparticles (HPGNPs) with roughened surface based on fluorescence quenching. For specific detection of CEA, the surface of HPGNP is modified by carboxyl modification, carboxyl activation, and antibody conjugation. Furthermore, to enhance the detection performance, we have systematically optimized the parameters, such as particle size, surfactants, surface roughness, surface hole size, and the molecule-particle distance (MPD). The results demonstrate that the fluorescence quenching efficiency would be enhanced with a larger particle size and surface hole size, roughened surface and a greater MPD. Also, with careful inspection of different surfactants of CTAB and PVP, we find that PVP has the optimal performance on fluorescence quenching. Under these optimized conditions, CEA could be detected with an ultralow detection limit of 1.5 pg/mL, and the probe shows a linear range from 2 to 100 pg/mL. The limit of detection is an order of intensity lower than related methods. Interference experiment results have shown that the influence of the interfering proteins could be neglected in the detection procedure.
Collapse
Affiliation(s)
- Ting-Yang Xing
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Jing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an 710049, China
| |
Collapse
|