1
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
2
|
Yang Y, Zhong J, Shen S, Huang J, Hong Y, Qu X, Chen Q, Niu B. Application and Progress of Machine Learning in Pesticide Hazard and Risk Assessment. Med Chem 2024; 20:2-16. [PMID: 37038674 DOI: 10.2174/1573406419666230406091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
Long-term exposure to pesticides is associated with the incidence of cancer. With the exponential increase in the number of new pesticides being synthesized, it becomes more and more important to evaluate the toxicity of pesticides by means of simulated calculations. Based on existing data, machine learning methods can train and model the predictions of the effects of novel pesticides, which have limited available data. Combined with other technologies, this can aid the synthesis of new pesticides with specific active structures, detect pesticide residues, and identify their tolerable exposure levels. This article mainly discusses support vector machines, linear discriminant analysis, decision trees, partial least squares, and algorithms based on feedforward neural networks in machine learning. It is envisaged that this article will provide scientists and users with a better understanding of machine learning and its application prospects in pesticide toxicity assessment.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junjie Zhong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Goang Xi, China
| | - Qin Chen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
3
|
Chen S, Han J, Zhu Y, Zhang X, Zheng C, Ma L, Liu S, Yang Y, Zou L, He L, Li J. Preparation of biochar-based surface molecularly imprinted polymers and evaluation of their selective adsorption and removal of carbaryl from rice and corn. J Chromatogr A 2023; 1705:464210. [PMID: 37451198 DOI: 10.1016/j.chroma.2023.464210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The residue of carbaryl in food is a threat to human health. In this study, activated soybean shell biochar (A-SBC) was used as a carrier, methacrylic acid (MAA) was used as a functional monomer, and carbaryl was used as a template molecule to synthesize the activated biochar surface molecularly imprinted polymer (A-SBC@MIP). The synthesized A-SBC@MIP was characterized by SEM, FT-IR, XRD and XPS techniques, and then applied as adsorbent for carbaryl removal. The adsorption capacity of A-SBC@MIP for carbaryl was 8.6 mg‧g-1 and the imprinting factor was 1.49 at the optimum ionic strength and pH. The kinetic and isothermal data indicated that it had fast mass transfer rate and high binding capacity(Qmax=47.9 mg‧g-1). A-SBC@MIP showed good regenerative properties and the adsorption of carbaryl was excellent in its structural analogues. A solid-phase extraction (SPE) column composed of A-SBC@MIP was developed for the detection of rice and corn under optimized conditions, with recoveries of 93-101% for the spiked carbaryl. The limit of detection (LOD) of the method was 3.6 μg‧kg-1 with good linearity (R2=0.994) in the range of 0.01-5.00 mg‧L-1. The results show that the developed MIPs-SPE can enrich carbaryl from food samples as a specific and cost-effective method.
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jing Han
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yiting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyue Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Chi Zheng
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lihong Ma
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
4
|
Yucel N, Gulen H, Cakir Hatir P. Molecularly imprinted polymer nanoparticles for the recognition of ellagic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Necla Yucel
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University Istanbul Turkey
| | - Hatice Gulen
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering Faculty of Engineering and Architecture, Istanbul Arel University Istanbul Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
| |
Collapse
|
5
|
Metal Organic Framework-Based Dispersive Solid-Phase Microextraction of Carbaryl from Food and Water Prior to Detection by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, metal organic frameworks (A100 Al-based MOFs) were used in dispersive solid-phase microextraction (DSPME) for the isolation and preconcentration of the carbaryl from vegetable, fruit and water samples. The A100 Al-based MOFs showed excellent behavior for the adsorption of carbaryl from a water–ethanol solution; additionally, carbaryl was easily desorbed with ethyl acetate for detection by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-TMS). The analytical process of DSPME together with UPLC-TMS provides the accurate monitoring of trace carbaryl residues. The results show that the optimal recovery% of carbaryl was obtained at a sample apparent pH of 5, with the application of 1 mL of ethyl acetate to elute the carbaryl from the A100 Al-based MOFs. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.01 mg.L−1 and 0.03 mg.L−1, respectively. The RSD% was 0.8–1.9, and the preconcentration factor was 45. DSPME and UPLC-TMS were successfully used for the isolation and detection of carbaryl in food and water samples.
Collapse
|
6
|
Background-free sensing platform for on-site detection of carbamate pesticide through upconversion nanoparticles-based hydrogel suit. Biosens Bioelectron 2021; 194:113598. [PMID: 34507097 DOI: 10.1016/j.bios.2021.113598] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
On-site monitoring of carbamate pesticide in complex matrix remians as a challenge in terms of the real-time control of food safety and supervision of environmental quality. Herein, we fabricated robust upconversion nanoparticles (UCNPS)/polydopamine (PDA)-based hydrogel portable suit that precisely quantified carbaryl in complex tea samples with smartphone detector. UCNPS/PDA nanoprobe was developed by polymerization of dopamine monomers on the surface of NaErF4: 0.5% Tm3+@NaYF4 through electrostatic interaction, leading to efficient red luminescence quenching of UCNPS under near-infrared excitation, which circumvented autofluorescence and background interference in complicated environment. Such a luminescence quenching could be suppressed by thiocholine that was produced by acetylcholinesterase-mediated catalytic reaction, thus enabling carbaryl bioassay by inhibiting the activity of enzyme. Bestowed with the feasibility analysis of fluorescent output, portable platform was designed by integrating UCNPS-embedded sodium alginate hydrogel with 3D-printed smartphone device for quantitatively on-site monitoring of carbaryl in the range of 0.5-200 ng mL-1 in tea sample, accompanied by a detection limit of 0.5 ng mL-1. Owing to specific UCNPS signatures and hydrogel immobilization, this modular platform displayed sensitive response, portability and anti-interference capability in complex matrix analysis, thus holding great potential in point-of-care application.
Collapse
|
7
|
Loganathan C, Gowthaman N, Abraham John S. Chain-like 2-amino-4-thiazoleacetic acid tethered AuNPs as colorimetric and spectrophotometric probe for organophosphate pesticide in water and fruit samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
9
|
A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules 2021; 26:molecules26165050. [PMID: 34443639 PMCID: PMC8401968 DOI: 10.3390/molecules26165050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits.
Collapse
|
10
|
A detection method of two carbamate pesticides residues on tomatoes utilizing excitation-emission matrix fluorescence technique. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Sadegh N, Asfaram A, Javadian H, Haddadi H, Sharifpour E. Ultrasound-assisted solid phase microextraction-HPLC method based on Fe 3O 4@SiO 2-NH 2-molecularly imprinted polymer magnetic nano-sorbent for rapid and efficient extraction of harmaline from Peganum harmala extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122640. [PMID: 33743514 DOI: 10.1016/j.jchromb.2021.122640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/29/2022]
Abstract
In the present study, a magnetic molecularly imprinted polymer (MMIP) was synthesized for the extraction of harmaline from Peganum harmala by dispersive solid-phase microextraction (DSPME). The MMIP for selective and intelligent extraction of harmaline with excellent functionality and high selectivity was synthesized using the sol-gel method with functionalized superparamagnetic core-shell nanoparticles, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as a porogen. To study the properties and morphology of the coated polymer, FT-IR spectroscopy, FESEM, TEM images, and VSM were used. The DSPME-HPLC-UV equipment was used to quantify and analyze the data obtained from harmaline extraction. In this research, the efficiency of the synthesized polymer in harmaline extraction was modeled and optimized using the response surface methodology based on central composite design (RSM-CCD). In addition, for modeling the isotherm of harmaline sorption by the MMIP, Langmuir and Freundlich isotherm equations were used. The obtained results showed that the extraction of harmaline with the MMIP was well described with Freundlich isotherm. The results of the validation of the method showed that the measurement of harmaline in the concentration range of 1.0-4000 ng mL-1 followed a linear relationship (R2 = 9986.0). Moreover, the accuracy or repeatability index (% RSD) was determined to be < 10, and the LOQ and LOD values were 0.526 and 0.158 ng mL-1, respectively. The results of this study showed that the DSPME technique by using the synthesized MMIP as an effective sorbent with high efficiency and capacity could be utilized for pre-concentration and extraction of harmaline from real and complex samples.
Collapse
Affiliation(s)
- Negar Sadegh
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Ebrahim Sharifpour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
12
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
13
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Yang J, Cao Y, Zhang N. Spectrophotometric method for superoxide anion radical detection in a visible light (400-780 nm) system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118556. [PMID: 32502811 DOI: 10.1016/j.saa.2020.118556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
A method was developed that used hydroxylamine hydrochloride as a probe in a superoxide anion radical-generating visible light system for determining superoxide anion radicals. An Azure I solution with hydroxylamine hydrochloride was illuminated, after which a ferric iron solution was added to the sample solution and the remaining hydroxylamine hydrochloride in solution reduced from ferric to ferrous ions. Then, 1,10-phenanthroline solution was added and spectrophotometrically measured at 510 nm, which indirectly indicated the hydroxylamine hydrochloride content. The yields of superoxide anion radicals were indirectly expressed by the hydroxylamine hydrochloride decrement. Under optimal experimental conditions, the linear range was 0.0-1.5 × 10-5 M and the limit of detection and limit of quantification were obtained to be 8.37 × 10-7 and 2.54 × 10-6 M with an R2 of 0.9993. The method was simple and feasible and could be used for the stable measurement of superoxide anion radicals produced by photosensitizers that produce color under acidic conditions in visible light systems.
Collapse
Affiliation(s)
- Jin Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yan Cao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Naidong Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Qi L, Wu W, Kang Q, Hu Q, Yu L. Detection of organophosphorus pesticides with liquid crystals supported on the surface deposited with polyoxometalate-based acetylcholinesterase-responsive supramolecular spheres. Food Chem 2020; 320:126683. [PMID: 32229401 DOI: 10.1016/j.foodchem.2020.126683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/30/2019] [Accepted: 03/22/2020] [Indexed: 02/08/2023]
Abstract
Here, we demonstrate use of acetylcholinesterase (AChE)-responsive polyoxometalate (POM)/surfactant supramolecular spheres to build a liquid crystal (LC)-based sensing platform for detection of organophosphorus pesticides. The self-assembled spheres are composed of hybrid materials of a POM, sodium dodecatungstophosphate (PW12), and a surfactant, myristoylcholine (Myr). It displays dark appearance when the aqueous solution is in contact with LCs supported on the octadecyltrichlorosilane-treated glass deposited with the supramolecular spheres, suggesting perpendicular orientation of LCs at the aqueous/LC interface. In contrast, LCs show bright appearance when the surface-deposited supramolecular spheres are enzymatically hydrolyzed by AChE, corresponding to planar orientation of LCs at the aqueous/LC interface. Detection of organophosphates are successfully achieved as they are potent inhibitors of AChE. The detection limit of the sensing platform reached 0.9 ng/mL for dimethoate. This method can avoid disturbance of external interference with excellent specificity and sensitivity, which makes it very promise in detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lubin Qi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China; Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| | - Wenli Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
16
|
Saylan Y, Denizli A. Advances in Molecularly Imprinted Systems: Materials, Characterization Methods and Analytical Applications. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666181214155042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
A molecular imprinting is one of the fascinating modification methods that
employ molecules as targets to create geometric cavities for recognition of targets in the polymeric
matrix. This method provides a broad versatility to imprint target molecules with different size,
three-dimensional structure and physicochemical features. In contrast to the complex and timeconsuming
laboratory surface modification procedures, this method offers a rapid, sensitive,
inexpensive, easy-to-use, and selective approach for the diagnosis, screening and monitoring
disorders. Owing to their unique features such as high selectivity, physical and chemical robustness,
high stability, low-cost and reusability of this method, molecularly imprinted polymers have become
very attractive materials and been applied in various applications from separation to detection.
Background:
The aims of this review are structured according to the fundamentals of molecularly
imprinted polymers involving essential elements, preparation procedures and also the analytical
applications platforms. Finally, the future perspectives to increase the development of molecularly
imprinted platforms.
Methods:
A molecular imprinting is one of the commonly used modification methods that apply
target as a recognition element itself and provide a wide range of versatility to replica other targets
with a different structure, size, and physicochemical features. A rapid, easy, cheap and specific
recognition approach has become one of the investigation areas on, especially biochemistry,
biomedicine and biotechnology. In recent years, several technologies of molecular imprinting method
have gained prompt development according to continuous use and improvement of traditional
polymerization techniques.
Results:
The molecularly imprinted polymers with excellent performances have been prepared and
also more exciting and universal applications have been recognized. In contrast to the conventional
methods, the imprinted systems have superior advantages including high stability, relative ease and
low cost of preparation, resistance to elevated temperature, and pressure and potential application to
various target molecules. In view of these considerations, molecularly imprinted systems have found
application in various fields of analytical chemistry including separation, purification, detection and
spectrophotometric systems.
Conclusion:
Recent analytical methods are reported to develop the binding kinetics of imprinted
systems by using the development of other technologies. The combined platforms are among the
most encouraging systems to detect and recognize several molecules. The diversity of molecular
imprinting methods was overviewed for different analytical application platforms. There is still a
requirement of more knowledge on the molecular features of these polymers. A next step would
further be the optimization of different systems with more homogeneous and easily reachable
recognition sites to reduce the laborious in the accessibility in the three-dimensional polymeric
materials in sufficient recognition features and also better selectivity and sensitivity for a wide range
of molecules.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| |
Collapse
|
17
|
Derbalah A, Chidya R, Kaonga C, Iwamoto Y, Takeda K, Sakugawa H. Carbaryl residue concentrations, degradation, and major sinks in the Seto Inland Sea, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14668-14678. [PMID: 32048196 DOI: 10.1007/s11356-020-08010-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The fate of carbaryl in the Seto Inland Sea (west Japan) was predicted using a mass distribution model using carbaryl concentrations in river and sea water samples, degradation data, and published data. The predicted carbaryl concentrations in water in Kurose River and the Seto Inland Sea were 4.320 and 0.2134 μg/L, respectively, and the predicted concentrations in plankton, fish, and sediment were 0.4140, 2.436, and 1.851 μg/g dry weight, respectively. The carbaryl photodegradation and biodegradation rates were higher for river water (0.330 and 0.029 day-1, respectively) than sea water (0.23 and 0.001 day-1, respectively). The carbaryl photodegradation rates for river and sea water (0.33 and 0.23 day-1, respectively) were higher than the biodegradation rates (0.029 and 0.001 day-1, respectively). The hydrolysis degradation rate for carbaryl in sea water was 0.003 day-1, and the half-life was 231 days. Land (via rivers) was the main source of carbaryl to the Seto Inland Sea. The model confirmed carbaryl is distributed between sediment, plankton, and fish in the Seto Inland Sea. Degradation, loss to the Open Ocean, and sedimentation are the main carbaryl sinks in the Seto Inland Sea, accounting for 43.81, 27.90, and 17.68%, respectively, of total carbaryl inputs. Carbaryl source and sink data produced by the model could help in the management of the negative impacts of carbaryl on aquatic systems and human health.
Collapse
Affiliation(s)
- Aly Derbalah
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Russel Chidya
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan
- Department of Water Resources Management and Development, Faculty of Environmental Sciences, Mzuzu University, P/Bag 201, Luwinga, Mzuzu, Malawi
| | - Chikumbusko Kaonga
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan
- Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, P/Bag 303, Chichiri, Blantyre 3, Malawi
| | - Yoko Iwamoto
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan
| | - Kazuhiko Takeda
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan
| | - Hiroshi Sakugawa
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima, Japan.
| |
Collapse
|
18
|
Multi-Residue Screening of Pesticides in Aquaculture Waters through Ultra-High-Performance Liquid Chromatography-Q/Orbitrap Mass Spectrometry. WATER 2020. [DOI: 10.3390/w12051238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticide residues in foodstuffs can lead to several undesirable effects. A simple and high-throughput targeted screening method analyzing multi-residue pesticide in aquaculture water based on ultra-high-performance liquid chromatography-Q/Orbitrap mass spectrometry (UHPLC-Q/Orbi MS) was developed and validated. In this technique, the peaks of the compound using precursor ions were recorded by the full scan, which was used for rough quantitative analysis with single point matrix matched calibration. The qualitative identification was performed following the stringent confirmation criteria with fragment ions, retention time, and an isotopic pattern. Additionally, solid-phase extraction with an HLB (Hydrophilic/Lipophilic Balanced) column was selected to enrich and separate target pesticides from water. The screening detection limit of 33 compounds are less than 2 ng·L−1, while 26 compounds range from 2 ng·L−1 to 10 ng·L−1, 19 compounds are at the range of 10–200 ng·L−1, and the other two compounds are 200 ng·L−1 and 1000 ng·L−1. Most of the recovery results were found to be between 60~130%. Finally, the method was successfully applied to the analysis of pesticide residues in 30 water samples from aquaculture environment in Shanghai, indicating its applicability in pesticide screening for environmental monitoring.
Collapse
|
19
|
Derbalah A, Sunday M, Kato R, Takeda K, Sakugawa H. Photoformation of reactive oxygen species and their potential to degrade highly toxic carbaryl and methomyl in river water. CHEMOSPHERE 2020; 244:125464. [PMID: 31790988 DOI: 10.1016/j.chemosphere.2019.125464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS) including singlet oxygen (1O2) and hydroxylradicals (OH) photogenerated in natural waters play important roles in indirect photolysis of man-made pollutants. This study was conducted to investigate how the generation of these two ROS influences the degradation of two highly toxic insecticides (methomyl and carbaryl) in river water. To accomplish this, the reaction rate constants of 1O2 and OH with carbaryl and methomyl were determined; the degradation rate constants of the tested insecticides in ultrapure water (direct photolysis) and in river water in the presence and absence of 1O2 and OH scavengers were also measured. The rate constants for the reaction of OH with carbaryl and methomyl were found to be (14.8 ± 0.64) × 109 and (4.68 ± 0.52) × 109 M-1 s-1, respectively. The reaction rate constant of 1O2 with carbaryl (2.98 ± 0.10) × 105 M-1 s-1, was much higher than that of methomyl (<104 M-1 s-1). Indirect photolysis by OH accounted for 63% and 62%, while 1O2 accounted for 26% and 30% and direct photolysis accounted for 1.4% and 7% of methomyl and carbaryl degradation, respectively. The high degradation rate in river water demonstrated by both insecticides suggests that indirect photolysis mediated by OH is an important means of their degradation in river water. In addition, kinetic calculations of OH-mediated degradation rate constants of the compounds agrees with their experimentally-determined values thereby confirming the importance of OH towards their degradation.
Collapse
Affiliation(s)
- Aly Derbalah
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan; Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Michael Sunday
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan; Department of Chemistry, Federal University of Technology Akure, P.M.B 704, Ondo State, Nigeria
| | - Ryota Kato
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan
| | - Kazuhiko Takeda
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan
| | - Hiroshi Sakugawa
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Japan.
| |
Collapse
|
20
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Seraj S, Lotfollahi MN, Nematollahzadeh A. Synthesis and sorption properties of heparin imprinted zeolite beta/polydopamine composite nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Sahu DK, Rai J, Rai MK, Banjare MK, Nirmal M, Wani K, Sahu R, Pandey SG, Mundeja P. Detection of flonicamid insecticide in vegetable samples by UV–Visible spectrophotometer and FTIR. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Preparation and characterization of magnetic molecular imprinted polymers with ionic liquid for the extraction of carbaryl in food. Anal Bioanal Chem 2019; 412:1049-1062. [DOI: 10.1007/s00216-019-02330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
|
24
|
Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 2019; 308:125696. [PMID: 31655482 DOI: 10.1016/j.foodchem.2019.125696] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Zearalenone (ZEA) is a fungal contaminant widely found in grains. In cereal samples, trace zearalenone was extracted and enriched using magnetic-surfaced pseudo molecularly imprinted polymers (SPMIPs) and detected. SPMIPs were prepared with Fe3O4 as the magnetic core, modified halloysites nanotubes as supporting materials, and selective imprinted polymers as shells. Vinyl was modified on the surface of halloysites nanotube. SPMIPs were synthesized with pseudo templates. SPMIPs as the adsorbent of dispersed-solid phase extraction (μ-SPE) were used to purify and enrich ZEA from maize samples. After optimized, the pretreatment method was evaluated. The linearity of the method was ranged within 10-200 ng mL-1. LOD and LOQ were 2.5 ng mL-1 and 8 ng mL-1 respectively. The ZEA spiking recoveries in maize samples ranged within 74.95-88.41% were with good RSDs lower than 4.25%. The developed method was successful applied in maize, oat, and wheat sample treatments and compared.
Collapse
|
25
|
Narenderan S, Meyyanathan S, Karri VVSR. Experimental design in pesticide extraction methods: A review. Food Chem 2019; 289:384-395. [DOI: 10.1016/j.foodchem.2019.03.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
|
26
|
Atayat A, Mergola L, Mzoughi N, Del Sole R. Response surface methodology approach for the preparation of a molecularly imprinted polymer for solid‐phase extraction of fenoxycarb pesticide in mussels. J Sep Sci 2019; 42:3023-3032. [DOI: 10.1002/jssc.201900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Amani Atayat
- Sciences and Environmental Techonologies LaboratoryHigh Institute of Environmental Sciences and Technologies of Borj CedriaUniversity of Carthage Borj Cedria Tunisia
- Faculty of Science of BizerteUniversity of Carthage Bizerte Tunisia
| | - Lucia Mergola
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| | - Nadia Mzoughi
- Sciences and Environmental Techonologies LaboratoryHigh Institute of Environmental Sciences and Technologies of Borj CedriaUniversity of Carthage Borj Cedria Tunisia
| | - Roberta Del Sole
- Department of Engineering for InnovationUniversity of Salento Lecce Italy
| |
Collapse
|
27
|
Heravizadeh OR, Khadem M, Nabizadeh R, Shahtaheri SJ. Synthesis of molecularly imprinted nanoparticles for selective exposure assessment of permethrin: optimization by response surface methodology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:393-406. [PMID: 31321053 PMCID: PMC6582030 DOI: 10.1007/s40201-019-00358-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Extensive use of high-efficiency pyrethroid pesticides as pest-control agents lead to remarkable adsorption and release of these materials in soil and aquatic environment which could have serious adverse effects on water and food chain quality as well as human health. In this study, a molecularly imprinted polymer was synthesized and used as a selective sorbent in the sample preparation procedure in order to facilitate sensitive and quantitative exposure assessment of insecticide permethrin. METHODS Molecular imprinted nanoparticles were prepared by precipitation polymerization technique using 1:4:20 mmol ratio of the template, functional monomer, and cross-linker, respectively, as well as 80 mL of chloroform as progen solvent. The obtained nanoparticles were characterized by field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FT-IR). The optimization of critical variables in the MISPE process was done using the central composite design (CCD) of the response surface methodology. RESULTS Quadratic regressional models were developed to correlate the response and independent variables and the analysis of variance (ANOVA) verified the excellent fitting of proposed models for experimental data. Optimum conditions for the highest MISPE yield were selected as follow: sorbent mass of 7.71 mg, sample pH 5.58 and 5.68 for cis and trans-permethrin, respectively, sample flow rate of 0.6 mL/min, as well as 5 and 3.94 mL of methanol/acetic acid at the flow rate of 2 mL/min as elution solvents for cis and trans-permethrin, respectively. Under optimized conditions, the linear range was obtained 20-120 μg/L (R2 = 0.99) and the detection limits were 5.51 and 5.72 μg/L for cis and trans-permethrin, respectively. Analysis of real samples demonstrated the high extraction efficiency of designed protocol ranging from 93.01 to 97.14 with the relative standard deviation (RSD) less than 4.51%. CONCLUSIONS The satisfactory results confirmed the reliability and efficiency of the proposed method for trace analysis of permethrin isomers in biological and environmental samples.
Collapse
Affiliation(s)
- Omid Reza Heravizadeh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Khadem
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Gong CB, Wei YB, Chen MJ, Liu LT, Chow CF, Tang Q. Double imprinted photoresponsive polymer for simultaneous detection of phthalate esters in plastics. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Tan K, Ma Q, Luo J, Xu S, Zhu Y, Wei W, Liu X, Gu Y. Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol detection. Biosens Bioelectron 2018; 117:713-719. [DOI: 10.1016/j.bios.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/18/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
|
31
|
Kanchi S, Sabela M, Shahbaaz M, Gumede N, Gopalakrishnan K, Bisetty K, Venkatasubba Naidu N, Inamuddin, Asiri AM. Selectivity and sensitivity enhanced green energy waste based indirect-μ-solid phase extraction of carbaryl supported by DFT and molecular docking studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
|
34
|
Ostovan A, Ghaedi M, Arabi M, Asfaram A. Hollow porous molecularly imprinted polymer for highly selective clean-up followed by influential preconcentration of ultra-trace glibenclamide from bio-fluid. J Chromatogr A 2017; 1520:65-74. [DOI: 10.1016/j.chroma.2017.09.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
|
35
|
Bahrani S, Ghaedi M, Dashtian K, Ostovan A, Mansoorkhani MJK, Salehi A. MOF-5(Zn)-Fe 2O 4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1067:45-52. [PMID: 28987498 DOI: 10.1016/j.jchromb.2017.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022]
Abstract
In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe2O4-nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe2O4NPs) was synthesized by dispersing MOF-5 and Fe(NO3)3.9H2O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe2O4NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe2O4NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL-1) with reasonable detection limit (0.13ngmL-1) and R2=0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples.
Collapse
Affiliation(s)
- Sonia Bahrani
- Departmentof chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Mehrorang Ghaedi
- Departmentof chemistry, Yasouj University, Yasouj, 75918-74831, Iran.
| | - Kheibar Dashtian
- Departmentof chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - Abbas Ostovan
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Amin Salehi
- Department of Agronomy, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| |
Collapse
|
36
|
Li Y, Zhao R, Chao S, Sun B, Zhang N, Qiu J, Wang C, Li X. A flexible magnesium silicate coated electrospun fiber adsorbent for high-efficiency removal of a toxic cationic herbicide. NEW J CHEM 2017. [DOI: 10.1039/c7nj03168h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel magnesium silicate/PAN composite electrospun fiber adsorbent was prepared and systematically investigated for the removal of the cationic herbicide diquat.
Collapse
Affiliation(s)
- Y. Li
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - R. Zhao
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - S. Chao
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - B. Sun
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - N. Zhang
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - J. Qiu
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - C. Wang
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| | - X. Li
- Alan G. MacDiarmid Institute
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|