1
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
3
|
Lai YR, Wang SSS, Lin TH. Using silver nanoparticle-decorated whey protein isolate amyloid fibrils to modify the electrode surface used for electrochemical detection of para-nitrophenol. Int J Biol Macromol 2024; 264:130404. [PMID: 38417752 DOI: 10.1016/j.ijbiomac.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Due to their organized structures, remarkable stiffness, and nice biocompatibility and biodegradability, amyloid fibrils serve as building blocks for versatile sustainable materials. Silver nanoparticles (AgNPs) are commonly used as the nano-catalysts for various electrochemical reactions. Given their large specific surface area and high surface energy, AgNPs exhibit high aggregation propensity, which hampers their electrocatalytic performance. Food protein wastes have been identified to be associated with climate change and environmental impacts, and a surplus of whey proteins in dairy industries causes high biological and chemical demands, and greenhouse gas emissions. This study is aimed at constructing sustainable electrode surface modifiers using AgNP-deposited whey protein amyloid fibrils (AgNP/WPI-AFs). AgNP/WPI-AFs were synthesized and characterized via spectroscopic techniques, electron microscopy, and X-ray diffraction. Next, the electrocatalytic performance of AgNP/WPI-AF modified electrode was assessed via para-nitrophenol (p-NP) reduction combined with various electrochemical analyses. Moreover, the reaction mechanism of p-NP electrocatalysis on the surface of AgNP/WPI-AF modified electrode was investigated. The detection range, limit of detection, sensitivity, and selectivity of the AgNP/WPI-AF modified electrode were evaluated accordingly. This work not only demonstrates an alternative for whey valorization but also highlights the feasibility of using amyloid-based hybrid materials as the electrode surface modifier for electrochemical sensing purposes.
Collapse
Affiliation(s)
- You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
4
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
5
|
Jiang R, Zhu HY, Zang X, Fu YQ, Jiang ST, Li JB, Wang Q. A review on chitosan/metal oxide nanocomposites for applications in environmental remediation. Int J Biol Macromol 2024; 254:127887. [PMID: 37935288 DOI: 10.1016/j.ijbiomac.2023.127887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Sheng-Tao Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Bing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
6
|
M. Visagamani A, Harb M, Kaviyarasu K, Muthukrishnaraj A, Ayyar M, A. Alzahrani K, Althomali RH, Althobaiti SA. Electrochemical Detection of 4-Nitrophenol Using a Novel SrTiO 3/Ag/rGO Composite. ACS OMEGA 2023; 8:42479-42491. [PMID: 38024753 PMCID: PMC10652362 DOI: 10.1021/acsomega.3c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
In this study, an eco-friendly strategy was used to prepare a novel SrTiO3/Ag/rGO composite. A SrTiO3/Ag/rGO composite-modified screen-printed carbon electrode (SPCE) was applied for the electrochemical detection of 4-nitrophenol. A simple ultrasonic method with an ultrasonic frequency of 20 kHz was used for the synthesis of SrTiO3/Ag/rGO composite material. The obtained SrTiO3/Ag/rGO composite was characterized by X-ray diffraction, Fourier transform infrared, Raman spectroscopy, field emission electron microscopy, and UV-visible spectroscopy. Electrochemical impedance spectroscopy was used to determine the electrical conductivity of the SrTiO3/Ag/rGO composite. The electrochemical properties of the modified electrode were studied using cyclic voltammetry as well as linear sweep voltammetry techniques. In comparison to SrTiO3/SPCE, SrTiO3/Ag/SPCE, and SrTiO3/rGO/SPCE electrodes, SrTiO3/Ag/rGO/SPCE demonstrates a considerable increase in 4-nitrophenol redox peak current. At optimum conditions, a large linear response range of 0.1-1000 M, with a relatively low limit of detection (0.03 M), outperforms the previously published modified electrode for 4-nitrophenol. Moreover, the SrTiO3/Ag/rGO/SPCE electrode-based 4-nitrophenol sensor is distinguished by good selectivity, high stability, and repeatability. Furthermore, SrTiO3/Ag/rGO/SPCE contributed to the detection of 4-nitrophenol in river water and drinking water with the recovery range from 97.5 to 98.7%. The experimental finding was supported by density functional theory calculation.
Collapse
Affiliation(s)
- Arularasu M. Visagamani
- Department
of Electronic Engineering, Chang Gung University, Taoyuan City 33302, Taiwan (R.O.C)
| | - Moussab Harb
- QSARLab
Ltd., Trzy Lipy 3, Gdańsk 80-172, Poland
| | - Kasinathan Kaviyarasu
- UNESCO-UNISA
Africa Chair in Nanosciences/Nanotechnology Laboratories, College
of Graduate Studies, University of South
Africa (UNISA), Muckleneuk
Ridge, Pretoria 0003, South Africa
- Nanosciences
African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABORATORIES-National Research Foundation
(NRF), 1 Old Faure Road, Somerset West, Western Cape Province 7129, South Africa
| | - Appusamy Muthukrishnaraj
- Department
of Science and Humanities (Chemistry), Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021, India
| | - Manikandan Ayyar
- Department
of Chemistry, Karpagam Academy of Higher
Education, Coimbatore, Tamil Nadu 641 021, India
- Centre
for Material Chemistry, Karpagam Academy
of Higher Education, Coimbatore, Tamil Nadu 641 021, India
- Department
of Chemistry, Bharath Institute of Higher
Education and Research (BIHER), Chennai, Tamil Nadu 600
073, India
| | - Khalid A. Alzahrani
- Chemistry
Department, Faculty of Science King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Raed H. Althomali
- Department
of Chemistry, Prince Sattam Bin Abdulaziz
University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Saja Abdulrahman Althobaiti
- Department of Chemistry, College of Arts
and Science, Prince Sattam Bin Abdulaziz
University, Wadi Addawasir 18510, Saudi Arabia
| |
Collapse
|
7
|
Abhikha Sherlin V, Stanley MM, Wang SF, Sriram B, Baby JN, George M. Nanoengineered disposable sensor fabricated with lanthanum stannate nanocrystallite for detecting animal feed additive: Ractopamine. Food Chem 2023; 423:136268. [PMID: 37156138 DOI: 10.1016/j.foodchem.2023.136268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Ractopamine (RA) has been at the forefront of feed additives as a nutrient repartitioning mediator that recuperates the growth rate, decreases animal fat, and guarantees food safety. However, inappropriate and abusive usage of RA to enhance economic efficiency can negatively impact the environment-animal-human interactions. Therefore, the call for monitoring and quantifying RA is highly desired. In this work, the potentiality of La2Sn2O7 as an electrode modifier on the surface of the portable screen-printed carbon electrode (SPCE) was examined for its precision, disposability, and ability to detect RA. The superior electrocatalytic activity of the fabricated La2Sn2O7/SPCE fortifies its standpoints by displaying a wide linear working range of 0.01-501.2 µM, an enhanced sensitivity, a better stability, a lower LOD of 0.86 nM, and an increased selectivity toward the detection of RA. Furthermore, the investigation of the constructed electrochemical sensor with real-time food samples underpins its practicality and feasibility.
Collapse
Affiliation(s)
- V Abhikha Sherlin
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Megha Maria Stanley
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India; Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India.
| |
Collapse
|
8
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Selvi SV, Prasannan A, Yu H, Lincy V, Hong PD. Bio-mineralized tin/bismuth oxide nanoparticles with silk fibroins for efficient electrochemical detection of 2-nitroaniline in river water samples. ENVIRONMENTAL RESEARCH 2023; 221:115285. [PMID: 36640938 DOI: 10.1016/j.envres.2023.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the usage of nitroaniline has played a vital role in pharmaceutical formulations as it is a crucial ingredient in the synthesis of pesticides and dyes. However, the level of nitroaniline existing in industrial waste keeps rising the environmental contamination. Thus, monitoring of active nitro-residuals becomes more significant in reducing the toxicity of the ecosystem. Therefore, we have taken an attempt to evaluate the hazardous pollutant 2-nitroaniline (2-NA) using the electrocatalyst viz., tin-doped bismuth oxide inserted on a biopolymer silk fibroin composite modified glassy carbon electrode (Sn-Bi2O3/SF@GCE). The Sn-Bi2O3/SF nanocomposite was synthesized through hydrothermal and co-precipitation methods. The physicochemical properties of the prepared Sn-Bi2O3/SF hybrid composite were examined by conventional microscopy and spectroscopic techniques like FE-SEM, HR-TEM, XRD, FTIR, Raman, and XPS. Furthermore, the bio-mineralized Sn-Bi2O3/SF@GCE displayed a wide linear range (0.009 μM-785.7 μM) and a lower detection limit (3.5 nM) with good sensitivity for 2-NA detection under the optimum conditions. The result shows that the Sn-Bi2O3/SF-modified GCE has good reproducibility, repeatability, and excellent selectivity for 2-NA detection in the presence of other co-interfering compounds. Moreover, the practical applicability of Sn-Bi2O3/SF@GCE sensors was investigated for the effective detection of 2-NA in real river water samples, revealing good recovery results.
Collapse
Affiliation(s)
- Subash Vetri Selvi
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Adhimoorthy Prasannan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Hao Yu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Varghese Lincy
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan.
| |
Collapse
|
10
|
Aghris S, Azriouil M, Matrouf M, Ettadili F, Laghrib F, Saqrane S, Farahi A, Bakasse M, Lahrich S, El Mhammedi M. Chitosan biopolymer coated graphite electrode as a robust electrochemical platform for the detection of the insecticide flubendiamide. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Radha A, Wang SF. Bismuth sulfide microstructures decorated with functionalized boron nitride composite for electrochemical detection of sulfadiazine. Mikrochim Acta 2022; 189:429. [PMID: 36264516 DOI: 10.1007/s00604-022-05518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
In this work, the hydrothermal method was used to synthesize f-BN@Bi2S3 nanocomposite and used as an electrocatalyst for the detection of sulfadiazine (SD) drug. Various spectroscopic and voltammetric techniques were adopted to evaluate the morphological and structural features of the prepared materials. The modification of the electrode results in good electrocatalytic activity and excellent sensitive towards the oxidation of SD because of its huge active surface area, high sensitivity, and electrical conductivity provided by the synergistic effects of the f-BN@Bi2S3 nanocomposite. This modified electrode exhibited linearity in the range 0.01-62 µM at Epa = 0.93 V (vs. Ag/AgCl). Furthermore, according to the electrochemical reaction towards the SD, a modified electrode of f-BN@Bi2S3 has a LOD value of 0.0015 µM, sensitivity (8.42 μA·μM-1·cm-2), good anti-interfering ability, and good repeatability. The suggested electrochemical sensor has high detection performance for monitoring water and urine samples. Notably, relative standard deviations (RSD) and recoveries of the proposed sensor for spiked water and urine samples are in the ranges of 0.014-0.75% and 98.97-99.98% (n = 3), respectively.
Collapse
Affiliation(s)
- Aravind Radha
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan.
| |
Collapse
|
12
|
Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK. Fabrication of Praseodymium Vanadate Nanoparticles on Disposable Strip for Rapid and Real-Time Amperometric Sensing of Arsenic Drug Roxarsone. Inorg Chem 2022; 61:16370-16379. [PMID: 36184926 DOI: 10.1021/acs.inorgchem.2c02388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 μM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | | | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
13
|
Abdel-Aziz AM, Hassan HH, Badr IHA. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS OMEGA 2022; 7:34127-34135. [PMID: 36188318 PMCID: PMC9520556 DOI: 10.1021/acsomega.2c03427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Glassy carbon electrode (GCE) was electrochemically activated using a repetitive cyclic voltammetric technique to develop an activated glassy carbon electrode (AGCE). The developed AGCE was optimized and utilized for the electrochemical assay of 4-nitrophenol (4-NP) and dopamine (DA). Cyclic voltammetry (CV) was employed to investigate the electrochemical behavior of the AGCE. Compared to the bare GCE, the developed AGCE exhibits a significant increase in redox peak currents of 4-NP and DA, which indicates that the AGCE significantly improves the electrocatalytic reduction of 4-NP and oxidation of DA. The electrochemical signature of the activation process could be directly associated with the formation of oxygen-containing surface functional groups (OxSFGs), which are the main reason for the improved electron transfer ability and the enhancement of the electrocatalytic activity of the AGCE. The effects of various parameters on the voltammetric responses of the AGCE toward 4-NP and DA were studied and optimized, including the pH, scan rate, and accumulation time. Differential pulse voltammetry (DPV) was also utilized to investigate the analytical performance of the AGCE sensing platform. The optimized AGCE exhibited linear responses over the concentration ranges of 0.04-65 μM and 65-370 μM toward 4-NP with a lower limit of detection (LOD) of 0.02 μM (S/N = 3). Additionally, the AGCE exhibited a linear responses over the concentration ranges of 0.02-1.0 and 1.0-100 μM toward DA with a lower limit of detection (LOD) of 0.01 μM (S/N = 3). Moreover, the developed AGCE-based 4-NP and DA sensors are distinguished by their high sensitivity, excellent selectivity, and repeatability. The developed sensors were successfully applied for the determination of 4-NP and DA in real samples with satisfactory recovery results.
Collapse
Affiliation(s)
- Ali M. Abdel-Aziz
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
| | - Hamdy H. Hassan
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| | - Ibrahim H. A. Badr
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| |
Collapse
|
14
|
Facile fluorescent detection of o-nitrophenol by a cucurbit[8]uril-based supramolecular assembly in aqueous media. Anal Chim Acta 2022; 1226:340262. [DOI: 10.1016/j.aca.2022.340262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
|
15
|
El-Yazbi AF, Guirguis KM, Bedair MM, Belal TS. Simultaneous Quantitation of Paracetamol and Lornoxicam in the Presence of Five Related Substances and Toxic Impurities by a Selective HPLC-DAD Method. J AOAC Int 2022; 105:972-978. [PMID: 35244173 DOI: 10.1093/jaoacint/qsac032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/09/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This research describes the simultaneous quantitation of paracetamol (PRM) and lornoxicam (LRX) with five of their related substances and toxic impurities, including, 4-nitrophenol (NTP), 4-aminophenol (AMP), 4-chloroacetanilide (CAC), N-phenylacetamide (NPA), and 2-aminopyridine (APD) using a specific HPLC-diode array detector (DAD) method. METHODS The chromatographic separation involves the use of a XTerra C18 column as the stationary phase and a mobile phase consisting of acetonitrile and 0.025 M phosphate buffer (pH 6). The separation was performed using gradient elution mode at 1.0 mL/min flow rate and detection at 260 nm for the determination of PRM and LRX. For detecting PRM and LRX in the presence of their toxic impurities, 270 nm was used. Validation of the suggested HPLC method was accomplished with regard to linearity, ranges, detection and quantitation limits, robustness, accuracy, precision, and specificity. RESULTS Excellent resolution of the mixture components was accomplished at retention times 4.2, 4.8, 7.4, 11.1, 13.5, 14.7, and 15.3 min for APD, AMP, PRM, NPA, LRX, NTP, and CAC, respectively. Linearity was established for PRM and LRX within concentration ranges of 10-100 and 10-60 µg/mL, respectively. The correlation coefficients obtained were >0.9997. The suggested method was confirmed to be a specific stability-indicating through the selective separation of PRM and LRX from their related substances, degradants, and impurities. CONCLUSION The proposed method was successfully utilized for the sensitive and selective determination of PRM and LRX in their pharmaceutical formulation. HIGHLIGHTS To the best of our knowledge, this is the first impurity profiling assay method for this combination in the presence of five of their toxic related substances and impurities. Taking into consideration that at least two of the studied impurities (AMP and APD) are actually reported degradation products for the main drugs, the suggested method can be considered stability-indicating as well.
Collapse
Affiliation(s)
- Amira F El-Yazbi
- University of Alexandria, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Elmessalah, 21521 Alexandria, Egypt
| | - Karin M Guirguis
- Pharos University in Alexandria, Faculty of Pharmacy and Drug Manufacturing, Pharmaceutical Chemistry Department, Canal El-Mahmoudia Street, Alexandria, Egypt
| | - Mona M Bedair
- University of Alexandria, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Elmessalah, 21521 Alexandria, Egypt
| | - Tarek S Belal
- University of Alexandria, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Elmessalah, 21521 Alexandria, Egypt
| |
Collapse
|
16
|
Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Shahbaz A, Hussain N, Basra MAR, Bilal M. Polysaccharides‐based nano‐hybrid biomaterial platforms for tissue engineering, drug delivery and food packaging applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Areej Shahbaz
- Center for Applied Molecular Biology (CAMB) University of the Punjab Lahore Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB) University of the Punjab Lahore Pakistan
| | - Muhammad Asim Raza Basra
- Centre for clinical and nutritional Chemistry School of Chemistry University of the Punjab Lahore 54000 Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| |
Collapse
|
18
|
Huang X, Yang C, Chen Y, Zhu Z, Zhou L. Cuttlefish ink-based N and S co-doped carbon quantum dots as a fluorescent sensor for highly sensitive and selective para-nitrophenol detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5351-5359. [PMID: 34730132 DOI: 10.1039/d1ay01496j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Para-nitrophenol (PNP) is an important raw material for organic synthesis and its extensive use has produced a series of environmental problems. Here, we develop a highly sensitive and selective fluorescent detection method for PNP with cuttlefish ink-based carbon quantum dots (CQDs). The cuttlefish ink, which is rich in eumelanin, is utilized as the only precursor to synthesize the CQDs via a one-step hydrothermal method. The resultant CQDs were co-doped with nitrogen and sulfur and exhibited excellent fluorescence properties. Two optimal emissions can be observed at the excitation/emission wavelengths of 320/385 nm and 390/465 nm, respectively. In the presence of PNP, the two emissions are remarkably quenched. PNP can be measured in the linear detection concentration range of 1.25-50 μM (Em = 385 nm and R2 = 0.9884) or 1.25-27.5 μM (Em = 465 nm and R2 = 0.9818) with a detection limit of 0.05 μM. Significantly, it is found that a much wider linear detection range of 0.05-125 μM with a lower detection limit of 0.039 μM (3σ/k) can be achieved when log(I385 nm + I465 nm) was utilized to quantify PNP. The investigations of the sensing mechanism suggested that the inner filter effect and photoinduced electron transfer of PNP and N,S-CQDs leads to fluorescence quenching. The sensing method is successfully applied for PNP detection in real water samples with satisfactory recoveries (91.18-103.14%). A new sustainable waste-prevention strategy of cuttlefish ink and a feasible alternative to PNP detection methods is provided in this article.
Collapse
Affiliation(s)
- Xiaotong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Chunli Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yingxin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zebin Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
19
|
Baikeli Y, Mamat X, Chen L, Liu X, Shen L, Lyu Y, Li C. Ultrasensitive and simultaneous determination of p-Nitrophenol and p-Nitrobenzoic acid by a modified glassy carbon electrode with N-rich nanoporous carbon derived from ZIF-8. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Sriram B, Baby JN, Wang SF, Hsu YF, Sherlin V A, George M. Well-Designed Construction of Yttrium Orthovanadate Confined on Graphitic Carbon Nitride Sheets: Electrochemical Investigation of Dimetridazole. Inorg Chem 2021; 60:13150-13160. [PMID: 34428891 DOI: 10.1021/acs.inorgchem.1c01548] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the most important drugs for people and animals to fight bacterial illnesses. Overuse of antibiotics has had unintended consequences, such as antibiotic resistance and ecosystem eradication owing to toxic chemical discharge, which have a negative influence on the biome. Herein, we report the synthesis of a hollow ellipsoid-shaped yttrium vanadate/graphitic carbon nitride (YVO4@CN) nanocomposite by a hydrothermal approach followed by a sonochemical method for the effective detection of dimetridazole (DMZ). The synergic and coupling effect between both the phases offer non-linear cumulative ramifications which can positively enhance the individual properties of the materials under consideration. This positive hybrid effect increases the conductivity, shortens the ion-diffusion pathway, enhances the electron/ion transportation, and provides more active sites and electron-conducting channels. The accurate optimization of the experimental conditions proposes good electrocatalytic activity for the YVO4@CN catalyst, exhibiting a good response toward DMZ detection. It reveals an extensive linear concentration range (0.001-153.3 and 176.64-351.6 μM), a low detection limit (0.8 nM), higher sensitivity (4.98 μA μM-1 cm-2), appreciable selectivity, increased operational stability (2200 s), and good cycle stability (60 cycles). The electrochemical performance of YVO4@CN indicates its practical application in real-time sample analysis of several families of nitroimidazole drugs.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, 600 086 Tamil Nadu, India
| |
Collapse
|
21
|
Simultaneous determination of nitrophenol isomers based on reduced graphene oxide modified with sulfobutylether-β-cyclodextrin. Carbohydr Polym 2021; 271:118446. [PMID: 34364581 DOI: 10.1016/j.carbpol.2021.118446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
The present study reports the development of an electrochemical sensor based on sulfobutylether-β-cyclodextrin modified reduced graphene oxide hybrid (SBCD-rGO) for simultaneous detection of nitrophenol isomers. First, SBCD-rGO hybrid was synthesized and detailed characterized. Afterwards, a sensor was fabricated via the modification of glassy carbon electrode (GCE) with SBCD-rGO, and its electrochemical detection performances were also investigated. Then, the constructed electrochemical sensor was applied to detect nitrophenol isomers by voltammetry analysis. The results suggested that the sensitivities were 389.26, 280.88 and 217.19 μA/mM for p-nitrophenol (p-NP), m-nitrophenol (m-NP), and o-nitrophenol (o-NP), respectively, and their corresponding detection limits were all about 0.05 μM. Significantly, the combination of voltammetry analysis with the constructed sensor and data analysis by multiple linear regression realized the simultaneous detection of nitrophenol isomers.
Collapse
|
22
|
Ali F, Khan SB, Shaheen N, Zhu YZ. Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. Carbohydr Polym 2021; 259:117681. [PMID: 33674021 DOI: 10.1016/j.carbpol.2021.117681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022]
Abstract
This study focusses on the effect of chitosan coating with eggshell membranes for the reduction of different organic pollutants. Chickens eggs were collected from the local market and utilized to extract the enrich eggshell membranes (ESM). The chicken eggshell membranes are abundant waste material which is inexpensive and illustrates remarkable physiognomies for many possible applications. Fresh fibers/strips coated by chitosan (CS) were prepared by mixing the eggshell membranes with CS solution (2 wt%/v) in different proportions i.e., 10 %, 30 %, 50 %, 60 %, 70 %, 80 %, and 90 %. These strips were then templated with copper and iron metal nanoparticles by putting them in their metal ions aqueous solution to adsorb the metals ions and were then reduced to zero-valent metal nanoparticles (MNPS) by using NaBH4 aqueous solution. These prepared materials (MNPS@ESM-CS) were characterized by using XRD, XPS, FE-SEM, and EDS to confirm the successful preparation of MNPs over the surface of ESM coated with CS. Afterwards, these prepared materials were investigated as a catalyst for the reduction of different organic pollutants, such as 4-nitroaniline (4-NA), 4-nitrophenol (4-NP) and methylene blue (MB) dye. The catalytic efficiency of ESM was enhanced 5.7-fold by adding only 20 % CS solution. It was observed that Cu@ESM-CS-80 % took 7 min for reduction of 4-NA, 6 min for 4-NP, and 7 min for MB dye. The reusability of the catalytic strip was also investigated for four cycles and found efficient and can be easily recovered by simply pulling it from the reaction mixture.
Collapse
Affiliation(s)
- Fayaz Ali
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan.
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, KPK, Pakistan
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Avenida Wai Long, Taipa, 999078, Macau.
| |
Collapse
|
23
|
Renu, Komal, Kaur R, Kaur J, Jyoti, Kumar V, Tikoo K, Rana S, Kaushik A, Singhal S. Unfolding the electrocatalytic efficacy of highly conducting NiFe2O4-rGO nanocomposites on the road to rapid and sensitive detection of hazardous p-Nitrophenol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Recent progress on electrochemical sensing strategies as comprehensive point-care method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Joseph XB, Ezhilarasi JC, Wang SF, Elanthamilan E, Sriram B, Merlin JP. Fabrication of Co 3O 4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol. NEW J CHEM 2021. [DOI: 10.1039/d1nj02642a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preparation of Co3O4@BVFC for the electrochemical detection of 4-NP.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Christy Ezhilarasi
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - E. Elanthamilan
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Princy Merlin
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| |
Collapse
|
26
|
González-Costas JM, Gómez-Fernández S, García J, González-Romero E. Screen-printed electrodes-based technology: Environmental application to real time monitoring of phenolic degradation by phytoremediation with horseradish roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140782. [PMID: 32693277 DOI: 10.1016/j.scitotenv.2020.140782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The following is a description of a simple strategy for monitoring phenolic pollutants from highly-contaminated water samples. These phenolic compounds are removed from tap water using horseradish roots (Raphanus sativus) that contain peroxidase as catalyst and H2O2 to generate hydroxyl radicals. The later (•OH) acts on the aromatic structure, causing them to degrade to non-toxic by-products. The tool used to follow up the evolution of the process is based on screen-printed carbon electrodes (SPCEs) as electrochemical sensor for simultaneous detection of hydroquinone (Epa at 0.047 V), m-cresol (Epa at 0.506 V) and 4-nitrophenol (Epa at 0.696 V) by differential pulse voltammetry (DPV). This electroanalytical methodology enables close monitoring of the situation and rapid sensor response time. Furthermore, this direct methodology works for opaque and heterogeneous samples, as tap water with chopped horseradish roots, without any treatment of samples previously to the analysis. For better knowledge of the electrodic-transfer process, the electrochemical behavior of these phenolic compounds by cyclic voltammetry (CV) is also included. This simple methodology shows a low detection limit (below to 5 μM) and an excellent selectivity (peak potential separation between them up to 200 mV or greater) in a linear range of three orders of concentration (from 1-5 μM to 1 mM) for all of the analytes studied. The DPV responses of the phenolic compounds during the phytoremediation process are simultaneously monitored by this direct, cheap, reproducible (RSD < 2.3%) and rapid DPV-SPCE electroanalytical methodology. Portable device as electrochemical sensor with this optimized and validated technology can be applied for decentralized analysis, on-site assays and rapid screening purposes. The use of the horseradish roots achieves the total elimination of phenolic pollutants in concentrations 1000 times higher than the legal limits in less than 1 h.
Collapse
Affiliation(s)
- Javier M González-Costas
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| | - Siria Gómez-Fernández
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Josefa García
- Department of Applied Physics, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Elisa González-Romero
- Electroanalysis and Biosensors Group, Department of Analytical and Food Chemistry, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain.
| |
Collapse
|
27
|
Visible-light-driven photocatalytic activity of ZnO/g-C3N4 heterojunction for the green synthesis of biologically interest small molecules of thiazolidinones. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
El-Yazbi AF, Guirguis KM, Bedair MM, Belal TS. Validated specific HPLC-DAD method for simultaneous estimation of paracetamol and chlorzoxazone in the presence of five of their degradation products and toxic impurities. Drug Dev Ind Pharm 2020; 46:1853-1861. [PMID: 32894703 DOI: 10.1080/03639045.2020.1821054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This work demonstrates a specific and reliable HPLC with diode array detection (DAD) method for the simultaneous estimation of paracetamol (PAR) and chlorzoxazone (CZ) in the presence of five of their degradation products and toxic impurities; namely; 4-aminophenol (AP), 4-nitrophenol (NP), acetanilide (AT), 4-chloroacetanilide (CA) and 2-amino-4-chlorophenol (ACP). Successful chromatographic separation was accomplished using Waters Symmetry C8 column (3.9 × 150 mm, 5 μm) with gradient elution of the mobile phase consisting of 0.05 M phosphate buffer pH 7.5 and methanol. The gradient elution started with 5% (by volume) methanol ramped up linearly to 50% in 10 min, and then maintained at this percentage afterward till the end of the run. The mobile phase was pumped at a flow rate of 1.0 mL/min. The multiple wavelength detector was adjusted at 244 and 285 nm to quantify PAR and CZ, respectively. Additionally, the wavelength 270 nm was found suitable for monitoring the separation of the entire mixture of PAR, CZ, and their impurities. Seven peaks eluted with excellent resolution at retention times 3.4, 5.7, 8.0, 10.1, 10.8, 13.5, and 14.4 min for AP, PAR, NP, AT, ACP, CZ, and CA, respectively. Performance of the proposed method was validated with respect to linearity, range, precision, accuracy, specificity, robustness, detection, and quantitation limits. Calibration curves were linear in the ranges of 10-75 and 10-100 µg/mL for PAR and CZ, respectively with correlation coefficients not less than 0.9998. The proposed method proved to be specific and stability indicating by the resolution of both drugs from their degradation products and toxic impurities. Validated HPLC method was successfully applied to the analysis of PAR and CZ in their combined capsules dosage form, and assay results were favorably compared with a published reference HPLC method. DAD served as an efficient tool for peak identity and purity verification.
Collapse
Affiliation(s)
- Amira F El-Yazbi
- Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, University of Alexandria, Alexandria, Egypt
| | - Karin M Guirguis
- Faculty of Pharmacy and Drug Manufacturing, Pharmaceutical Chemistry Department, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Bedair
- Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, University of Alexandria, Alexandria, Egypt
| | - Tarek S Belal
- Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
29
|
Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Ramalingam M, Ponnusamy VK, Sangilimuthu SN. Electrochemical determination of 4-nitrophenol in environmental water samples using porous graphitic carbon nitride-coated screen-printed electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17481-17491. [PMID: 31152423 DOI: 10.1007/s11356-019-05494-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate a facile preparation of novel oxidized graphitic carbon nitride (O-gC3N4) applied as an efficient electrocatalyst for highly sensitive electrochemical detection of 4-nitrophenol (4-NP) in environmental water samples. As-prepared O-gC3N4 were characterized by attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction methods for the confirmation of different functional groups and structural phase of O-gC3N4. The surface morphology of the O-gC3N4 was characterized using field emission scanning electron microscopy and high-resolution transmission electron microscopy. Results revealed that the synthesized gC3N4 possessed acid functional groups, nanosheet with porous in nature. The O-gC3N4 was drop cast on the screen-printed electrode (SPE), and it was applied for electrochemical determination of 4-NP using cyclic voltammetry and differential pulse voltammetry (DPV) techniques. The O-gC3N4/SPE exhibited excellent electrocatalytic activity towards 4-NP detection. Under the optimized experimental conditions, the DPV response of O-gC3N4/SPE showed good linear range from 0.0033 to 0.313 μM with a detection limit (S/N = 3) of 0.075 μM. The developed electrode has successfully applied for the determination of 4-NP in different environmental water samples, and the results have shown satisfied.
Collapse
Affiliation(s)
- Manikandan Ramalingam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan, Republic of China
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan, Republic of China.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan, Republic of China.
| | - Sriman Narayanan Sangilimuthu
- Department of Analytical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| |
Collapse
|
31
|
Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO-TiO 2 nanorods template. Heliyon 2020; 6:e03710. [PMID: 32274436 PMCID: PMC7132160 DOI: 10.1016/j.heliyon.2020.e03710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
An alternative method of synthesizing ZnO–TiO2 nanorods is through route precipitation and sintering at 600 °C. In this study, the introduction of Ti into Zn in the molar ratio Ti:Zn (1:3) produced a composite ZnO-Low TiO2 (ZnO-LTiO2) while 1:1 produced ZnO-High TiO2 (ZnO–HTiO2). The effect of the Ti introduced on the anti-bacterial properties of ZnO–TiO2 nanorods was investigated with the product structure characterized by XRD and the optimal intensity at 2θ: 31.72°, 34.37°, 36.19° showed a Wurzite structure and a crystal size of 35.8–41.5 nm. The average pore diameters for ZnO-LTiO2 and ZnO–HTiO2 were around 5.159 nm and 6.828 nm while the surface areas were 15.692 m2/g and 15.421 m2/g respectively. The anti-bacterial textile fiber construction was prepared using dip-spin coating with the application of an adipic acid crosslinker for 6 h and stable coating up to 10 times washing. The improvement of Pseudomonasaeruginosa (Pa) antibacterial properties in the textiles with coating had an inhibition zone of 20.5–25.0 mm and 16.2 mm without the coating. The elements of the cotton fiber construction include C at 54.60%, O at 40.89%, Ti at 0.81% and Zn at 2.60% while the TG-DTA analysis conducted showed an increase in the heat stability of the textile fibers to a temperature of 400°C, after which the textiles were modified by coating ZnO–TiO2 nanorods. The findings of this research could be successfully applied to improve the antibacterial properties of textiles.
Collapse
|
32
|
Pérez-Fernández B, Costa-García A, Muñiz ADLE. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. BIOSENSORS 2020; 10:E32. [PMID: 32252430 PMCID: PMC7236603 DOI: 10.3390/bios10040032] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.
Collapse
Affiliation(s)
| | | | - Alfredo de la Escosura- Muñiz
- NanoBioAnalysis Group-Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
33
|
Uddin MT, Alam MM, Asiri AM, Rahman MM, Toupance T, Islam MA. Electrochemical detection of 2-nitrophenol using a heterostructure ZnO/RuO2 nanoparticle modified glassy carbon electrode. RSC Adv 2020; 10:122-132. [PMID: 35492545 PMCID: PMC9048164 DOI: 10.1039/c9ra08669b] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
A highly selective chemisensor for 2-nitrophenol detection was fabricated using ZnO/RuO2 nanoparticles (NPs) synthesized by impregnation method.
Collapse
Affiliation(s)
- Md. Tamez Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3114
- Bangladesh
| | - Md. Mahmud Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3114
- Bangladesh
| | | | | | - Thierry Toupance
- Institut des Sciences Moléculaires
- Univ. Bordeaux
- UMR 5255 CNRS
- France
| | - Md. Akhtarul Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3114
- Bangladesh
| |
Collapse
|
34
|
Dhanasekaran T, Manigandan R, Padmanaban A, Suresh R, Giribabu K, Narayanan V. Fabrication of Ag@Co-Al Layered Double Hydroxides Reinforced poly(o-phenylenediamine) Nanohybrid for Efficient Electrochemical Detection of 4-Nitrophenol, 2,4-Dinitrophenol and Uric acid at Nano Molar Level. Sci Rep 2019; 9:13250. [PMID: 31519946 PMCID: PMC6744444 DOI: 10.1038/s41598-019-49595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, Co-Al layered double hydroxides (LDHs), Co-Al LDHs/poly(o-phenylenediamine) (PoPD) and Ag nanoparticles decorated Co-Al LDHs/PoPD (Ag@Co-Al LDH/PoPD) samples were prepared. The as-prepared samples were characterized by XRD, Raman, XPS, FT-IR, DRS-UV-Vis, PL and TGA techniques. The salient features of morphology and size of the samples were determined using FESEM, and HR-TEM. Then, the samples were coated on glassy carbon electrode (GCE) and employed for sensing of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP)) and uric acid (UA). It was found that Ag@Co-Al LDH/PoPD/GCE showed superior electrochemical sensing behaviour than other modified electrodes. It exhibits the detection limit (DL) of 63 nM, 50 nM and 0.28 µM for 4-NP, 2,4-DNP and UA respectively.
Collapse
Affiliation(s)
- T Dhanasekaran
- Department of Inorganic Chemistry, University of Madras, Chennai, India
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai, India
| | - R Manigandan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - A Padmanaban
- Department of Inorganic Chemistry, University of Madras, Chennai, India
| | - R Suresh
- Department of Analytical and Inorganic Chemistry, University of Concepcion, Concepcion, Chile
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi, India
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras, Chennai, India.
| |
Collapse
|
35
|
Calam TT. Electrochemical Oxidative Determination and Electrochemical Behavior of 4‐Nitrophenol Based on an Au Electrode Modified with Electro‐polymerized 3,5‐Diamino‐1,2,4‐triazole Film. ELECTROANAL 2019. [DOI: 10.1002/elan.201900450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Rodriguez SY, Cantú ME, Garcia-Reyes B, Garza-Gonzalez MT, Meza-Escalante ER, Serrano D, Alvarez LH. Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. CHEMOSPHERE 2019; 221:219-225. [PMID: 30640004 DOI: 10.1016/j.chemosphere.2019.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 05/17/2023]
Abstract
Geobacter sulfurreducens and anthraquinone-2-sulfonate (AQS) were used suspended and immobilized in barium alginate during the biotransformation of 4-nitrophenol (4-NP). The assays were conducted at different concentrations of 4-NP (50-400 mg/L) and AQS, either in suspended (0-400 μM) or immobilized form (0 or 760 μM), and under different pH values (5-9). G. sulfurreducens showed low capacity to reduce 4-NP in absence of AQS, especially at the highest concentrations of the contaminant. AQS improved the reduction rates from 0.0086 h-1, without AQS, to 0.149 h-1 at 400 μM AQS, which represent an increment of 17.3-fold. The co-immobilization of AQS and G. sulfurreducens in barium alginate beads (AQSi-Gi) increased the reduction rates up to 4.8- and 7.2-fold, compared to incubations with G. sulfurreducens in suspended and immobilized form, but in absence of AQS. AQSi-Gi provides to G. sulfurreducens a barrier against the possibly inhibiting effects of 4-NP.
Collapse
Affiliation(s)
- Sujei Y Rodriguez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria E Cantú
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Bernardo Garcia-Reyes
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria T Garza-Gonzalez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Edna R Meza-Escalante
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Denisse Serrano
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Luis H Alvarez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico; Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias Agronomicas y Veterinarias, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico.
| |
Collapse
|
37
|
Chen P, Shi Y, Niu P, Wang T, Li X, Jiang H, Zhou W, Shu H, Chen J, Tian E. Highly sensitive detection of 4-NP in real water with long stability and high anti-inteference ability based on GO–Ag2CrO4/GCE. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Facile and Ultrasensitive Determination of 4-Nitrophenol Based on Acetylene Black Paste and Graphene Hybrid Electrode. NANOMATERIALS 2019; 9:nano9030429. [PMID: 30871263 PMCID: PMC6473960 DOI: 10.3390/nano9030429] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/25/2023]
Abstract
4-nitrophenol (4-NP) is a hazardous waste and a priority toxic pollutant identified by US Environmental Protection Agency (EPA). Hence, in this paper, a voltammetric sensor was proposed for the direct and sensitive detection of 4-nitrophenol (4-NP) at nanomolar level in complex matrices by using graphene and acetylene black paste hybridized electrode (GR/ABPE). Under optimal conditions, the calibration curve demonstrates a linear relationship for 4-NP in the range from 20 nM to 8.0 μM and 8.0 μM to 0.1 mM separately with the detection limit of 8.0 nM. In addition to it, the performance of the GR/ABPE in practical applications was evaluated by detecting 4-NP in various water samples, and satisfactory recoveries were realized. Therefore, GR/ABPE may have a great potential application for facile and sensitive detection of 4-NP in complex matrices at nanomolar level.
Collapse
|
39
|
Khan SB, Ali F, Akhtar K. Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. Carbohydr Polym 2019; 207:650-662. [DOI: 10.1016/j.carbpol.2018.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/22/2023]
|
40
|
Nangia S, Warkar S, Katyal D. A review on environmental applications of chitosan biopolymeric hydrogel based composites. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2018.1526041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sakshi Nangia
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sudhir Warkar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
41
|
Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe 3O 4/Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS OMEGA 2019; 4:1897-1906. [PMID: 31459444 PMCID: PMC6648162 DOI: 10.1021/acsomega.8b03615] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
MXene as a kind of two-dimensional nanomaterial has aroused people's strong research interest because of its excellent properties. In the present study, we introduced a new poly(vinyl alcohol)/poly(acrylic acid)/Fe3O4/MXene@Ag nanoparticle composite film fabricated by electrospinning and heat treatment as well as self-reduction reaction process. The obtained composite films showed high self-reduction ability because of the incorporation of MXene flakes. The intercalated MXene flakes in the composite nanofibers were evenly distributed, which not only solved the aggregation problem from MXene dispersion but also could self-reduce Ag nanoparticles in situ in composite materials. In addition, the composite nanofiber films exhibited good fiber structure, thermal stability, and magnetic properties. Moreover, the composite nanofiber films demonstrated excellent catalytic ability and cycle stability to 4-nitrophenol and 2-nitroaniline.
Collapse
Affiliation(s)
- Xinxin Huang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guodong Zou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fangke Zhan
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingxin Zhou
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qiuming Peng
- State
Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory
of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
42
|
Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01499-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Su R, Li Q, Huang R, Zhao L, Yue Q, Gao B, Chen Y. Biomass-based soft hydrogel for triple use: Adsorbent for metal removal, template for metal nanoparticle synthesis, and a reactor for nitrophenol and methylene blue reduction. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Liu Z, Guo Y. Sensitive determination of trace 4-nitrophenol in water based on thio-β-cyclodextrin functionalized graphene/copper nanospheres. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Mikrochim Acta 2018; 185:396. [DOI: 10.1007/s00604-018-2934-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
|
46
|
Ghazizadeh AJ, Afkhami A, Bagheri H. Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Mikrochim Acta 2018; 185:296. [DOI: 10.1007/s00604-018-2840-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
|
47
|
Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds. Biosens Bioelectron 2018; 102:439-448. [DOI: 10.1016/j.bios.2017.11.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023]
|
48
|
Hydrothermal Synthesis of Cr 2Se 3 Hexagons for Sensitive and Low-level Detection of 4-Nitrophenol in Water. Sci Rep 2018; 8:4839. [PMID: 29555957 PMCID: PMC5859153 DOI: 10.1038/s41598-018-23243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 03/08/2018] [Indexed: 01/19/2023] Open
Abstract
We report a simple hydrothermal method used for the synthesis of Cr2Se3 hexagons (h-Cr2Se3) and its application towards electrochemical sensing of 4-nitrophenol (4-NP). The formation of h-Cr2Se3 was confirmed by using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical activity of the h-Cr2Se3 modified screen-printed carbon electrode (SPCE) towards 4-NP was studied using cyclic voltammetry (CV) and amperometric i-t techniques. Typically, the obtained results were compared with those for a bare SPCE. The CV result clearly reveals that h-Cr2Se3 modified SPCE has higher catalytic activity towards reduction of 4-NP than bare SPCE. Hence, h-Cr2Se3 modified SPCE was concluded as a viable sensor for sensitive determination of 4-NP. Under optimized conditions, h-Cr2Se3 modified SPCE demonstrates the excellent capacity to detect the 4-NP in a linear range from 0.05 µM to 908.0 µM. The LOD and sensitivity in detection of 4-NP were determined at 0.01 µM and 1.24 µAµM−1 cm−2 respectively. The sensor is highly selective and stable and shows reproducible recovery of 4-NP in domestic supply and river water samples.
Collapse
|
49
|
Chemical Sensing Applications of ZnO Nanomaterials. MATERIALS 2018; 11:ma11020287. [PMID: 29439528 PMCID: PMC5848984 DOI: 10.3390/ma11020287] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/20/2023]
Abstract
Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article.
Collapse
|
50
|
González-Calabuig A, Cetó X, Del Valle M. A Voltammetric Electronic Tongue for the Resolution of Ternary Nitrophenol Mixtures. SENSORS 2018; 18:s18010216. [PMID: 29342848 PMCID: PMC5795887 DOI: 10.3390/s18010216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022]
Abstract
This work reports the applicability of a voltammetric sensor array able to quantify the content of 2,4-dinitrophenol, 4-nitrophenol, and picric acid in artificial samples using the electronic tongue (ET) principles. The ET is based on cyclic voltammetry signals, obtained from an array of metal disk electrodes and a graphite epoxy composite electrode, compressed using discrete wavelet transform with chemometric tools such as artificial neural networks (ANNs). ANNs were employed to build the quantitative prediction model. In this manner, a set of standards based on a full factorial design, ranging from 0 to 300 mg·L-1, was prepared to build the model; afterward, the model was validated with a completely independent set of standards. The model successfully predicted the concentration of the three considered phenols with a normalized root mean square error of 0.030 and 0.076 for the training and test subsets, respectively, and r ≥ 0.948.
Collapse
Affiliation(s)
- Andreu González-Calabuig
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| | - Xavier Cetó
- Future Industries Institute, University of South Australia, SA 5095 Adelaide, Australia.
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|