1
|
Dong D, Zhan J, Liao G, Zhu T, Yu Q, Zhang W, Wang L. Microfluidics-Assisted Polymer Vesicle Budding in Emulsion Systems: A Promising Approach for the Preparation and Application of Polymer Vesicles. Molecules 2024; 29:4802. [PMID: 39459171 PMCID: PMC11510250 DOI: 10.3390/molecules29204802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The challenge of producing polymer vesicles remains difficult, despite numerous attempts to modulate the kinetics of polymer vesicle budding and achieve precise control over the membrane characteristics. An innovative approach that incorporates the use of copolymer-loaded single-emulsion droplets is proposed to address this challenge. This method enables the precise manipulation of micelles and polymer vesicles' composition, structures and dimensions. The emulsion contracts and forms microspheres when the copolymer concentrations exceed > 0.5 wt%, resulting in the formation of nano polymer vesicles. Conversely, the copolymer spontaneously forms micro polymer vesicles and micelles through vesicle budding at lower concentrations. The spontaneous production of vesicles and micelles can be induced by modifying the copolymer concentration in the emulsion. Our discoveries have a significant impact relative to the development of copolymer membranes and contribute to an enhanced comprehension of the mass manufacturing of polymer vesicles from single emulsions.
Collapse
Affiliation(s)
| | | | | | | | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; (D.D.); (J.Z.); (G.L.); (T.Z.)
| |
Collapse
|
2
|
Xu M, Liu Y, Luo W, Tan F, Dong D, Li W, Wang L, Yu Q. A Multifunctional Nanocatalytic System Based on Chemodynamic-Starvation Therapies with Enhanced Efficacy of Cancer Treatment. J Colloid Interface Sci 2022; 630:804-816. [DOI: 10.1016/j.jcis.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
3
|
Guo C, Yuan H, Zhang Y, Yin T, He H, Gou J, Tang X. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery. J Control Release 2021; 338:422-445. [PMID: 34496272 DOI: 10.1016/j.jconrel.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Nano drug delivery systems have attracted researchers' growing attention and are gradually emerging into the public views. More and more nano-formulations are being approved for marketing or clinical use, representing the field's booming development. Copolymer self-assembly systems such as micelles, nanoparticles, polymersomes occupy a prominent position in the field of nano-drug delivery carriers. Among them, polymersomes, unlike micelles or nanoparticles, resemble liposomes' structure and possess large internal hollow hydrophilic reservoirs, allowing them to carry hydrophilic drugs. Nevertheless, their insufficient drug loading efficiency and unruly self-assembly morphology have somewhat constrained their applications. Especially for the delivery of biomacromolecule such as peptides, the encapsulation efficiency is always considered to be a formidable obstacle, even if the enormous hydrophilic core would render the polymersomes to have considerable potential in this regard. Reassuringly, the emergence of asymmetric polymersomes holds the prospect of solving this problem. With the development of synthetic technology and a deeper understanding of the self-assembly process, the asymmetric polymersomes which are with different inner and outer shell composition have been gradually recognized by researchers. It has made possible elevated drug loading, more controllable assembly processes and release performance. The internal hydrophilic blocks different from the outer shell could be engineered to have a more remarkable affinity to the cargos or could contain a non-watery aqueous phase to enable the thermodynamically preferred encapsulation of cargos, which would allow for a substantial improvement in drug encapsulation efficiency compared to the conventional approach. In this paper, we aim to deepen the understanding to asymmetric polymersomes and lay the foundation for the development of this field by describing four main elements: the mechanism of their preparation and asymmetric membrane formation process, the characterization of asymmetric membranes, the efficient drug loading, and the special stimulus-responsive release mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
4
|
Ghaed-Sharaf T, Ghatee MH. Synergistic aggregation of the ibuprofenate anion and a a double-strand imidazolium cation into vesicles for drug delivery: a simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
6
|
Yu H, Ingram N, Rowley JV, Green DC, Thornton PD. Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot. Chemistry 2020; 26:13352-13358. [PMID: 32330327 DOI: 10.1002/chem.202000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/27/2022]
Abstract
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin-loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) in dimethyl sulfoxide solution into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.
Collapse
Affiliation(s)
- Huayang Yu
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola Ingram
- Leeds Institute of Biomedical and Clinical Sciences, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Jason V Rowley
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020; 9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Indexed: 01/05/2023]
Abstract
It is of great significance to develop multifunctional biomaterials to effectively deliver anticancer drug to tumor cells for cancer therapy. Here, inspired by the specific tumor microenvironment (TME) cues, a unique multistage pH/redox-responsive polyprodrug composed of amphiphilic pH-sensitive diblock copolymer poly(ethylene glycol) methyl ether-b-poly(β-amino esters) conjugated with doxorubicin (DOX) via redox-sensitive disulfide bonds (mPEG-b-PAE-ss-DOX) is designed and developed. This polyprodrug can self-assemble into micelles (DOX-ss@PMs) at low concentration with high serum stability, indicating that DOX-ss@PMs have prolonged circulation time. The dual pH/redox-responsiveness of the multistage platform is thoroughly evaluated. In vitro results demonstrate that DOX-ss@PMs can highly accumulate at tumor site, followed by responding to the acidity for disassembly and effectively penetrating into the tumor cells. DOX is released from the platform due to the cleavage of disulfide bonds induced by high glutathione (GSH) concentration, thereby inducing the apoptosis of tumor cells. In vivo studies further reveal that multistage DOX-ss@PMs can more efficiently inhibit the growth of tumors and improve the survival of tumor-bearing mice in comparison to the free drug and control. These results imply that multistage delivery system might be a potential and effective strategy for drug delivery and DOX-ss@PMs could be a promising nanomedicine for cancer chemotherapy.
Collapse
Affiliation(s)
- Shuguang Zhang
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiyao Zhu
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Jiayuan He
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
| | - Siyuan Dong
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiwen Li
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Can Yang Zhang
- Singapore‐MIT Alliance for Research and Technology 1 CREATE Way, 03‐12/13/14 Enterprise Wing Singapore 138602 Singapore
| | - Teng Ma
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology Ministry of Education of China China Medical University Shenyang 110122 China
| |
Collapse
|
8
|
Morais AÍS, Vieira EG, Afewerki S, Sousa RB, Honorio LMC, Cambrussi ANCO, Santos JA, Bezerra RDS, Furtini JAO, Silva-Filho EC, Webster TJ, Lobo AO. Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. J Funct Biomater 2020; 11:jfb11010004. [PMID: 31952157 PMCID: PMC7151563 DOI: 10.3390/jfb11010004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems.
Collapse
Affiliation(s)
- Alan Í. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Ewerton G. Vieira
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Cambridge, MA 02139, USA;
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA 02139, USA
| | - Ricardo B. Sousa
- Federal Institute of Education, Science and Technology of Tocantins, Dianápolis Campus, IFTO, Dianápolis 77300-000, Tocantins, Brazil;
| | - Luzia M. C. Honorio
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Anallyne N. C. O. Cambrussi
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Jailson A. Santos
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Josy A. O. Furtini
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA;
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (A.Í.S.M.); (E.G.V.); (L.M.C.H.); (A.N.C.O.C.); (J.A.S.); (J.A.O.F.); (E.C.S.-F.)
- Correspondence: ; Tel.: +55-86-3237-1057
| |
Collapse
|
9
|
Lim JW, Na W, Kim HO, Yeom M, Kang A, Park G, Park C, Ki J, Lee S, Jung B, Jeong HH, Park D, Song D, Haam S. Co-delivery of antigens and immunostimulants via a polymersome for improvement of antigen-specific immune response. J Mater Chem B 2020; 8:5620-5626. [DOI: 10.1039/d0tb00892c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bilayer spherical polymersome based adjuvants promote the antigen cellular uptake into antigen-presenting cells. The administration of polymersome loading OVA and MPLA induce the secretion of cytokines by macrophage activation and elicit potent antigen-specific antibody responses.
Collapse
|
10
|
Wang J, Jansen JA, Yang F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications-A Mini Review. Front Chem 2019; 7:258. [PMID: 31106194 PMCID: PMC6494963 DOI: 10.3389/fchem.2019.00258] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022] Open
Abstract
Electrospraying, a liquid atomization-based technique, has been used to produce and formulate micro/nanoparticular cargo carriers for various biomedical applications, including drug delivery, biomedical imaging, implant coatings, and tissue engineering. In this mini review, we begin with the main features of electrospraying methods to engineer carriers with various bioactive cargos, including genes, growth factors, and enzymes. In particular, this review focuses on the improvement of traditional electrospraying technology for the fabrication of carriers for living cells and providing a suitable condition for gene transformation. Subsequently, the major applications of the electrosprayed carriers in the biomedical field are highlighted. Finally, we finish with conclusions and future perspectives of electrospraying for high efficiency and safe production.
Collapse
Affiliation(s)
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Lebrón JA, Ostos FJ, López-López M, Moyá ML, Kardell O, Sánchez A, Carrasco CJ, García-Calderón M, García-Calderón CB, Rosado IV, López-Cornejo P. Preparation and characterization of metallomicelles of Ru(II). Cytotoxic activity and use as vector. Colloids Surf B Biointerfaces 2018; 175:116-125. [PMID: 30529817 DOI: 10.1016/j.colsurfb.2018.11.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
The use of nanovectors in several medicinal treatments has reached a great importance in the last decade. Some drugs need to be protected to increase their lifetimes in the blood flow, to avoid degradation, to be delivered into target cells or to decrease their side effects. The goal of this work was to design and prepare nanovectors formed by novel surfactants derived from the [Ru(bpy)3]2+ complex. These amphiphilic molecules are assembled to form metallomicelles which can act as pharmaceutical agents and, at the same time, as nanovectors for several drugs. TEM images showed a structural transition from spherical to elongated micelles when the surfactant concentration increased. Fluorescence microscopy confirmed the internalization of these metallomicelles into diverse cell lines and cytotoxicity assays demonstrated specificity for some human cancer cells. The encapsulation of various antibiotics was carried out as well as a thorough study about the DNA condensation by the metallomicelles. To the best of our knowledge, applications of these metallomicelles have not been shown in the literature yet.
Collapse
Affiliation(s)
- J A Lebrón
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - F J Ostos
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - M López-López
- Departamento de Ingeniería Química, Química Física y Ciencias de los Materiales. Universidad de Huelva. Campus 'El Carmen', Facultad de Ciencias Experimentales, E-21071, Spain
| | - M L Moyá
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - O Kardell
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - A Sánchez
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - C J Carrasco
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla. Aptdo. 1203, Sevilla, ES, 41071, Spain
| | - M García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, c/ Prof. García González nº 1, Seville, 41012, Spain
| | - C B García-Calderón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
| | - I V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
| | - P López-Cornejo
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, c/ Prof. García González nº 1, Seville, 41012, Spain.
| |
Collapse
|
12
|
Yuan Y, Zhang Q, Yan Y, Gong M, Zhao Q, Bao Z, Liu K, Wang S. Designed construction of tween 60@2β-CD self-assembly vesicles as drug delivery carrier for cancer chemotherapy. Drug Deliv 2018; 25:623-631. [PMID: 29463124 PMCID: PMC7025689 DOI: 10.1080/10717544.2018.1440448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a simple strategy to prepare Tween 60@2β-CD self-assembly vesicles in aqueous solution as a new drug delivery carrier for cancer chemotherapy. The spherical shape of vesicles was confirmed by transmission electron microscopy (TEM) and mean particle sizes were about 33.7 nm, as measured by dynamic light scattering, micro-IR results indicated that the self-assembly vesicles was driven by hydrogen bonding. Hydrophilic doxorubicin (DOX) was successfully loaded into the self-assembly vesicles with drug loading content of 7.85% and loading efficiency of 42%. In addition, an in vitro cytotoxicity study and cellular uptake assays demonstrated that the DOX-loaded Tween 60@2β-CD vesicles markedly enhanced the cellular uptake and cytotoxicity of DOX toward the Hela cells. Furthermore, when used to evaluate the in vivo therapeutic efficacy in mice bearing the breast cell line (4T1), DOX-loaded vesicles exhibited superior inhibition of tumor growth compared with the DOX solutions.
Collapse
Affiliation(s)
- Yue Yuan
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qin Zhang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Yun Yan
- b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing , P. R. China
| | - Miaomiao Gong
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qi Zhao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Zhihong Bao
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Kaerdun Liu
- b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing , P. R. China
| | - Siling Wang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , P. R. China
| |
Collapse
|
13
|
Gun'ko V, Krupska T, Andriyko L, Klymenko N, Siora I, Novikova O, Marynin A, Ukrainets A, Charmas B, Shekhunova S, Turov V. Bonding of doxorubicin to nanosilica and human serum albumin in various media. J Colloid Interface Sci 2018; 513:809-819. [DOI: 10.1016/j.jcis.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|