1
|
Surface unsaturated WO x activating PtNi alloy nanowires for oxygen reduction reaction. J Colloid Interface Sci 2021; 607:1928-1935. [PMID: 34695741 DOI: 10.1016/j.jcis.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
PtNi alloy nanoparticles display promising catalytic activity for oxygen reduction reaction (ORR), while the Ostwald ripening of particles and the dissolution/migration of surface atoms greatly affect its stability thus restricting the application. Herein, the WOx-surface modified PtNi alloy nanowires (WOx-PtNi NWs) exhibiting enhanced ORR catalytic property is reported, which has high aspect ratio with the diameter of only 2 ∼ 3 nm. It is found that the WOx-PtNi NWs shows a volcano relationship between the ORR activity and the content of WOx. The WOx-(0.25)-PtNi NWs has the best performance among all the synthesized catalysts. Its mass activity (0.85 A mg-1Pt) is reduced by only 23.89% after 30k cycles durability test, which is much more stable than that of PtNi NWs (0.33 A mg-1Pt, 45.94%) and Pt/C (0.14 A mg-1Pt, 57.79%). Hence this work achieves an effective regulation of the ORR activity for PtNi alloy NWs by the synergistic effect of WOx on Pt.
Collapse
|
2
|
Enhanced Performance of Pt Nanoparticles on Ni-N Co-Doped Graphitized Carbon for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11080909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the reaction rate and cost for cathodic catalyst in polymer electrolyte membrane fuel cells are obstacles for commercialization, the high-performance catalyst for oxygen reduction reaction is necessary. The Ni encapsulated with N-doped graphitic carbon (Ni@NGC) prepared with ethylenediamine and carbon black is employed as an efficient support for the oxygen reduction reaction. Characterizations show that the Ni@NGC has a large surface area and mesoporous structure that is suitable to the support for the Pt catalyst. The catalyst structure is identified and the size of Pt nanoparticles distributed in the narrow range of 2–3 nm. Four different nitrogen species are doped properly into graphitic carbon structure. The Pt/Ni@NGC shows higher performance than the commercial Pt/C catalyst in an acidic electrolyte. The mass activity of the Pt/Ni@NGC in fuel cell tests exhibits over 1.5 times higher than that of commercial Pt/C catalyst. The Pt/Ni@NGC catalyst at low Pt loading exhibits 47% higher maximum power density than the Pt/C catalyst under H2-air atmosphere. These results indicate that the Ni@NGC as a support is significantly beneficial to improving activity.
Collapse
|
3
|
Fracchia M, Ghigna P, Marelli M, Scavini M, Vertova A, Rondinini S, Della Pergola R, Minguzzi A. Molecular cluster route for the facile synthesis of a stable and active Pt nanoparticle catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular platinum clusters can be used for the synthesis of very small (ca. 1.5 nm) Pt nanoparticles with enhanced catalytic activity and stability towards the oxygen reduction reaction. The Pt–C interactions were characterized by TEM and EXAFS.
Collapse
Affiliation(s)
- Martina Fracchia
- Dipartimento di Chimica
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
| | - Paolo Ghigna
- Dipartimento di Chimica
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| | - Marcello Marelli
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”
- 20138 Milano
- Italy
| | - Marco Scavini
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
- 50121 Firenze
- Italy
- Dipartimento di Chimica
- Università degli Studi di Milano
| | - Alberto Vertova
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
- 50121 Firenze
- Italy
- Dipartimento di Chimica
- Università degli Studi di Milano
| | - Sandra Rondinini
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
- 50121 Firenze
- Italy
- Dipartimento di Chimica
- Università degli Studi di Milano
| | - Roberto Della Pergola
- Dipartimento di Scienze dell’Ambiente e della Terra
- Università di Milano-Bicocca
- 20126 Milano
- Italy
| | - Alessandro Minguzzi
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
- 50121 Firenze
- Italy
- Dipartimento di Chimica
- Università degli Studi di Milano
| |
Collapse
|
4
|
Wang B, Zhai Y, Li S, Liu X, Wang T, Li C. Ultrafine Re/Pd nanoparticles on polydopamine modified carbon nanotubes for efficient perchlorate reduction and reusability. J Colloid Interface Sci 2020; 574:122-130. [PMID: 32305728 DOI: 10.1016/j.jcis.2020.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
This study synthesized nanocomposite catalysts via a modification of Re/Pd codoped carbon nanotubes (CNTs) with different concentrations of polydopamine (PDA), which were used for perchlorate (ClO4-) reduction. The loads, dispersion and reducibility of Re/Pd nanoparticles increased yet their particle sizes significantly decreased with the increase of PDA concentrations. The average diameter of Re/Pd codoped D2CNT (CNT modified by 2 mg/mL PDA) with a narrow size distribution was measured to be 2 nm. The ultrafine Re/Pd codoped D2CNT catalysts represented outstanding catalytic reduction activity for the conversion of ClO4- to Cl- with TOF of 17.34 h-1 under the room H2 atmospheric pressure, which was about 8 times than that of the unmodified catalysts. Furthermore, PDA modification minimized the dissociation of Re by chemical bonding between Re and CNTs carrier and maintained good stability of nanocomposite. This study inspires us to apply green bionic methods to enhance the catalytic reduction of perchlorate by changing the physical properties of Re/Pd nanoparticles.
Collapse
Affiliation(s)
- Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tengfei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
5
|
Yang D, Chen Z, Gao Z, Tammina SK, Yang Y. Nanozymes used for antimicrobials and their applications. Colloids Surf B Biointerfaces 2020; 195:111252. [PMID: 32679446 DOI: 10.1016/j.colsurfb.2020.111252] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Bacterial infection-related diseases have been growing year-by-year rapidly and raising health problems globally. The exploitation of novel, high efficiency, and bacteria-binding antibacterial agents are extremely need. As far as now, the most extensive treatment is restricted to antibiotics, which may be overused and misused, leading to increased multidrug resistance. Antibiotics abuse, as well as antibiotic-resistance of bacteria, is a global challenge in the current situation. It is highly recommended and necessary to develop novel bactericide to kill the bacteria effectively without causing further resistance development and biosafety issues. Nanozymes, inorganic nanostructures with intrinsic enzymatic activities, have attracted more and more interest from the researchers owing to their exceptional advantages. Compared to natural enzymes, nanozymes can destroy many Gram-positive, Gram-negative bacteria, which builds an important bridge between biology and nanotechnology. As the potent nanoantibiotics, nanozymes have exciting broad-spectrum antimicrobial properties and negligible biotoxicities. And we summarized and highlighted the recent advances on nanozymes including its antibacterial mechanism and applications. Finally, challenges and limitations for the further improvement of the antibacterial activity are covered to provide future directions for the use of engineered nanozymes with enhanced antibacterial function.
Collapse
Affiliation(s)
- Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Zizhao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Zhe Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Sai Kumar Tammina
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
| |
Collapse
|
6
|
Liang Z, Luo M, Chen M, Liu C, Peera SG, Qi X, Liu J, Kumar UP, Liang TLT. Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction. J Colloid Interface Sci 2020; 568:54-62. [DOI: 10.1016/j.jcis.2020.02.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022]
|
7
|
Xi J, Wei G, An L, Xu Z, Xu Z, Fan L, Gao L. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. NANO LETTERS 2019; 19:7645-7654. [PMID: 31580681 DOI: 10.1021/acs.nanolett.9b02242] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-carbon hybrid materials have shown promise as potential enzyme mimetics for antibacterial therapy; however, the effects of metal states and corresponding antibacterial mechanisms are largely unknown. Here, two kinds of copper/carbon nanozymes were designed, with tuned copper states from Cu0 to Cu2+. Results revealed that the copper/carbon nanozymes exhibited copper state-dependent peroxidase-, catalase-, and superoxide dismutase-like activities. Furthermore, the antibacterial activities were also primarily determined by the copper state. The different antibacterial mechanisms of these two copper/carbon nanozymes were also proposed. For the CuO-modified copper/carbon nanozymes, the released Cu2+ caused membrane damage, lipid peroxidation, and DNA degradation of Gram-negative bacteria, whereas, for Cu-modified copper/carbon nanozymes, the generation of reactive oxygen species (ROS) via peroxidase-like catalytic reactions was the determining factor against both Gram-positive and Gram-negative bacteria. Lastly, we established two bacterially infected animal models, i.e., bacteria-infected enteritis and wound healing, to confirm the antibacterial ability of the copper/carbon nanozymes. Our findings provide a deeper understanding of metal state-dependent enzyme-like and antibacterial activities and highlight a new approach for designing novel and selective antibacterial therapies based on metal-carbon nanozymes.
Collapse
Affiliation(s)
- Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
- College of Veterinary Medicine , Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , China
| | - Gen Wei
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| | - Lanfang An
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Zhuobin Xu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Lei Fan
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Lizeng Gao
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| |
Collapse
|
8
|
Comparative investigation of nitrogen species in transition metals incorporated carbon catalysts for the oxygen reduction reaction. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Carbon Supported Multi-Branch Nitrogen-Containing Polymers as Oxygen Reduction Catalysts. Catalysts 2018. [DOI: 10.3390/catal8060245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|