1
|
Li X, He Y, Li K, Zhang S, Hu X, Li Y, Zhang D, Liu Y. Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Polymers (Basel) 2024; 16:3155. [PMID: 39599247 PMCID: PMC11598407 DOI: 10.3390/polym16223155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogen is regarded as an ideal energy carrier to cope with the energy crisis and environmental problems due to its high energy density, cleanliness, and renewability. Although there are several primary methods of industrial hydrogen production, hydrogen evolution reaction (HER) is an efficient, eco-friendly, and sustainably green method for the preparation of hydrogen which has attracted considerable attention. However, this technique is characterized by slow reaction kinetics and high energy potential owing to lack of electrocatalysts with cost-effective and high performance which impedes its scale-up. To address this issue, various studies have focused on electrospun micro/nanofiber-based electrocatalysts for HER due to their excellent electron and mass transport, high specific surface area, as well as high porosity and flexibility. To further advance their development, recent progress of highly efficient HER electrospun electrocatalysts is reviewed. Initially, the characteristics of potential high-performance electrocatalysts for HER are elucidated. Subsequently, the advantages of utilizing electrospinning technology for the preparation of electrocatalysts are summarized. Then, the classification of electrospun micro/nanofiber-based electrocatalysts for HER are analyzed, including metal-based electrospun electrocatalyst (noble metals and alloys, transition metals, and alloys), metal-non-metal electrocatalysts (metal sulfide-based electrocatalysts, metal oxide-based electrocatalysts, metal phosphide-based electrocatalysts, metal nitride-based electrocatalysts, and metal carbide-based electrocatalysts), metal-free electrospun micro/nanofiber-based electrocatalysts, and hybrid electrospun micro/nanofiber-based electrocatalysts. Following this, enhancement strategies for electrospun micro/nanofiber-based electrocatalysts are discussed. Finally, current challenges and the future research directions of electrospun micro/nanofiber-based electrocatalysts for HER are concluded.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Youqi He
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Kai Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Shuailong Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Yi Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Daode Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430000, China; (X.L.); (K.L.); (S.Z.); (X.H.)
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
2
|
Zhang M, Su M, Zhang C, Gao F, Lu Q. Platinum/Platinum Sulfide on Sulfur-Doped Carbon Nanosheets with Multiple Interfaces toward High Hydrogen Evolution Activity. Molecules 2024; 29:4570. [PMID: 39407500 PMCID: PMC11477529 DOI: 10.3390/molecules29194570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Platinum (Pt)-based materials are among the most competitive electrocatalysts for the hydrogen evolution reaction (HER) due to suitable hydrogen adsorption energy. Due to the rarity of Pt, it is desirable to develop cost-effective Pt-based electrocatalysts with low Pt loading. Herein, Pt/PtS electrocatalysts on S-doped carbon nanofilms (PPS/C) have been successfully fabricated through a precursor reduction route with a complex of Pt and 1-dodecanethiol (1-DDT) as the precursor. The PPS/C achieved at 400 °C (PPS/C-400) exhibits excellent HER performances with an ultralow overpotential of 41.3 mV, a low Tafel slope of 43.1 mV dec-1 at a current density of 10 mA cm-2, and a long-term stability of 10 h, superior to many recently reported Pt-based HER electrocatalysts. More importantly, PPS/C-400 shows a high mass-specific activity of 0.362 A mgPt-1 at 30 mV, which is 1.88 times of that of commercial 20% Pt/C (0.193 A mgPt-1). The introduction of sulfur leads to the formation of PtS, which not only reduces the content of Pt but also realizes the interface regulation of Pt/PtS, as well as the doping of carbon. Both regulations make the resulting catalyst have abundant active centers and rapid electron transfer/transport, which is conducive to balancing the adsorption and resolution of intermediate products, and finally achieving great mass-specific activity and stability. The research work may provide ideas for designing effective Pt-based multi-interface electrocatalysts.
Collapse
Affiliation(s)
- Mou Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunyan Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Gao
- Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Zeng Q, Yang G, Zhang Q, Liu Z, Dang C, Qin B, Peng F. Elucidating the origin of catalytic activity of nitrogen-doped carbon coated nickel toward electrochemical reduction of CO 2. J Colloid Interface Sci 2023; 650:132-142. [PMID: 37399749 DOI: 10.1016/j.jcis.2023.06.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Converting CO2 into valuable chemicals and fuels through clean and renewable energy electricity provides a way to achieve sustainable development for human societies. In this study, carbon coated nickel catalysts (Ni@NCT) were prepared by solvothermal and high-temperature pyrolysis methods. A series of Ni@NC-X catalysts were obtained by pickling with different kinds of acids for electrochemical CO2 reduction reaction (ECRR). The results show that Ni@NC-N treated with nitric acid has the highest selectivity but lower activity, Ni@NC-S treated with sulfuric acid has the lowest selectivity, and Ni@NC-Cl treated with hydrochloric acid shows the best activity and good selectivity. At -1.16 V, Ni@NC-Cl has a considerable CO yield of 472.9 μmol h-1 cm-2, which is significantly superior to Ni@NC-N (327.5), Ni@NC-S (295.6) and Ni@NC (270.8). The controlled experiments show that there is a synergistic effect between Ni and N. The chlorine adsorbed on the surface can promote the performance of ECRR. The poisoning experiments indicate that the contribution of surface Ni atoms to the ECRR is very small, and the increase of activity is mainly due to the nitrogen doped carbon coated Ni particles. The relationship between activity and selectivity of ECRR on different acid-washed catalysts was correlated by theoretical calculations for the first time, which is also in good agreement with the experimental results.
Collapse
Affiliation(s)
- Qingting Zeng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangxing Yang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiao Zhang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chengxiong Dang
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Binhao Qin
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Advanced Welding Technology, Guangzhou 510650, China.
| | - Feng Peng
- School Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Han Y, Xu H, Li Q, Du A, Yan X. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review. Front Chem 2023; 11:1286257. [PMID: 37920412 PMCID: PMC10619919 DOI: 10.3389/fchem.2023.1286257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Low-dimensional carbon-based (LDC) materials have attracted extensive research attention in electrocatalysis because of their unique advantages such as structural diversity, low cost, and chemical tolerance. They have been widely used in a broad range of electrochemical reactions to relieve environmental pollution and energy crisis. Typical examples include hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Traditional "trial and error" strategies greatly slowed down the rational design of electrocatalysts for these important applications. Recent studies show that the combination of density functional theory (DFT) calculations and experimental research is capable of accurately predicting the structures of electrocatalysts, thus revealing the catalytic mechanisms. Herein, current well-recognized collaboration methods of theory and practice are reviewed. The commonly used calculation methods and the basic functionals are briefly summarized. Special attention is paid to descriptors that are widely accepted as a bridge linking the structure and activity and the breakthroughs for high-volume accurate prediction of electrocatalysts. Importantly, correlated multiple descriptors are used to systematically describe the complicated interfacial electrocatalytic processes of LDC catalysts. Furthermore, machine learning and high-throughput simulations are crucial in assisting the discovery of new multiple descriptors and reaction mechanisms. This review will guide the further development of LDC electrocatalysts for extended applications from the aspect of DFT computations.
Collapse
Affiliation(s)
- Yun Han
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Hongzhe Xu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, Australia
| | - Xuecheng Yan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Yu Y, Kang L, Sun L, Xu F, Pan H, Sang Z, Zhang C, Jia X, Sui Q, Bu Y, Cai D, Xia Y, Zhang K, Li B. Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH 4 Hydrolysis. NANOMATERIALS 2022; 12:nano12152550. [PMID: 35893518 PMCID: PMC9331945 DOI: 10.3390/nano12152550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Sodium borohydride (NaBH4), with a high theoretical hydrogen content (10.8 wt%) and safe characteristics, has been widely employed to produce hydrogen based on hydrolysis reactions. In this work, a porous titanium oxide cage (PTOC) has been synthesized by a one-step hydrothermal method using NH2-MIL-125 as the template and L-alanine as the coordination agent. Due to the evenly distributed PtNi alloy particles with more catalytically active sites, and the synergistic effect between the PTOC and PtNi alloy particles, the PtNi/PTOC catalyst presents a high hydrogen generation rate (10,164.3 mL∙min−1∙g−1) and low activation energy (28.7 kJ∙mol−1). Furthermore, the robust porous structure of PTOC effectively suppresses the agglomeration issue; thus, the PtNi/PTOC catalyst retains 87.8% of the initial catalytic activity after eight cycles. These results indicate that the PtNi/PTOC catalyst has broad applications for the hydrolysis of borohydride.
Collapse
Affiliation(s)
- Yuqian Yu
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Li Kang
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence: (L.S.); (F.X.); (H.P.)
| | - Fen Xu
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
- Correspondence: (L.S.); (F.X.); (H.P.)
| | - Hongge Pan
- School of New Energy Science and Technology, Xi’an Technological University, Xi’an 710021, China
- Correspondence: (L.S.); (F.X.); (H.P.)
| | - Zhen Sang
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Chenchen Zhang
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Xinlei Jia
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Qingli Sui
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Yiting Bu
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Dan Cai
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Yongpeng Xia
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Kexiang Zhang
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| | - Bin Li
- Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (Y.Y.); (L.K.); (Z.S.); (C.Z.); (X.J.); (Q.S.); (Y.B.); (D.C.); (Y.X.); (K.Z.); (B.L.)
| |
Collapse
|
6
|
Arias-Pinedo O, Cardenas Riojas AA, Pastor E, López EO, Perez G, Archanjo BS, Ponce-Vargas M, Planes GÁ, Baena-Moncada AM. Hierarchical Porous Carbon-PtPd Catalysts and Their Activity toward Oxygen Reduction Reaction. ACS OMEGA 2022; 7:20860-20871. [PMID: 35755396 PMCID: PMC9219087 DOI: 10.1021/acsomega.2c01457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
PtPd bimetallic catalysts supported on hierarchical porous carbon (HPC) with different porous sizes were developed for the oxygen reduction reaction (ORR) toward fuel cell applications. The HPC pore size was controlled by using SiO2 nanoparticles as a template with different sizes, 287, 371, and 425 nm, to obtain three HPC materials denoted as HPC-1, HPC-2, and HPC-3, respectively. PtPd/HPC catalysts were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The electrochemical performance was examined by cyclic voltammetry and linear sweep voltammetry. PtPd/HPC-2 turned out to be the most optimal catalyst with an electroactive surface area (ESA) of 40.2 m2 g-1 and a current density for ORR of -1285 A g-1 at 2 mV s-1 and 1600 rpm. In addition, we conducted a density functional theory computational study to examine the interactions between a PtPd cluster and a graphitic domain of HPC, as well as the interaction between the catalyst and the oxygen molecule. These results reveal the strong influence of the porous size (in HPC) and ESA values (in PtPd nanoparticles) in the mass transport process which rules the electrochemical performance.
Collapse
Affiliation(s)
- Ofelia
Marilu Arias-Pinedo
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Perú
| | - Andy A. Cardenas Riojas
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Perú
| | - Elena Pastor
- Departamento
de Química, Instituto de Materiales
y Nanotecnología, Universidad de La Laguna, Avenida Astrofísico F. Sánchez S/N,
38200, P. O. Box 456, La Laguna, Tenerife, Spain
| | - Elvis O. López
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Perú
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Geronimo Perez
- Department
of Engineering, Federal Fluminense University
(UFF), Niteroi, Rio de Janeiro 24210-240, Brazil
| | - Braulio S. Archanjo
- Materials
Metrology Division, National Institute of
Metrology Quality and Technology (INMETRO), Rio de Janeiro 25250-020, Brazil
| | - Miguel Ponce-Vargas
- Institut
de Chimie Moléculaire de Reims, Université
de Reims Champagne-Ardenne, Reims 51687, France
| | - Gabriel Ángel Planes
- Facultad
de Ciencias Exactas Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36, Km 601, Río Cuarto, Córdoba, Argentina
- Instituto
de Investigaciones en Tecnologías Energéticas y Materiales
Avanzados (IITEMA), Universidad Nacional
de Río Cuarto, Ruta Nac. 36, Km 601, Río Cuarto, Córdoba, Argentina
| | - Angélica María Baena-Moncada
- Laboratorio
de Investigación de Electroquímica Aplicada, Facultad
de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 15333, Perú
| |
Collapse
|
7
|
Kori DKK, Jadhav RG, Dhruv L, Das AK. A platinum nanoparticle doped self-assembled peptide bolaamphiphile hydrogel as an efficient electrocatalyst for the hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:6678-6688. [PMID: 36132646 PMCID: PMC9419667 DOI: 10.1039/d1na00439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/11/2021] [Indexed: 06/16/2023]
Abstract
Noble metal-based nanomaterials have shown great potential for catalytic application with higher selectivity and activity. Owing to their self-assembly properties with various molecular interactions, peptides play an essential role in the controlled synthesis of noble metal-based catalysts with high surface area. In this work, a phenylalanine (F) and tyrosine (Y) based peptide bolaamphiphile is prepared by solution-phase peptide synthesis. The peptide bolaamphiphile readily self-assembles into a hydrogel with a cross-linked nanofibrillar network. The platinum nanoparticles (Pt NPs) are in situ generated within the cross-linked nanofibrillar network of the hydrogel matrix of the peptide bolaamphiphile. Benefiting from the synergistic properties of the Pt nanoparticles doped on three-dimensional fibrous networks, Pt6@hydrogel shows efficient catalytic activity for the electrochemical hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution. The Pt6@hydrogel requires an overpotential of 45 mV at -10 mA cm-2 with a Tafel slope of 52 mV dec-1. The Pt6@hydrogel also shows electrocatalytic activity in basic and neutral pH solutions. The excellent activity and stability of Pt6@hydrogel for the HER shows great potential for energy conversion applications.
Collapse
Affiliation(s)
- Deepak K K Kori
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Likhi Dhruv
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Apurba K Das
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
8
|
Han N, Luo S, Deng C, Zhu S, Xu Q, Min Y. Defect-Rich FeN 0.023/Mo 2C Heterostructure as a Highly Efficient Bifunctional Catalyst for Overall Water-Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8306-8314. [PMID: 33591161 DOI: 10.1021/acsami.0c19839] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The innovation in highly efficient, stable, and economical bifunctional overall water-splitting electrocatalysts is critical in developing sustainable energy, but it remains challenging. In this research, we have developed an unsophisticated method to synthesize hybrid nanoparticles (FeN0.023/Mo2C/C) uniformly dispersed in nitrogen-doped carbon nanosheets. The two active components FeN0.023 and Mo2C are coupled to form an FeN0.023/Mo2C/C heterostructure being a highly efficient electrocatalyst, which gives low overpotentials of 227/76 mV for OER/HER at 10 mA cm-2 current density. The alkaline-electrolyzer with FeN0.023/Mo2C/C as the anode-cathode catalyst needs merely 1.55 V to reach 10 mA cm-2 and can maintain a stable state for a minimum of 10 h. This research gives a simple effective resolution in designing affordable and useful overall water-splitting electrocatalysts.
Collapse
Affiliation(s)
- NanNan Han
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - ShiWen Luo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - ChengWei Deng
- Shanghai Institute of Space Power-sources / State Key Laboratory of Space Power-sources Technology, Shanghai 200245, P. R. China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - QunJie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - YuLin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Abstract
Hydrogen evolution reaction (HER) is one of the most important reactions in electrochemistry. This is not only because it is the simplest way to produce high purity hydrogen and the fact that it is the side reaction in many other technologies. HER actually shaped current electrochemistry because it was in focus of active research for so many years (and it still is). The number of catalysts investigated for HER is immense, and it is not possible to overview them all. In fact, it seems that the complexity of the field overcomes the complexity of HER. The aim of this review is to point out some of the latest developments in HER catalysis, current directions and some of the missing links between a single crystal, nanosized supported catalysts and recently emerging, single-atom catalysts for HER.
Collapse
|
10
|
Barhoum A, El-Maghrabi HH, Iatsunskyi I, Coy E, Renard A, Salameh C, Weber M, Sayegh S, Nada AA, Roualdes S, Bechelany M. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2020; 569:286-297. [PMID: 32114107 DOI: 10.1016/j.jcis.2020.02.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
The most critical challenge in hydrogen fuel production is to develop efficient, eco-friendly, low-cost electrocatalysts for water splitting. In this study, self-supported carbon nanofiber (CNF) electrodes decorated with nickel/nickel oxide (Ni/NiO) and palladium (Pd) nanoparticles (NPs) were prepared by combining electrospinning, peroxidation, and thermal carbonation with atomic layer deposition (ALD), and then employed for hydrogen evolution and oxygen evolution reactions (HER/OER). The best CNF-Ni/NiO-Pd electrode displayed the lowest overpotential (63 mV and 1.6 V at j = 10 mA cm-2), a remarkably small Tafel slope (72 and 272 mV dec-1), and consequent exchange current density (1.15 and 22.4 mA cm-2) during HER and OER, respectively. The high chemical stability and improved electrocatalytic performance of the prepared electrodes can be explained by CNF functionalization via Ni/NiO NP encapsulation, the formation of graphitic layers that cover and protect the Ni/NiO NPs from corrosion, and ALD of Pd NPs at the surface of the self-supported CNF-Ni/NiO electrodes.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Heba H El-Maghrabi
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Refining, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Aurélien Renard
- LCPME - UMR 7564 - CNRS - Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-Les-Nancy, France
| | - Chrystelle Salameh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Matthieu Weber
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Amr A Nada
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Stéphanie Roualdes
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
11
|
Li M, Wang H, Zhu W, Li W, Wang C, Lu X. RuNi Nanoparticles Embedded in N-Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901833. [PMID: 31993285 PMCID: PMC6974957 DOI: 10.1002/advs.201901833] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/23/2019] [Indexed: 05/26/2023]
Abstract
Developing high-performance, low-cost, and robust bifunctional electrocatalysts for overall water splitting is extremely indispensable and challenging. It is a promising strategy to couple highly active precious metals with transition metals as efficient electrocatalysts, which can not only effectively reduce the cost of the preparation procedure, but also greatly improve the performance of catalysts through a synergistic effect. Herein, Ru and Ni nanoparticles embedded within nitrogen-doped carbon nanofibers (RuNi-NCNFs) are synthesized via a simple electrospinning technology with a subsequent carbonization process. The as-formed RuNi-NCNFs represent excellent Pt-like electrocatalytic activity for the hydrogen evolution reaction (HER) in both alkaline and acidic conditions. Furthermore, the RuNi-NCNFs also exhibit an outstanding oxygen evolution reaction (OER) activity with an overpotential of 290 mV to achieve a current density of 10 mA cm-2 in alkaline electrolyte. Strikingly, owing to both the HER and OER performance, an electrolyzer with RuNi-NCNFs as both the anode and cathode catalysts requires only a cell voltage of 1.564 V to drive a current density of 10 mA cm-2 in an alkaline medium, which is lower than the benchmark of Pt/C||RuO2 electrodes. This study opens a novel avenue toward the exploration of high efficient but low-cost electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Meixuan Li
- Alan G. MacDiarmid InstituteCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and EngineeringNanling CampusJilin UniversityNo. 5988 Renmin StreetChangchun130025P. R. China
- International Center of Future ScienceJilin UniversityChangchun130012P. R. China
| | - Wendong Zhu
- Alan G. MacDiarmid InstituteCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Weimo Li
- Alan G. MacDiarmid InstituteCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Ce Wang
- Alan G. MacDiarmid InstituteCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid InstituteCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
12
|
Fan L, Meng T, Li Q, Wang D, Xing Z, Wang E, Yang X. Ru nanoparticles encapsulated in ZIFs-derived porous N-doped hierarchical carbon nanofibers for enhanced hydrogen evolution reaction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01232g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru nanoparticles, encapsulated in ZIFs-derived porous N-doped hierarchical carbon nanofibers with excellent HER performance, were achieved.
Collapse
Affiliation(s)
- Libing Fan
- College of Chemistry
- Jilin University
- Changchun 130012
- China
- State Key Laboratory of Electroanalytical Chemistry
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Qun Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Dewen Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhicai Xing
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Erkang Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
- State Key Laboratory of Electroanalytical Chemistry
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
13
|
Blachowicz T, Ehrmann A. Conductive Electrospun Nanofiber Mats. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E152. [PMID: 31906159 PMCID: PMC6981781 DOI: 10.3390/ma13010152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Conductive nanofiber mats can be used in a broad variety of applications, such as electromagnetic shielding, sensors, multifunctional textile surfaces, organic photovoltaics, or biomedicine. While nanofibers or nanofiber from pure or blended polymers can in many cases unambiguously be prepared by electrospinning, creating conductive nanofibers is often more challenging. Integration of conductive nano-fillers often needs a calcination step to evaporate the non-conductive polymer matrix which is necessary for the electrospinning process, while conductive polymers have often relatively low molecular weights and are hard to dissolve in common solvents, both factors impeding spinning them solely and making a spinning agent necessary. On the other hand, conductive coatings may disturb the desired porous structure and possibly cause problems with biocompatibility or other necessary properties of the original nanofiber mats. Here we give an overview of the most recent developments in the growing field of conductive electrospun nanofiber mats, based on electrospinning blends of spinning agents with conductive polymers or nanoparticles, alternatively applying conductive coatings, and the possible applications of such conductive electrospun nanofiber mats.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Institute of Physics—Centre for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
14
|
Ye B, Jiang R, Yu Z, Hou Y, Huang J, Zhang B, Huang Y, Zhang Y, Zhang R. Pt (1 1 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Ren Y, Chen Z, Yu X. Ultrathin, Porous and Oxygen Vacancies‐Enriched Ag/WO
3−
x
Heterostructures for Electrocatalytic Hydrogen Evolution. Chem Asian J 2019; 14:4315-4321. [DOI: 10.1002/asia.201901319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yumei Ren
- School of Materials Science and EngineeringZhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of EducationSchool of Materials Science and Engineering, andCollaborative Innovation Center of Nano Functional Materials and ApplicationsHenan University Kaifeng 475004 China
| | - Xiangrong Yu
- Department of Medical ImagingZhuhai Hospital of Jinan University Zhuhai 519070 China
| |
Collapse
|
16
|
Chen S, Wang Y, Zhong M, Yu D, Wang C, Lu X. Fe(III)-Tannic Acid Complex Derived Fe3C Decorated Carbon Nanofibers for Triple-Enzyme Mimetic Activity and Their Biosensing Application. ACS Biomater Sci Eng 2019; 5:1238-1246. [DOI: 10.1021/acsbiomaterials.8b01552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sihui Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| | - Yixian Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
18
|
Wang Y, Liu Z, Liu H, Suen NT, Yu X, Feng L. Electrochemical Hydrogen Evolution Reaction Efficiently Catalyzed by Ru 2 P Nanoparticles. CHEMSUSCHEM 2018; 11:2724-2729. [PMID: 29888872 DOI: 10.1002/cssc.201801103] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Developing alternatives to Pt catalysts is a prerequisite to cost-effectively produce hydrogen. Herein, we demonstrate Ru2 P nanoparticles (without any doping and modifications) as a highly efficient Pt-like catalyst for the hydrogen evolution reaction (HER) in different pH electrolytes. On transferring the hexagonal close-packed crystal structure of Ru to the orthorhombic structure of Ru2 P, a greatly improved catalytic activity and stability toward HER is found owing to Ru-P coordination. The electronic state change originates from the P-Ru bonding structures, which accounts for the HER activity improvement compared with Ru nanoparticles. Specifically, Ru2 P nanoparticles can drive 10 mA cm-2 at a very low overpotential of 55 mV, only 8 mV more than Pt/C in an acidic solution; and an extremely low overpotential of approximately 50 mV is needed in alkaline solution, about 20 mV less than the Pt/C catalyst. The Volmer-Tafel mechanism is indicated on Ru2 P nanoparticles with the typical Tafel slope of 30 mV dec-1 of Pt metal indicating a Pt-like catalytic ability. Ru2 P is more active in the Ru-P family as H atoms prefer to adsorb on Ru atoms rather than on the P element according to theoretical calculations. Considering the low price of Ru (20 % of Pt), anti-corrosion ability in the electrolyte, and the safe and reliable fabrication approach, the powder Ru2 P nanoparticles make an excellent HER catalyst with great promise for large-scale water electrolysis applications.
Collapse
Affiliation(s)
- Yuan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Nian-Tzu Suen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|