1
|
Ma J, Xiao Y, Chen J, Shen Y, Xiao S, Cao S. Dual-pathway charge transfer mechanism of anatase/rutile TiO 2-Ag 3PO 4 hollow photocatalyst promotes efficient degradation of pesticides. J Colloid Interface Sci 2025; 678:334-344. [PMID: 39208761 DOI: 10.1016/j.jcis.2024.08.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exploring high-performance photocatalysts still remains a big challenge due to poor charge separation efficiency. Herein, we prepare a novel anatase/rutile TiO2-Ag3PO4 hollow photocatalyst (A/R-TiO2-Ag3PO4) for addressing this challenge. Microstructural characterization and photoelectric measurements confirm that the synergy of hollow structure and dual-heterojunction can provide abundant active sites and boost efficient charge separation through dual-pathway charge transfer mechanism. The A/R-TiO2-Ag3PO4 photocatalyst exhibits the highest photocurrent density (15.25 µA cm-2), which is 8.4 and 5.2 times than that of A-TiO2-Ag3PO4 (1.82 µA cm-2) and P25-Ag3PO4 (2.93 µA cm-2), respectively. Photo-degradation experiment shows that A/R-TiO2-Ag3PO4 presents a high degradation percentage (98.7 %) of thiamethoxam (THX) within 30 min, which is 1.45 and 1.23 times than that of A-TiO2-Ag3PO4 (68.1 %) and P25-Ag3PO4 (80.7 %), respectively. Furthermore, the degradation percentage of THX by A/R-TiO2-Ag3PO4 is as high as 96.4 % after seven successive cycles, indicating excellent cycling stability. Therefore, this work provides a new insight into exploring other high-performance photocatalysts by combining hollow structure and dual-heterojunction.
Collapse
Affiliation(s)
- Junjie Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingguan Xiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; School of Safety Management, GuangXi Vocational College of Safety Engineering, Nanning 530100, China
| | - Juanrong Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yue Shen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Oyedotun KO, Makgopa K, Nkambule TT, Mathe MK, Otun KO, Mamba BB. Nanostructured Carbon Fibres (NCF): Fabrication and Application in Supercapacitor Electrode. Polymers (Basel) 2024; 16:1859. [PMID: 39000714 PMCID: PMC11244065 DOI: 10.3390/polym16131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
A facile interconnected nanofibre electrode material derived from polybenzimidazol (PBI) was fabricated for a supercapacitor using a centrifugal spinning technique. The PBI solution in a mixture of dimethyl acetamide (DMA) and N, N-dimethylformamide (DMF) was electrospun to an interconnection of fine nanofibres. The as-prepared material was characterised by using various techniques, which include scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) among others. The specific surface area of the interconnected NCF material was noticed to be around 49 m2 g-1. Electrochemical properties of the material prepared as a single-electrode are methodically studied by adopting cyclic voltammetry, electrochemical impedance spectroscopy, and constant-current charge-discharge techniques. A maximum specific capacitance of 78.4 F g-1 was observed for the electrode at a specific current of 0.5 A g-1 in a 2.5 M KNO3 solution. The electrode could also retain 96.7% of its initial capacitance after a 5000 charge-discharge cycles at 5 A g-1. The observed capacitance and good cycling stability of the electrode are supported by its specific surface area, pore volume, and conductivity. The results obtained for this material indicate its potential as suitable candidate electrode for supercapacitor application.
Collapse
Affiliation(s)
- Kabir O Oyedotun
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Arcadia Campus, Pretoria 0001, South Africa
| | - Thabo T Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Mkhulu K Mathe
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Kabir O Otun
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| | - Bhekie B Mamba
- College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Private Bag X6, Johannesburg 1709, South Africa
| |
Collapse
|
3
|
Pant B, Park M, Kim AA. MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances. MICROMACHINES 2023; 14:1477. [PMID: 37512788 PMCID: PMC10384458 DOI: 10.3390/mi14071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene-polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene-polymer nanofibers in biomedical fields.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
4
|
Shin M, Awasthi GP, Sharma KP, Pandey P, Park M, Ojha GP, Yu C. Nanoarchitectonics of Three-Dimensional Carbon Nanofiber-Supported Hollow Copper Sulfide Spheres for Asymmetric Supercapacitor Applications. Int J Mol Sci 2023; 24:ijms24119685. [PMID: 37298635 DOI: 10.3390/ijms24119685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Three-dimensional carbon nanofiber (3D-CNF)-supported hollow copper sulfide (HCuS) spheres were synthesized by the facile hydrothermal method. The morphology of the as-synthesized HCuS@3D-CNF composite clearly revealed that the 3D-CNFs act as a basement for HCuS spheres. The electrochemical performance of as-synthesized HCuS@3D-CNFs was evaluated by cyclic voltammetry (CV) tests, gravimetric charge-discharge (GCD) tests, and Nyquist plots. The obtained results revealed that the HCuS@3D-CNFs exhibited greater areal capacitance (4.6 F/cm2) compared to bare HCuS (0.64 F/cm2) at a current density of 2 mA/cm2. Furthermore, HCuS@3D-CNFs retained excellent cyclic stability of 83.2% after 5000 cycles. The assembled asymmetric device (HCuS@3D-CNFs//BAC) exhibits an energy density of 0.15 mWh/cm2 with a working potential window of 1.5 V in KOH electrolyte. The obtained results demonstrate that HZnS@3D-CNF nanoarchitectonics is a potential electrode material for supercapacitor applications.
Collapse
Affiliation(s)
- Miyeon Shin
- Department of Energy Storage, Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Krishna Prasad Sharma
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Puran Pandey
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
| | - Changho Yu
- Department of Energy Storage, Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
5
|
Pant B, Park M, Kim AA. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics 2023; 15:pharmaceutics15051347. [PMID: 37242589 DOI: 10.3390/pharmaceutics15051347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Dural defects are a common problem in neurosurgical procedures and should be repaired to avoid complications such as cerebrospinal fluid leakage, brain swelling, epilepsy, intracranial infection, and so on. Various types of dural substitutes have been prepared and used for the treatment of dural defects. In recent years, electrospun nanofibers have been applied for various biomedical applications, including dural regeneration, due to their interesting properties such as a large surface area to volume ratio, porosity, superior mechanical properties, ease of surface modification, and, most importantly, similarity with the extracellular matrix (ECM). Despite continuous efforts, the development of suitable dura mater substrates has had limited success. This review summarizes the investigation and development of electrospun nanofibers with particular emphasis on dura mater regeneration. The objective of this mini-review article is to give readers a quick overview of the recent advances in electrospinning for dura mater repair.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
6
|
CdS Nanoparticles Decorated on Carbon Nanofibers as the First Ever Utilized as an Electrode for Advanced Energy Storage Applications. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Ojha GP, Kang GW, Kuk YS, Hwang YE, Kwon OH, Pant B, Acharya J, Park YW, Park M. Silicon Carbide Nanostructures as Potential Carbide Material for Electrochemical Supercapacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:150. [PMID: 36616060 PMCID: PMC9824291 DOI: 10.3390/nano13010150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Silicon carbide (SiC) is a very promising carbide material with various applications such as electrochemical supercapacitors, photocatalysis, microwave absorption, field-effect transistors, and sensors. Due to its enticing advantages of high thermal stability, outstanding chemical stability, high thermal conductivity, and excellent mechanical behavior, it is used as a potential candidate in various fields such as supercapacitors, water-splitting, photocatalysis, biomedical, sensors, and so on. This review mainly describes the various synthesis techniques of nanostructured SiC (0D, 1D, 2D, and 3D) and its properties. Thereafter, the ongoing research trends in electrochemical supercapacitor electrodes are fully excavated. Finally, the outlook of future research directions, key obstacles, and possible solutions are emphasized.
Collapse
Affiliation(s)
- Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun, Chonbuk 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea
| | - Gun Woong Kang
- Research and Development Division, Korea Institute of Convergence Textile, Iksan, Chonbuk 54588, Republic of Korea
| | - Yun-Su Kuk
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), Jeonju, Chonbuk 54853, Republic of Korea
| | - Ye Eun Hwang
- Research and Development Division, Korea Institute of Convergence Textile, Iksan, Chonbuk 54588, Republic of Korea
| | - Oh Hoon Kwon
- Research and Development Division, Korea Institute of Convergence Textile, Iksan, Chonbuk 54588, Republic of Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun, Chonbuk 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun, Chonbuk 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea
| | - Yong Wan Park
- Research and Development Division, Korea Institute of Convergence Textile, Iksan, Chonbuk 54588, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun, Chonbuk 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju, Chonbuk 55338, Republic of Korea
| |
Collapse
|
8
|
Hassan H, Iqbal MW, Afzal AM, Asghar M, Aftab S. Enhanced the performance of zinc strontium sulfide-based supercapattery device with the polyaniline doped activated carbon. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Nolly C, Ikpo CO, Ndipingwi MM, Ekwere P, Iwuoha EI. Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3514. [PMID: 36234643 PMCID: PMC9565235 DOI: 10.3390/nano12193514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Spinel copper manganese oxide nanoparticles combined with acid-treated multi-walled carbon nanotubes (CuMn2O4/MWCNTs) were used in the development of electrodes for pseudocapacitor applications. The CuMn2O4/MWCNTs preparation involved initial synthesis of Mn3O4 and CuMn2O4 precursors followed by an energy efficient reflux growth method for the CuMn2O4/MWCNTs. The CuMn2O4/MWCNTs in a three-electrode cell assembly and in 3 M LiOH aqueous electrolyte exhibited a specific capacitance of 1652.91 F g-1 at 0.5 A g-1 current load. Similar investigation in 3 M KOH aqueous electrolyte delivered a specific capacitance of 653.41 F g-1 at 0.5 A g-1 current load. Stability studies showed that after 6000 cycles, the CuMn2O4/MWCNTs electrode exhibited a higher capacitance retention (88%) in LiOH than in KOH (64%). The higher capacitance retention and cycling stability with a Coulombic efficiency of 99.6% observed in the LiOH is an indication of a better charge storage behaviour in this electrolyte than in the KOH electrolyte with a Coulombic efficiency of 97.3%. This superior performance in the LiOH electrolyte than in the KOH electrolyte is attributed to an intercalation/de-intercalation mechanism which occurs more easily in the LiOH electrolyte than in the KOH electrolyte.
Collapse
|
10
|
Development of 3D ZnO-CNT Support Structures Impregnated with Inorganic Salts. MEMBRANES 2022; 12:membranes12060588. [PMID: 35736295 PMCID: PMC9229228 DOI: 10.3390/membranes12060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Carbon-based materials are promising candidates for enhancing thermal properties of phase change materials (PCMs) without lowering its energy storage capacity. Nowadays, researchers are trying to find a proper porous structure as PCMs support for thermal energy storage applications. In this context, the main novelty of this paper consists in using a ZnO-CNT-based nanocomposite powder, prepared by an own hydrothermal method at high pressure, to obtain porous 3D printed support structures with embedding capacity of PCMs. The morphology of 3D structures, before and after impregnation with three PCMs inorganic salts (NaNO3, KNO3 and NaNO3:KNO3 mixture (1:1 vol% saturated solution) was investigated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). For structure impregnated with nitrates mixture, SEM cross-section morphology suggest that the inorganic salts impregnation started into micropores, continuing with the covering of the 3D structure surface and epitaxial growing of micro/nanostructured crystals, which led to reducing the distance between the structural strands. The variation of melting/crystallization points and associated enthalpies of impregnated PCMs and their stability during five repeated thermal cycles were studied by differential scanning calorimetry (DSC) and simultaneous DSC-thermogravimetry (DSC-TGA). From the second heating-cooling cycle, the 3D structures impregnated with NaNO3 and NaNO3-KNO3 mixture are thermally stable.
Collapse
|
11
|
Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. Int J Mol Sci 2022; 23:ijms23063174. [PMID: 35328595 PMCID: PMC8951433 DOI: 10.3390/ijms23063174] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption–desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406–751 m2·g−1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g−1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g−1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.
Collapse
|
12
|
Liu W, Zhao Y, Zheng J, Jin D, Wang Y, Lian J, Yang S, Li G, Bu Y, Qiao F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J Colloid Interface Sci 2022; 606:728-735. [PMID: 34416462 DOI: 10.1016/j.jcis.2021.08.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022]
Abstract
Developing new electrode materials is one of the keys to improving the energy density of supercapacitors. In this article, a novel cobalt polysulfide/carbon nanofibers (C,N-CoxSy/CNF) film derived from zeolitic imidazolate framework is first prepared by a facile strategy. The composite material with two-dimensional leaf-shaped nanoarray neatly grown on the surface of carbon nanofibers is composed of CoS, CoS2, Co9S8, N-doped carbon nanosheets, and carbon nanofibers. It is found that the composite can not only increase the contact area with the electrolyte but also provide abundant redox-active sites and a Faraday capacitance for the entire electrode. The C,N-CoxSy/CNF composite exhibits excellent electrochemical properties, including a high capacity of up to 1080F g -1 at 1 A g -1 and a good rate capability (80.4 % from 1 A g -1 to 10 A g -1). A C,N-CoxSy/CNF//AC asymmetric supercapacitor device is assembled using C,N-CoxSy/CNF as the positive electrode and activated carbon as the negative electrode, showing high energy density (37.29 Wh kg -1@813.6 W kg -1) and good cycle stability (90.5% of initial specific capacitance at 10 g-1 after 5000 cycles). This C,N-CoxSy/CNF composite material may also be used as a potential electrode for future lithium-ion batteries, zinc-ion batteries, lithium-sulfur batteries, etc.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Yan Zhao
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China.
| | - Jihua Zheng
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Dunyuan Jin
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Yaqing Wang
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Jiabiao Lian
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Shiliu Yang
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Guochun Li
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Yongfeng Bu
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| | - Fen Qiao
- School of Energy & Power Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Ojha GP, Pant B, Acharya J, Park M. An electrochemically reduced ultra-high mass loading three-dimensional carbon nanofiber network: a high energy density symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V. NANOSCALE 2021; 13:19537-19548. [PMID: 34806747 DOI: 10.1039/d1nr05943b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Commercial supercapacitors need a high mass loading of more than 10 mg cm-2 and a high working potential window to resolve the low energy density concern. Herein, we have demonstrated a thick, ultrahigh mass loading (35 mg cm-2) and wide cell voltage electrochemically reduced layer-by-layer three-dimensional carbon nanofiber network (LBL 3D-CNF) electrode via electrospinning, sodium borohydride treatment, carbonization, and electro-reduction techniques. During the electro-reduction technique, Na+ is adsorbed onto the various defect sites of LBL 3D-CNFs, which properly inhibits the formation of the intermediate HER (hydrogen evolution reaction) product, leading to a wide cell voltage, whereas the LBL 3D-CNF network evokes an opportunity for storing a greater number of charges, resulting in excellent electrochemical performances. A symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V is constructed and demonstrated. The as-constructed device can deliver an areal energy output of 1922 μW h cm-2 at a power density of 3979 W kg-1 equal to a gravimetric energy density of 27 W h kg-1, and an outstanding cyclic durability of 97.4% after 20 000 GCD cycles. These record-breaking performances would make our device one of the most promising candidates from an industrial point of view.
Collapse
Affiliation(s)
- Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| |
Collapse
|
14
|
Pant B, Prasad Ojha G, Acharya J, Park M. Ag3PO4-TiO2-Carbon nanofiber Composite: An efficient Visible-light photocatalyst obtained from electrospinning and hydrothermal methods. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Xu J, Meng Z, Hao Z, Sun X, Nan H, Liu H, Wang Y, Shi W, Tian H, Hu X. Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. J Colloid Interface Sci 2021; 609:878-889. [PMID: 34836655 DOI: 10.1016/j.jcis.2021.11.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Bi2O3 is an outstanding electrode material due to its high theoretical specific capacity. Hence, the synthesis of δ-Bi2O3 materials with high oxygen-vacancy contents could improve their electrochemical performances but causes easy conversion to α-Bi2O3 with low oxygen-vacancy contents, leading to poor cycling stability and limited practical applications. To overcome these problems, an effective strategy for constructing high oxygen vacancies α-Bi2O3 on activated carbon fiber paper (ACFP) is developed in this study. To this end, ACFP/Bi(OH)3 is first synthesized by the solvothermal method and then converted to ACFP/α-Bi2O3 by in situ electrochemical activation. The proposed innovative electrochemical method quickly and easily introduces oxygen vacancies while preserving the three-dimensional structure, thereby promoting the charge transfer and ions diffusion in ACFP/α-Bi2O3. Consequently, the specific capacity of ACFP/α-Bi2O3 reaches 906C g-1 at 1 A g-1, and the capacity retention remains above 70% after 3000 cycles, a value higher than that of δ-Bi2O3 (45%). Furthermore, the hybrid supercapacitor device assembled by ACFP/α-Bi2O3 delivers a maximum energy density of 114.9 Wh kg-1 at 900 W kg-1 and outstanding cycle stability with 73.56 % retention after 5500 cycles. In sum, the proposed ACFP/α-Bi2O3 with high performance and good stability looks promising for use as bismuth-based anode materials in supercapacitors and aqueous batteries.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zeyu Hao
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xucong Sun
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Haoshan Nan
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongxu Liu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Wei Shi
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China.
| |
Collapse
|
16
|
Mijailović DM, Radmilović VV, Lačnjevac UČ, Stojanović DB, Bustillo KC, Jović VD, Radmilović VR, Uskoković PS. Tetragonal CoMn 2O 4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. Dalton Trans 2021; 50:15669-15678. [PMID: 34676859 DOI: 10.1039/d1dt02829d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C@CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g-1 at 1 A g-1 with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg-1 at a power density of 0.1 kW kg-1, which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.
Collapse
Affiliation(s)
- Daniel M Mijailović
- Innovation Center, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Vuk V Radmilović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Uroš Č Lačnjevac
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dušica B Stojanović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720 California, USA
| | - Vladimir D Jović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Velimir R Radmilović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Petar S Uskoković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
17
|
Wu H, Zhang X, Zhang H, Liu C, Huang F, Li S. Structure-dependent electrochemical properties of cobalt (II) carbonate hydroxide nanocrystals in supercapacitors. J Colloid Interface Sci 2021; 607:1633-1640. [PMID: 34592550 DOI: 10.1016/j.jcis.2021.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
In this work, we report the structure-dependent electrochemical performance of cobalt carbonate hydroxide (Co2(OH)2CO3) nanocrystals by experimental investigation and theoretical simulation. Different Co2(OH)2CO3 nanostructures including two-dimensional (2D) nanosheets (NSs) and one-dimensional (1D) nanowires (NWs), were synthesized on self-supported carbon cloth substrates by a facile hydrothermal method. Compared to 1D NWs, 2D Co2(OH)2CO3 NSs provided a short ion transfer path, and low electron transfer resistance during the electrochemical reaction. At the current density of 2 mA cm-2, 2D Co2(OH)2CO3 NSs exhibited a higher area capacitance of 2.15F cm-2 and better cycling performance (96.2% retention after 10,000 cycles) than that of 1D NWs (1.15F cm-2 and 90.1% retention). First-principles density functional theory (DFT) calculations revealed that the band gap of the (120) facet in 2D NSs was 0.2 eV, far less than of the (200) facet in 1D NWs (1.04 eV). Electrochemical impedance spectroscopy (EIS) measurements further indicated that the electron transfer and reaction kinetics were more efficient in 2D NSs. This work can provide an important insight in understanding the mechanism of electrochemical energy storage.
Collapse
Affiliation(s)
- Haoyang Wu
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Xiaoqing Zhang
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Hui Zhang
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - Chongjing Liu
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Fangzhi Huang
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Shikuo Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
18
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
19
|
Deng BW, Yang Y, Yin B, Yang MB. Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method. J Colloid Interface Sci 2021; 594:770-780. [DOI: 10.1016/j.jcis.2021.03.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
|
20
|
Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Chen K, Liu J, Bian H, Wang W, Wang F, Shao Z. Dexterous and friendly preparation of N/P co-doping hierarchical porous carbon nanofibers via electrospun chitosan for high performance supercapacitors. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Titanium niobate (Ti 2Nb 10O 29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries. J Colloid Interface Sci 2020; 587:622-632. [PMID: 33223244 DOI: 10.1016/j.jcis.2020.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Assembling active materials on flexible conductive matrixes for fabricating high-rate, self-supported and durable anodes is essential for the development of high-power flexible lithium-ion batteries. In this study, we report an efficient combinational strategy for producing hybrid composites (TNO@MCF) of Ti2Nb10O29 (TNO) anchored on melamine carbon foam (MCF) via a hydrothermal method. The N-doped MCF not only showed good electronic conductivity and flexibility, but also improved the ion transport performance of the composites. The TNO@MCF electrode exhibited remarkably high rate capacities (327 mA h g-1 at 1 C, and 205 mA h g-1 at 40 C) and excellent cycling stability with a high capacity retention of 81.4% after 1000 cycles at 10 C. After 100 compression-rebound cycles, the TNO@MCF electrode showed a reversible capacity of 315 mA h g-1 at 1 C and exhibited a capacity retention of 72.3% for 1000 cycles at 10 C. This compressible structure design could provide guidelines for manufacture of other flexible electrodes for energy storage devices.
Collapse
|
23
|
Han X, Jiang T, Chen X, Jiang D, Xie K, Jiang Y, Wang Y. Electrolyte additive induced fast-charge/slow-discharge process: Potassium ferricyanide and potassium persulfate for CoO-based supercapacitors. J Colloid Interface Sci 2020; 576:505-513. [PMID: 32512403 DOI: 10.1016/j.jcis.2020.05.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
The electrolyte additives of potassium ferricyanide and potassium persulfate can ensure that CoO-supercapacitors achieve a fast charge/slow discharge and long cycling stability. The redox couple of Fe(CN)63-/Fe(CN)64- can induce S2O82- to produce the sulfate radical ( [Formula: see text] ). Strong oxidizing species, including S2O82-, Fe(CN)63- and [Formula: see text] , can accelerate oxidation of the CoO electrode surface from Co2+ to Co3+ in the charge process. The additives can achieve a good synergistic effect on accelerating CoO oxidation during the charge process. In a three-electrode cell, a CoO electrode with electrolyte additives achieves a fast-charge and slow-discharge time of 939 s and 1699 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 84.5% after 10,000 cycles at a current density of 5 A g-1. As a supercapacitor, the device can achieve a fast-charge and slow-discharge time of 156 s and 191 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 85.5% after 10,000 cycles at a current density of 5 A g-1.
Collapse
Affiliation(s)
- Xuanxuan Han
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xing Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Demin Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Kun Xie
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqiao Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
24
|
Liu S, Wang W, Cheng Y, Yao L, Han H, Zhu T, Liang Y, Fu J. Methyl orange adsorption from aqueous solutions on 3D hierarchical PbS/ZnO microspheres. J Colloid Interface Sci 2020; 574:410-420. [DOI: 10.1016/j.jcis.2020.04.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
|
25
|
Pant B, Pant HR, Park M. Fe 1-xS Modified TiO 2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors. Molecules 2020; 25:molecules25051075. [PMID: 32121021 PMCID: PMC7179207 DOI: 10.3390/molecules25051075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Fe1-xS-TiO2 nanoparticles embedded carbon nanofibers (Fe1-xS-TiO2/CNFs) composite as a supercapacitor electrode material has been reported in the present work. The Fe1-xS-TiO2/CNFs composite was fabricated by electrospinning technique followed by carbonization under argon atmosphere and characterized by the state-of-art techniques. The electrochemical studies were carried out in a 2 M KOH electrolyte solution. The synthesized material showed a specific capacitance value of 138 F/g at the current density of 1 A/g. Further, the capacitance retention was about 83%. The obtained results indicate that the Fe1-xS-TiO2/CNFs composite can be recognized as electrode material in supercapacitor.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Chonbuk 54907, Korea;
| | - Hem Raj Pant
- Department of Applied Sciences, Tribhuvan University, Kathmandu 44600, Nepal;
| | - Mira Park
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Chonbuk 54907, Korea;
- Correspondence:
| |
Collapse
|
26
|
Molybdenum-doped tin oxide nanoflake arrays anchored on carbon foam as flexible anodes for sodium-ion batteries. J Colloid Interface Sci 2020; 560:169-176. [PMID: 31670014 DOI: 10.1016/j.jcis.2019.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Tin oxide (SnO2) has been widely used as an anode material for sodium-ion storage because of its high theoretical capacity. However, it suffers from large volume expansion and poor conductivity. To overcome these limitations, in this study, we have designed and prepared Mo-doped SnO2 nanoflake arrays anchored on carbon foam (Mo-SnO2@C-foam with 38.41 wt% SnO2 and 3.7 wt% Mo content) by a facile hydrothermal method. The carbon foam serves as a three-dimensional conductive network and a buffer skeleton, contributing to improved rate performance and cycling stability. In addition, Mo doping enhances the kinetics of sodium-ion transfer, and the interlaced SnO2 nanoflake arrays is beneficial to promote the conversion reactions during the charge/discharge process. The as-prepared composite with a unique structure demonstrate a high initial capacity of 1017.1 mAh g-1 at 0.1 A g-1, with a capacity retention over three times higher than that of the control sample (SnO2@C-foam) at 1 A g-1, indicating a remarkable rate performance.
Collapse
|
27
|
Chhetri K, Tiwari AP, Dahal B, Ojha GP, Mukhiya T, Lee M, Kim T, Chae SH, Muthurasu A, Kim HY. A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113670] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Zhang S, Liu G, Qiao W, Wang J, Ling L. Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide. J Colloid Interface Sci 2019; 562:193-203. [PMID: 31838355 DOI: 10.1016/j.jcis.2019.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023]
Abstract
While orthorhombic niobium pentoxide (T-Nb2O5) is one of the most promising energy storage material with rapid lithium ion (Li+) intercalation pseudocapacitive response, a key challenge remains the achievement of high-rate charge-transfer reaction when fabricated into thick electrodes. Herein, we report a facile method to create intrinsic defects in T-Nb2O5 through a hydrogen (H2) reduction, which is effective to overcome the limitations of electrochemical utilization and rate capability. Due to the high number of active sites introduced, the specific capacity of hydrogenated (H-) Nb2O5 with oxygen vacancies reaches 649 C g-1 at 0.5 A g-1, greatly exceeding that of T-Nb2O5 which is 580 C g-1. In addition, theformation of oxygen vacancies leads to increased donor density and enhanced electrical conductivity, which accelerates charge storage kinetics and enables excellent long-term cycling stability (86% retention after 2000 cycles). The analysis of electrochemical impedance spectroscopy (EIS) plots and the calculation of Li+ diffusion coefficients (DLi) further explains the high rate-performance of H-Nb2O5. When the electrode thickness increased to 150 μm, the H-Nb2O5 still delivers excellent electrochemical properties. Therefore, the introduction of oxygen vacancies provides a new method towards the improvement of the electrochemical properties of various transition metal oxides.
Collapse
Affiliation(s)
- Songmin Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guanglan Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jitong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Licheng Ling
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
29
|
Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. NANOSCALE ADVANCES 2019; 1:2817-2827. [PMID: 36133592 PMCID: PMC9416938 DOI: 10.1039/c9na00345b] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/27/2019] [Indexed: 05/19/2023]
Abstract
Supercapacitors are highly attractive for a large number of emerging mobile devices for addressing energy storage and harvesting issues. This mini review presents a summary of recent developments in supercapacitor research and technology, including all kinds of supercapacitor design techniques using various electrode materials and production methods. It also covers the current progress achieved in novel materials for supercapacitor electrodes. The latest produced EDLC/hybrid/pseudo-supercapacitors have also been described. In particular, metal oxides, specifically ZnO, used as electrode materials are in focus here. Eventually, future developments, prospects, and challenges in supercapacitor research have been elaborated on.
Collapse
Affiliation(s)
- Sumaiyah Najib
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
| | - Emre Erdem
- Sabanci University Nanotechnology Research Centre (SUNUM), Sabanci University TR-34956 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University Tuzla 34956 Istanbul Turkey
| |
Collapse
|
31
|
Pant B, Park M, Park SJ. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019; 11:E305. [PMID: 31266186 PMCID: PMC6680404 DOI: 10.3390/pharmaceutics11070305] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Electrospinning has emerged as one of the potential techniques for producing nanofibers. The use of electrospun nanofibers in drug delivery has increased rapidly over recent years due to their valuable properties, which include a large surface area, high porosity, small pore size, superior mechanical properties, and ease of surface modification. A drug loaded nanofiber membrane can be prepared via electrospinning using a model drug and polymer solution; however, the release of the drug from the nanofiber membrane in a safe and controlled way is challenging as a result of the initial burst release. Employing a core-sheath design provides a promising solution for controlling the initial burst release. Numerous studies have reported on the preparation of core-sheath nanofibers by coaxial electrospinning for drug delivery applications. This paper summarizes the physical phenomena, the effects of various parameters in coaxial electrospinning, and the usefulness of core-sheath nanofibers in drug delivery. Furthermore, this report also highlights the future challenges involved in utilizing core-sheath nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
| | - Mira Park
- Department of Bioenvironmental Chemistry, College of Agriculture & Life Science, Chonbuk National University, Jeonju 561-756, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|
32
|
Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J Colloid Interface Sci 2019; 553:622-630. [PMID: 31247501 DOI: 10.1016/j.jcis.2019.06.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023]
Abstract
Herein, we outline the fabrication of highly porous three-dimensional carbon-fiber network anchored with uniform metallic cobalt (Co) via electrospinning and subsequent post-modification approaches. First, cobalt acetate solution saturated electrospun polyacrylonitrile (PAN) nanofibrous mat was subjected to sodium borohydride (NaBH4) solution which results in the fabrication of three dimensional (3D) hierarchical multilayer network. Restructuring of the 2D mat into multilayered sponges with metal particles entrapment is attributed to the in-situ generated hydrogen gas into the interconnected pores of the fibrous network simultaneous with reduction of cobalt salt into metallic cobalt by NaBH4. The resulting mesh was stabilized and carbonization at inert atmosphere to obtain metallic cobalt (Co) embedded 3D carbon nanofibrous networks (Co@3D-CNFs). Physicochemical characterization and electrochemical analysis were performed. Results show carbon network was found to be expanded with bubbling like structures often embedded metallic Co nanoparticles. X-ray diffraction (XRD) pattern confirms the existence of the metallic cobalt particles on the carbon fiber networks. Furthermore, we establish a resulting composite (Co@3D-CNFs) identify the enhanced electrochemical performance having specific capacitance 762 F g-1 compared to 173 and 180 F g-1 for corresponding @3D-CNFs and 2D carbon nanofiber network with cobalt doped (Co@2D-CNFs) counterparts, respectively. The assembled Co2@3D-CNFs//NGH ASC device exhibits a high energy density 24.6 W h Kg-1 at 797 W kg-1 power density with an operating voltage of 1.6 V (vs Ag/AgCl). The device further shows good capacitance retention (90.1%) after 5000 cycles. This research shows the simple and cost-effective strategy to make metallic particles embedded 3D porous carbonaceous electrode materials which can have great potential for energy storage application.
Collapse
|
33
|
TiO 2 NPs Assembled into a Carbon Nanofiber Composite Electrode by a One-Step Electrospinning Process for Supercapacitor Applications. Polymers (Basel) 2019; 11:polym11050899. [PMID: 31108874 PMCID: PMC6571711 DOI: 10.3390/polym11050899] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we have synthesized titanium dioxide nanoparticles (TiO2 NPs) into carbon nanofiber (NFs) composites by a simple electrospinning method followed by subsequent thermal treatment. The resulting composite was characterized by state-of-the-art techniques and exploited as the electrode material for supercapacitor applications. The electrochemical behavior of the as-synthesized TiO2 NPs assembled into carbon nanofibers (TiO2-carbon NFs) was investigated and compared with pristine TiO2 NFs. The cyclic voltammetry and charge–discharge analysis of the composite revealed an enhancement in the performance of the composite compared to the bare TiO2 NFs. The as-obtained TiO2-carbon NF composite exhibited a specific capacitance of 106.57 F/g at a current density of 1 A/g and capacitance retention of about 84% after 2000 cycles. The results obtained from this study demonstrate that the prepared nanocomposite could be used as electrode material in a supercapacitor. Furthermore, this work provides an easy scale-up strategy to prepare highly efficient TiO2-carbon composite nanofibers.
Collapse
|
34
|
Ojha GP, Gautam J, Muthurasu A, Lee M, Dahal B, Mukhiya T, Lee JH, Tiwari AP, Chhetri K, Kim HY. In-situ fabrication of manganese oxide nanorods decorated manganese oxide nanosheets as an efficient and durable catalyst for oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Awasthi GP, Bhattarai DP, Maharjan B, Kim KS, Park CH, Kim CS. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Oleylamine-assisted synthesis of manganese oxide nanostructures for high-performance asymmetric supercapacitos. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Kumar YA, Reddy AE, Bak JS, Cho IH, Kim HJ. Facile synthesis of NF/ZnOx and NF/CoOx nanostructures for high performance supercapacitor electrode materials. RSC Adv 2019; 9:21225-21232. [PMID: 35521331 PMCID: PMC9066169 DOI: 10.1039/c9ra01809c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
NF/ZnOx nanocone and NF/CoOx nanoparticle electrode materials were fabricated on a nickel foam surface using a simple chemical bath deposition approach and assessed as an electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | | | - Jin-Soo Bak
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - In-Ho Cho
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| | - Hee-Je Kim
- School of Electrical Engineering
- Pusan National University
- Busan
- Republic of Korea
| |
Collapse
|
38
|
Li Z, Bu F, Wei J, Yao W, Wang L, Chen Z, Pan D, Wu M. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon. NANOSCALE 2018; 10:22871-22883. [PMID: 30488932 DOI: 10.1039/c8nr06986g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hierarchical N-doped porous carbon has been prepared by assembling N-doped graphene quantum dots (N-GQDs) onto a carbonized metal-organic framework (cMOF-5) and used as an electrode material for supercapacitors. In this hierarchical composite structure, cMOF-5 provides an effective cubic porous framework with a large specific surface area and good electrical conductivity, while N-GQDs play an important role in enhancing the pseudocapacitive activity and improving the surface wettability of the electrode. Therefore, the N-GQD/cMOF-5 composite electrode material exhibits an outstanding specific capacitance of 780 F g-1 at 10 mV s-1 in a three-electrode system. Moreover, the composite electrode assembled in symmetric supercapacitors also displays a high specific capacitance of 294.1 F g-1 at 0.5 A g-1, excellent rate capacity and remarkable cycling stability with 94.1% of the initial capacitance retained after 5000 cycles at 5 A g-1. When used as the positive electrode, the N-GQD/cMOF-5//AC asymmetric supercapacitor exhibits an energy density of 14.4 W h kg-1 at a power density of 400.6 W kg-1, while the capacitance retention after 5000 cycles reaches 90.1%. The current N-GQD/cMOF-5 composite electrode paves a feasible avenue to improve the capacitive performances of supercapacitors by constructing heteroatom-doped, hierarchically porous carbon architectures.
Collapse
Affiliation(s)
- Zhen Li
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors. ENERGIES 2018. [DOI: 10.3390/en11123285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CoO–ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the chemical bath deposition (CBD) method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), low and high-resolution scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The as-synthesized hierarchical nanocorn skeleton-like structure of a CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance (Cs) of 1136 F/g at 3 A/g with outstanding cycling performance, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO, ZnO, CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274 F/g, 383 F/g, 240 F/g and 537 F/g). This outstanding performance was attributed to the excellent surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and the electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.
Collapse
|
40
|
Ojha DP, Karki HP, Song JH, Kim HJ. Decoration of g-C3N4 with hydrothermally synthesized FeWO4 nanorods as the high-performance supercapacitors. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|