1
|
Sáringer S, Terjéki G, Varga Á, Maléth J, Szilágyi I. Optimization of Interfacial Properties Improved the Stability and Activity of the Catalase Enzyme Immobilized on Plastic Nanobeads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16338-16348. [PMID: 39066719 PMCID: PMC11308775 DOI: 10.1021/acs.langmuir.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The immobilization of catalase (CAT), a crucial oxidoreductase enzyme involved in quenching reactive oxygen species, on colloids and nanoparticles presents a promising strategy to improve dispersion and storage stability while maintaining its activity. Here, the immobilization of CAT onto polymeric nanoparticles (positively (AL) or negatively (SL) charged) was implemented directly (AL) or via surface functionalization (SL) with water-soluble chitosan derivatives (glycol chitosan (GC) and methyl glycol chitosan (MGC)). The interfacial properties were optimized to obtain highly stable AL-CAT, SL-GC-CAT, and SL-MGC-CAT dispersions, and confocal microscopy confirmed the presence of CAT in the composites. Assessment of hydrogen peroxide decomposition ability revealed that applying chitosan derivatives in the immobilization process not only enhanced colloidal stability but also augmented the activity and reusability of CAT. In particular, the use of MGC has led to significant advances, indicating its potential for industrial and biomedical applications. Overall, the findings highlight the advantages of using chitosan derivatives in CAT immobilization processes to maintain the stability and activity of the enzyme as well as provide important data for the development of processable enzyme-based nanoparticle systems to combat reactive oxygen species.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergő Terjéki
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Szerlauth A, Varga Á, Madácsy T, Sebők D, Bashiri S, Skwarczynski M, Toth I, Maléth J, Szilagyi I. Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure. ACS MATERIALS LETTERS 2023; 5:565-573. [PMID: 36776691 PMCID: PMC9906813 DOI: 10.1021/acsmaterialslett.2c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Application of antioxidant enzymes in medical or industrial processes is limited due to their high sensitivity to environmental conditions. Incorporation of such enzymes in nanostructures provides a promising route to obtain highly efficient and robust biocatalytic system to scavenge reactive oxygen species (ROS). Here, this question was addressed by confinement of superoxide dismutase (SOD), horseradish peroxidase (HRP), and catalase (CAT) enzymes into nanostructures containing polyelectrolyte building blocks (alginate (Alg) and trimethyl chitosan (TMC)) and delaminated layered double hydroxide (dLDH) nanoparticle support. The nanocomposite possessed excellent structural and colloidal stability, while antioxidant tests revealed that the enzymes remained active upon immobilization and the developed composite greatly reduced intracellular oxidative stress in two-dimensional cell cultures. Moreover, it effectively prevented hydrogen peroxide-induced double stranded DNA breaks, which is a common consequence of oxidative stress. The results provide important tools to design complex nanostructures with multienzymatic antioxidant activities for ROS scavenging.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Tamara Madácsy
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Dániel Sebők
- Department
of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Sahra Bashiri
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Mariusz Skwarczynski
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - Istvan Toth
- School
of Chemistry and Molecular Biosciences, University of Queensland, QLD-4072 St. Lucia, Australia
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Sáringer S, Valtner T, Varga Á, Maléth J, Szilágyi I. Development of polymer-based multifunctional composite particles of protease and peroxidase activities. J Mater Chem B 2021; 10:2523-2533. [PMID: 34757359 DOI: 10.1039/d1tb01861b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hybrid material (SL-PPN-HEP-HRP) of dual enzyme function was prepared by co-immobilization of papain (PPN) and horseradish peroxidase (HRP) on sulphate latex (SL) microspheres using heparin (HEP) polyelectrolyte as a building block in the sequential adsorption method. The doses of PPN, HEP and HRP were optimized in each step of the preparation process to achieve high functional and colloidal stability. The enzymes and the polyelectrolyte strongly adsorbed on the oppositely charged surfaces via electrostatic forces, and enzyme leakage was not observed from the hybrid material, as confirmed by colorimetric protein tests and microscopy measurements. It was found that the polyelectrolyte acted as a separator between PPN and HRP to prevent hydrolytic attack on the latter enzyme, which otherwise prevents the joint use of these important biocatalysts. Excellent colloidal stability was obtained for the SL-PPN-HEP-HRP composite and the embedded PPN and HRP showed remarkable protease and peroxidase activities, respectively, at least until five days after preparation. The present results offer a promising approach to develop biocatalytic systems of dual function, which are often required in manufacturing processes in the food industry, where the colloidal stability of such multifunctional materials is a key parameter to achieve remarkable efficiency.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Tamás Valtner
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Árpád Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
4
|
Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. J Colloid Interface Sci 2021; 590:28-37. [DOI: 10.1016/j.jcis.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
|
5
|
Zhang LX, Hu J, Jia YB, Liu RT, Cai T, Xu ZP. Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction. NANOSCALE 2021; 13:7533-7549. [PMID: 33876812 DOI: 10.1039/d1nr00881a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered double hydroxide (LDH) is a 'sandwich'-like two-dimensional clay material that has been systematically investigated for biomedical application in the past two decades. LDH is an alum-similar adjuvant, which has a well-defined layered crystal structure and exhibits high adjuvanticity. The unique structure of LDH includes positively charged layers composed of divalent and trivalent cations and anion-exchangeable interlayer galleries. Among the many variants of LDH, MgAl-LDH (the cationic ions are Mg2+ and Al3+) has the highest affinity to antigens, bioadjuvants and drug molecules, and exhibits superior biosafety. Past research studies indicate that MgAl-LDH can simultaneously load antigens, bioadjuvants and molecular drugs to amplify the strength of immune responses, and induce broad-spectrum immune responses. Moreover, the size and dispersity of MgAl-LDH in biological environments can be well controlled to actively deliver antigens to the immune system, realizing the rapid induction and maintenance of durable immune responses. Furthermore, the functionalization of MgAl-LDH nanoadjuvants enables it to capture antigens in situ and induce personalized immune responses, thereby more effectively overcoming complex diseases. In this review, we comprehensively summarize the development and application of MgAl-LDH nanoparticles as a vaccine adjuvant, demonstrating that MgAl-LDH is the most potential adjuvant for clinical application.
Collapse
Affiliation(s)
- Ling-Xiao Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China. and Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. and Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Univeristy, Hangzhou 310058, China
| | - Jing Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Bo Jia
- University of Chinese Academy of Sciences, Beijing 100049, China and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China. and Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Pavlovic M, Muráth S, Katona X, Alsharif NB, Rouster P, Maléth J, Szilagyi I. Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species. Sci Rep 2021; 11:4321. [PMID: 33619308 PMCID: PMC7900168 DOI: 10.1038/s41598-021-83819-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
A broad-spectrum reactive oxygen species (ROS)-scavenging hybrid material (CASCADE) was developed by sequential adsorption of heparin (HEP) and poly(L-lysine) (PLL) polyelectrolytes together with superoxide dismutase (SOD) and horseradish peroxidase (HRP) antioxidant enzymes on layered double hydroxide (LDH) nanoclay support. The synthetic conditions were optimized so that CASCADE possessed remarkable structural (no enzyme leakage) and colloidal (excellent resistance against salt-induced aggregation) stability. The obtained composite was active in decomposition of both superoxide radical anions and hydrogen peroxide in biochemical assays revealing that the strong electrostatic interaction with the functionalized support led to high enzyme loadings, nevertheless, it did not interfere with the native enzyme conformation. In vitro tests demonstrated that ROS generated in human cervical adenocarcinoma cells were successfully consumed by the hybrid material. The cellular uptake was not accompanied with any toxicity effects, which makes the developed CASCADE a promising candidate for treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Szabolcs Muráth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary
| | - Xénia Katona
- MTA-SZTE Lendület Epithelial Cell Signaling and Secretion Research Group, Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary
| | - Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary
| | - Paul Rouster
- Institute of Condensed Matter and Nanosciences-Bio and Soft Matter, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - József Maléth
- MTA-SZTE Lendület Epithelial Cell Signaling and Secretion Research Group, Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 6720, Szeged, Hungary.
| |
Collapse
|
7
|
Xu T, Liu J, Sun L, Zhang R, Xu ZP, Sun Q. Enhancing Tumor Accumulation and Cellular Uptake of Layered Double Hydroxide Nanoparticles by Coating/Detaching pH-Triggered Charge-Convertible Polymers. ACS OMEGA 2021; 6:3822-3830. [PMID: 33585761 PMCID: PMC7876861 DOI: 10.1021/acsomega.0c05520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
Layered double hydroxide (LDH) nanoparticles are extensively explored as multifunctional nanocarriers due to their versatility in both the host layer and the interlayer anion. In this study, we report modification of positively charged Cu-containing LDH nanoparticles with a pH-responsive charge-changeable polymer to improve the particle colloidal stability in blood circulation, reduce the nonspecific uptake by normal cells in organs, and subsequently facilitate tumor accumulation and uptake by tumor cells in the acidic tumor microenvironment. In vitro experimental results demonstrate that this promising charge-convertible polymer-LDH nanocarrier well reduces the capture by macrophages in the physiologic medium (pH 7.4) but facilitates the uptake by tumor cells due to detaching of the coated polymer layer in the weakly acidic condition (pH 6.8). Cu-containing LDH nanoparticles also show pH-responsive magnetic resonance imaging (MRI) contrast capacity (i.e., r 1 relaxivity). In vivo MRI further confirms effective tumor accumulation of the charge-convertible nanohybrids, with ∼4.8% of the injected dose accumulated at 24 h postintravenous injection, proving the potential as a versatile delivery nanocarrier to enhance the antitumor treatment.
Collapse
Affiliation(s)
- Tiefeng Xu
- Department
of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College
of Medicine, Shandong University, Jinan, Shandong Province 250014, People’s Republic
of China
- The
First Affiliated Hospital and The Oncological Institute of Hainan
Medical University, Haikou City, Hainan Province 570102, People’s Republic
of China
| | - Jianping Liu
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luyao Sun
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Run Zhang
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Qing Sun
- Department
of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College
of Medicine, Shandong University, Jinan, Shandong Province 250014, People’s Republic
of China
- Department
of Pathology, The First Affiliated Hospital
of Shandong First Medical University & Shandong Provincial Qianfoshan
Hospital, Jinan, Shandong Province 250014, People’s Republic of China
| |
Collapse
|
8
|
Bayramoglu G, Akbulut A, Arica MY. Utilization of immobilized horseradish peroxidase for facilitated detoxification of a benzidine based azo dye. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Szerlauth A, Muráth S, Szilagyi I. Layered double hydroxide-based antioxidant dispersions with high colloidal and functional stability. SOFT MATTER 2020; 16:10518-10527. [PMID: 33073831 DOI: 10.1039/d0sm01531h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly stable antioxidant dispersions were designed on the basis of ring-opened ellagic acid (EA) intercalated into MgAl-layered double hydroxide (LDH) nanoparticles. The morphology of the composite was delicately modified with ethanolic washing to obtain EtOH-EA-LDH with a high specific surface area. The colloidal stability was optimized by surface functionalization with positively charged polyelectrolytes. Polyethyleneimine (PEI), protamine sulfate (PS) and poly(acrylamide-co-diallyl dimethyl ammonium chloride) (PAAm-co-DADMAC) was adsorbed onto the surface of the oppositely charged EtOH-EA-LDH leading to charge neutralization and overcharging at appropriate doses. Formation of adsorbed polyelectrolyte layers provided remarkable colloidal stability for the EtOH-EA-LDH. Modification with PEI and PAAm-co-DADMAC outstandingly improved the resistance of the particles against salt-induced aggregation with a critical coagulation concentration value above 1 M, while only limited stability was achieved by covering the nanoparticles with PS. The high antioxidant activity of EtOH-EA-LDH was greatly preserved upon polyelectrolyte coating, which was proved in the scavenging of radicals in the test reaction applied. Hence, an active antioxidant nanocomposite of high drug dose and remarkable colloidal stability was obtained to combat oxidative stress in systems of high electrolyte concentrations.
Collapse
Affiliation(s)
- Adél Szerlauth
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, 1 Rerrich Béla tér, H-6720 Szeged, Hungary.
| | | | | |
Collapse
|
10
|
Arai T, Tabuchi M, Sato Y, Ishida T, Shimada T, Takagi S. Unique Enzyme Activity of Peroxidase on a Clay Nanosheet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8384-8388. [PMID: 32407124 DOI: 10.1021/acs.langmuir.0c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adsorption behavior and enzyme activity of horseradish peroxidase (HRP) was examined on a synthetic clay nanosheet, whose surface is flat at the atomic level and is negatively charged. The results showed that HRP is adsorbed effectively (adsorption equilibrium constant, K = 1.61 × 107 L mol-1) and that the structure of HRP was altered on the clay surface. The enzyme activity of HRP on the clay surface was evaluated by using H2O2 and tert-BuOOH as a substrate. As a result, HRP on the clay surface was able to work for tert-BuOOH, while HRP in solution did not show any activity. In addition, HRP on SSA showed reactivity even under the high-temperature conditions. These results indicate that the clay nanosheet can be a unique modifier for enzyme activity of HRP.
Collapse
Affiliation(s)
- Tatsumi Arai
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Masahiro Tabuchi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yurina Sato
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Gold Chemistry, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shimada
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
|
12
|
Wang J, Wang Y, Zhang D. Exploring the bactericidal performance and application of novel mimic enzyme Co 4S 3. J Colloid Interface Sci 2020; 561:327-337. [PMID: 31771873 DOI: 10.1016/j.jcis.2019.10.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Novel and uniform Co4S3 nanoparticles were synthesized through a two-step hydrothermal process and testified to possess intrinsic peroxidase (POx)-like activity for the first time. As a fresh POx mimic, we studied its catalytic properties, kinetic, and mechanism to catalyze the oxidation of 3, 3', 5, 5'-tetramethylbenzidine in the presence of H2O2. According to the experiments, the bactericidal mechanism is the same as that of simulated enzyme. Based on the ability of Co4S3 inducing H2O2 to express O2-, the bactericidal rate can be as high as 100%. Besides, using the POx-like activity of Co4S3, a new off-on sensor for H2O2 and l-cysteine (l-Cys) detection is constructed. The sensor reveals a good wide linear response to H2O2 in the 40-2000 µM with a detection limit of 18 µM, while l-Cys in the 20-100 mM with a detection limit of 10 mM. The proposed method also shows great stability, high selectivity, and excellent practicability.
Collapse
Affiliation(s)
- Jin Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yi Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dun Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
13
|
Abstract
Counteracting reactive oxygen species (ROS, e.g., superoxide radical ion, H2O2 and hydroxyl radical) is an important task in fighting against oxidative stress-related illnesses and in improving product quality in industrial manufacturing processes. This review focuses on the recent advances on two-dimensional (2D) nanomaterials of antioxidant activity, which are designed for effective decomposition of ROS and thus, for reduction of oxidative stress. Some materials featured in this paper are of uni- or multi-lamellar structures modified with small molecular or enzymatic antioxidants. Others are enzyme-mimicking synthetic compounds (the so-called nanozymes) prepared without antioxidant additives. However, carbon-based materials will not be included, as they were extensively reviewed in the recent past from similar aspects. Given the landmark development around the 2D materials used in various bio-applications, sheet-like antioxidant compounds are of great interest in the scientific and technological communities. Therefore, the authors hope that this review on the recent progresses will be helpful especially for researchers working on novel developments to substantially reduce oxidative stress either in biological systems or industrial liquors.
Collapse
|
14
|
Enhanced catalytic performance of lipase covalently bonded on ionic liquids modified magnetic alginate composites. J Colloid Interface Sci 2019; 553:494-502. [DOI: 10.1016/j.jcis.2019.06.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
15
|
Correa S, Puertas S, Gutiérrez L, Asín L, Martínez de la Fuente J, Grazú V, Betancor L. Design of stable magnetic hybrid nanoparticles of Si-entrapped HRP. PLoS One 2019; 14:e0214004. [PMID: 30933987 PMCID: PMC6443235 DOI: 10.1371/journal.pone.0214004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Hybrid and composite nanoparticles represent an attractive material for enzyme integration due to possible synergic advantages of the structural builders in the properties of the nanobiocatalyst. In this study, we report the synthesis of a new stable hybrid nanobiocatalyst formed by biomimetic silica (Si) nanoparticles entrapping both Horseradish Peroxidase (HRP) (EC 1.11.1.7) and magnetic nanoparticles (MNPs). We have demonstrated that tailoring of the synthetic reagents and post immobilization treatments greatly impacted physical and biocatalytic properties such as an unprecedented ~280 times increase in the half-life time in thermal stability experiments. The optimized nanohybrid biocatalyst that showed superparamagnetic behaviour, was effective in the batch conversion of indole-3-acetic acid, a prodrug used in Direct Enzyme Prodrug Therapy (DEPT). Our system, that was not cytotoxic per se, showed enhanced cytotoxic activity in the presence of the prodrug towards HCT-116, a colorectal cancer cell line. The strategy developed proved to be effective in obtaining a stabilized nanobiocatalyst combining three different organic/inorganic materials with potential in DEPT and other biotechnological applications.
Collapse
Affiliation(s)
- Sonali Correa
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| | | | - Lucía Gutiérrez
- Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Laura Asín
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jesús Martínez de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Valeria Grazú
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científica, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Montevideo, Uruguay
| |
Collapse
|
16
|
Math RK, Reddy S, Dae Yun H, Kambiranda D, Ghebreiyessus Y. Modeling the clay minerals-enzyme binding by fusion fluorescent proteins and under atomic force microscope. Microsc Res Tech 2019; 82:884-891. [PMID: 30775836 DOI: 10.1002/jemt.23233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 11/06/2022]
Abstract
In the present study, binding of cellulase protein to different clay minerals were tested using fluorescent-protein complex and microscopic techniques. Cellulase gene (Cel5H) was cloned into three fluorescent vectors and expressed as fusion enzymes. Binding of Cel5H-mineral particles was confirmed by confocal microscopy, and enzyme assay. Among the Cel5H-fusion enzymes, green-fusion enzyme showed higher intensity compared with other red and yellow fusion-proteins. Intensity of fusion-proteins was dependent on the pH of the medium. Confocal microscopy revealed binding of the all three fusion proteins with different clay minerals. However, montmorillonite displayed higher binding capacity than kaolinite clay. Likewise, atomic force microscopy (AFM) image profile analysis showed proteins appeared globular molecules in free-state on mica surface with an average cross sectional diameter of 110 ± 2 nm and rough surface of montmorillonite made protein appear flattened due to structural alteration. Even surface of kaolinite also exerted some strain on protein molecular conformation after binding to surface. Our results provide further evidence for 3D visualization of enzyme-soil complex and encourage furthering study of the force involved interactions. Therefore, our results indicate that binding of proteins to clay minerals was external and provides a molecular method to observe the interaction of clay minerals-enzyme complex.
Collapse
Affiliation(s)
- Renukaradhya K Math
- Division of Applied Life Sciences, Gyeongsang National University, Chinju 660701, Republic of Korea
| | - Srinivasa Reddy
- Division of Applied Life Sciences, Gyeongsang National University, Chinju 660701, Republic of Korea
| | - Han Dae Yun
- Division of Applied Life Sciences, Gyeongsang National University, Chinju 660701, Republic of Korea
| | - Devaiah Kambiranda
- Department of Agricultural Sciences, Southern University Agriculture Research and Extension Center, Baton Rouge, Louisiana
| | - Yemane Ghebreiyessus
- Department of Agricultural Sciences, Southern University Agriculture Research and Extension Center, Baton Rouge, Louisiana
| |
Collapse
|
17
|
Somosi Z, Pavlovic M, Pálinkó I, Szilágyi I. Effect of Polyelectrolyte Mono- and Bilayer Formation on the Colloidal Stability of Layered Double Hydroxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E986. [PMID: 30487401 PMCID: PMC6316193 DOI: 10.3390/nano8120986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Sequential adsorption of polyelectrolytes on nanoparticles is a popular method to obtain thin films after deposition. However, the effect of polyelectrolyte multilayer formation on the colloidal stability of the nanoparticles has not been studied in detail. In the present work, layered double hydroxides (LDH) were synthesized and interaction with oppositely and like-charged polyelectrolytes was investigated. Electrophoretic and light scattering measurements revealed that colloidal stability of LDH can be tuned by adsorption of poly(styrene sulfonate) (PSS) on the oppositely charged LDH surface in appropriate doses and thus, unstable or stable dispersions can be designed. Negatively charged LDH of adsorbed PSS monolayer was obtained and a poly(diallyldimethyl ammonium chloride) (PDADMAC) second layer was systematically built on the particles. The obtained polyelectrolyte bilayer provided high colloidal stability for the LDH-PSS-PDADMAC dispersions due to the presence of repulsive interparticle forces of electrostatic and steric origin. The results provide crucial quantitative information on designing highly stable particle-polyelectrolyte systems for the preparation of thin films or immobilization of guest substances between the layers for delivery processes.
Collapse
Affiliation(s)
- Zoltán Somosi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Marko Pavlovic
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - István Pálinkó
- Material and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary.
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
18
|
Li M, Sultanbawa Y, Xu ZP, Gu W, Chen W, Liu J, Qian G. High and long-term antibacterial activity against Escherichia coli via synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide. Colloids Surf B Biointerfaces 2018; 174:435-442. [PMID: 30481704 DOI: 10.1016/j.colsurfb.2018.11.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/15/2022]
Abstract
Antibiotic-resistant bacterial infections are a global health problem. A commonly-used antibiotic Penicillin G was incorporated into ZnAl-layered double hydroxides (PNG/LDH) with a varied amount of PNG. PNG/LDH nanocomposites were well characterized in structure and composition using elemental analysis, X-ray diffraction pattern, Fourier transform infrared spectroscopy and TEM images, revealing that PNG were mostly adsorbed on the LDH surfaces at a lower PNG loading but some were intercalated into LDH interlayers at a higher PNG loading. The typical release profile of PNG and Zn2+ from PNG/LDH was a quick release, followed by a sustainable slow release. The antibacterial tests against Escherichia coli demonstrated that PNG/LDH with a suitable composition synergistically improved bacterial inhibition compared with free PNG and pristine LDHs. In specific, PNG/LDH with much higher cost-effectiveness showed a potent antimicrobial activity and maintained the activity for up to 10 days, significantly elongating the antibacterial effect compared with just 1 day for free PNG in the same conditions. Our results suggest suitable composition of nanoparticle carriers and antibiotics could significantly enhance antibacterial activity of antibiotics for a long period via the synergistic effect between carrier and antibiotics, a potential approach to overcome the bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Mengxue Li
- School of Environmental and Chemical Engineering, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, People's Republic of China
| | - Yasmina Sultanbawa
- Center for Food Science and nutrition, Queensland Alliance for Agriculture and Food Innovation, The university of Queensland, Cooper Plains, QLD 4108, Australia.
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The university of Queensland, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, The university of Queensland, Brisbane, QLD 4072, Australia
| | - Weiyu Chen
- Australian Institute of Bioengineering and Nanotechnology, The university of Queensland, Brisbane, QLD 4072, Australia
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, People's Republic of China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, People's Republic of China.
| |
Collapse
|