1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024; 12:e0148424. [PMID: 39373473 PMCID: PMC11537012 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M. Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N. Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T. O. Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-F. Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F. Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A. Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R. Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E. Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J.-L. Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J. H. Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y. Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G. G. Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J. Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y. F. Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M.-P. Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
Gour S, Mukherjee A, Balani K, Dhami NK. Quantitative study of early-stage transient bacterial adhesion to bioactive glass and glass ceramics: atomic force microscopic observations. Sci Rep 2024; 14:20336. [PMID: 39223136 PMCID: PMC11369109 DOI: 10.1038/s41598-024-67716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial potential of bioactive glass (BAG) makes it promising for implant applications, specifically overcoming the toxicity concerns associated with traditional antibacterial nanoparticles. The 58S composition of BAG (with high Ca and absence of Na) has been known to exhibit excellent bioactivity and antibacterial behaviour, but the mechanisms behind have not been investigated in detail. In this pioneering study, we are using Atomic Force Microscopy (AFM) to gain insights into 58S BAG's adhesive interactions with planktonic cells of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria; along with the impact of crystallinity on antibacterial properties. We have recorded greater bacterial inhibition by amorphous BAG compared to semi-crystalline glass-ceramics and stronger effect against gram-negative bacteria via conventional long-term antibacterial tests. AFM force distance curves has illustrated substantial bonding between bacteria and BAG within the initial one second (observed at a gap of 250 ms) of contact, with multiple binding events. Further, stronger adhesion of BAG with E.coli (~ 6 nN) compared to S. aureus (~ 3 nN) has been found which can be attributed to more adhesive nano-domains (size effect) distributed uniformly on E.coli surface. This study has revealed direct evidence of impact of contact time and 58S BAG's crystalline phase on bacterial adhesion and antimicrobial behaviour. Current study has successfully demonstrated the mode and mechanisms of initial bacterial adhesion with 58S BAG. The outcome can pave the way towards improving the designing of implant surfaces for a range of biomedical applications.
Collapse
Affiliation(s)
- Shivani Gour
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia
- Department of Material Science and Engineering, Indian Institute of Technology, Kanpur, UP, 208016, India
| | - Abhijit Mukherjee
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia
| | - Kantesh Balani
- Department of Material Science and Engineering, Indian Institute of Technology, Kanpur, UP, 208016, India.
| | - Navdeep K Dhami
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia.
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
3
|
Liu M, Cheng JH, Zhao H, Yu C, Wu J. Targeting the outer membrane of gram-negative foodborne pathogens for food safety: compositions, functions, and disruption strategies. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39213149 DOI: 10.1080/10408398.2024.2397462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne pathogens are a major threat to both food safety and public health. The current trend toward fresh and less processed foods and the misuse of antibiotics in food production have made controlling these pathogens even more challenging. The outer membrane has been employed as a practical target to combat foodborne Gram-negative pathogens due to its accessibility and importance. In this review, the compositions of the outer membrane are extensively described firstly, to offer a thorough overview of this target. Current strategies for disrupting the outer membrane are also discussed, with emphasized on their mechanism of action. The disruption of the outer membrane structure, whether caused by severe damage of the lipid bilayer or by interference with the biosynthesis pathway, has been demonstrated to represent an effective antimicrobial strategy. Interference with the outer membrane-mediated functions of barrier, efflux and adhesion also contributes to the fight against Gram-negative pathogens. Their potential for control of foodborne pathogens in the production chain are also proposed. However, it is possible that multiple components in the food matrix may act as a protective barrier against microorganisms, and it is often the case that contamination is not caused by a single microorganism. Further investigation is needed to determine the effectiveness and safety of these methods in more complex systems, and it may be advisable to consider a multi-technology combined approach. Additionally, further studies on outer membranes are necessary to discover more promising mechanisms of action.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd., Jiangmen, China
| | - Chongchong Yu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
| | - Jingzhu Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Wang L, Wong YC, Correira JM, Wancura M, Geiger CJ, Webster SS, Touhami A, Butler BJ, O'Toole GA, Langford RM, Brown KA, Dortdivanlioglu B, Webb L, Cosgriff-Hernandez E, Gordon VD. The accumulation and growth of Pseudomonas aeruginosa on surfaces is modulated by surface mechanics via cyclic-di-GMP signaling. NPJ Biofilms Microbiomes 2023; 9:78. [PMID: 37816780 PMCID: PMC10564899 DOI: 10.1038/s41522-023-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu-Chern Wong
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joshua M Correira
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chris J Geiger
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Ahmed Touhami
- Department of Physics and Astronomy University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Benjamin J Butler
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | - Richard M Langford
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Katherine A Brown
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Berkin Dortdivanlioglu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lauren Webb
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA.
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Paul D, Pandey A, Neogi S. Bacterial cell permeability study by metal oxide and mixed metal oxide nanoparticles: analysis of the factors contributing to the antibacterial activity of nanoparticles. World J Microbiol Biotechnol 2023; 39:281. [PMID: 37589765 DOI: 10.1007/s11274-023-03712-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
In this work, we investigate the nanoparticle-cell wall interaction by NiO and mixed metal oxide CuO-NiO nanoparticles. We have synthesized and characterized the nanoparticles using XRD, FESEM, EDS, UV vis. spectroscopy, FTIR, Zeta, and TEM analysis in our previous work. Furthermore, a preliminary antibacterial study showed that both the nanoparticles performed very well as antibacterial agents. In this extended work, we investigate the mechanism of interaction of NiO and CuO-NiO nanoparticles with S. aureus and E. coli cells as there are number of studies for antibacterial mechanism of CuO nanoparticles. The uptake of crystal violet dye in the outer bacterial membrane, the release of ß-galactosidase enzyme, and relative electric conductivity assay were used to investigate changes in the permeability and integrity of the cell membrane. Superoxide ions, which are produced intracellularly as ROS by nanoparticles, severely damage bacterial membranes. Zeta potential measurement, which resulted in surface charge neutralization, proved membrane instability. FTIR analysis was used to identify changes in the proteins, carbohydrates, and fatty acids that make up the chemical composition of cell surfaces. AFM imaging demonstrated extensive alteration of the nanomechanical and surface characteristics. Confocal microscopy examination supported the DNA fragmentation and nanoparticle-cell adhesion. Due to their enhanced antibacterial activity when compared to monometallic oxide nanoparticles, this study demonstrated that mixed metal oxides can be employed in the health and biomedical sectors.
Collapse
Affiliation(s)
- Debashri Paul
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ankur Pandey
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
7
|
Wang L, Wong YC, Correira JM, Wancura M, Geiger CJ, Webster SS, Butler BJ, O’Toole GA, Langford RM, Brown KA, Dortdivanlioglu B, Webb L, Cosgriff-Hernandez E, Gordon VD. Bacterial mechanosensing of surface stiffness promotes signaling and growth leading to biofilm formation by Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525810. [PMID: 36747833 PMCID: PMC9900894 DOI: 10.1101/2023.01.26.525810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The attachment of bacteria onto a surface, consequent signaling, and the accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that the stiffness of a surface may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of and response to surface stiffness are unknown. Furthermore, whether, and how, the surface stiffness impacts biofilm development, after initial accumulation, is not known. We use thin and thick hydrogels to create stiff and soft composite materials, respectively, with the same surface chemistry. Using quantitative microscopy, we find that the accumulation, motility, and growth of the opportunistic human pathogen Pseudomonas aeruginosa respond to surface stiffness, and that these are linked through cyclic-di-GMP signaling that depends on surface stiffness. The mechanical cue stemming from surface stiffness is elucidated using finite-element modeling combined with experiments - adhesion to stiffer surfaces results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to softer surfaces with identical surface chemistry. The cell-surface-exposed protein PilY1 acts as a mechanosensor, that upon surface engagement, results in higher cyclic-di-GMP levels, lower motility, and greater accumulation on stiffer surfaces. PilY1 impacts the biofilm lag phase, which is extended for bacteria attaching to stiffer surfaces. This study shows clear evidence that bacteria actively respond to different stiffness of surfaces where they adhere via perceiving varied mechanical stress and strain upon surface engagement.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA
- Present address: Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Yu-Chern Wong
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua M. Correira
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712 USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712 USA
| | - Chris J Geiger
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | | | - Benjamin J. Butler
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Richard M. Langford
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Katherine A. Brown
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Berkin Dortdivanlioglu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Lauren Webb
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Vernita D. Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Couttenier E, Bachellier-Bassi S, d'Enfert C, Villard C. Bending stiffness of Candida albicans hyphae as a proxy of cell wall properties. LAB ON A CHIP 2022; 22:3898-3909. [PMID: 36094162 PMCID: PMC9552746 DOI: 10.1039/d2lc00219a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The cell wall is a key component of fungi. It constitutes a highly regulated viscoelastic shell which counteracts internal cell turgor pressure. Its mechanical properties thus contribute to define cell morphology. Measurements of the elastic moduli of the fungal cell wall have been carried out in many species including Candida albicans, a major human opportunistic pathogen. They mainly relied on atomic force microscopy, and mostly considered the yeast form. We developed a parallelized pressure-actuated microfluidic device to measure the bending stiffness of hyphae. We found that the cell wall stiffness lies in the MPa range. We then used three different ways to disrupt cell wall physiology: inhibition of beta-glucan synthesis, a key component of the inner cell wall; application of a hyperosmotic shock triggering a sudden decrease of the hyphal diameter; deletion of two genes encoding GPI-modified cell wall proteins resulting in reduced cell wall thickness. The bending stiffness values were affected to different extents by these environmental stresses or genetic modifications. Overall, our results support the elastic nature of the cell wall and its ability to remodel at the scale of the entire hypha over minutes.
Collapse
Affiliation(s)
- Elodie Couttenier
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Catherine Villard
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
| |
Collapse
|
9
|
Awassa J, Soulé S, Cornu D, Ruby C, El-Kirat-Chatel S. Understanding the role of surface interactions in the antibacterial activity of layered double hydroxide nanoparticles by atomic force microscopy. NANOSCALE 2022; 14:10335-10348. [PMID: 35833371 DOI: 10.1039/d2nr02395d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Samantha Soulé
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.
| | | |
Collapse
|
10
|
Werner M, Glück MS, Bräuer B, Bismarck A, Lieberzeit PA. Investigations on sub-structures within cavities of surface imprinted polymers using AFM and PF-QNM. SOFT MATTER 2022; 18:2245-2251. [PMID: 35234796 DOI: 10.1039/d2sm00137c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigations on lithographically formed cavities of surface-imprinted polymers (SIP) can help to gain deeper understanding on cell recognition with SIPs: it is known that surface topography and biomolecules transferred during surface imprinting contribute to cell adhesion. In this work, SIPs synthesized via two different imprinting techniques, namely stamp imprinting and polymerization of Pickering emulsions, were investigated and compared to each other, using atomic force microscopy (AFM) and Peak Force Quantitative Nano Mechanics (PF-QNM). We focused on SIPs based on poly(styrene-co-divinylbenzene) as model polymer and E. coli as model template for cell imprinting. Both imprinting approaches led to cavities that revealed nanostructures within the imprints. Stamp imprinting cavities feature low surface roughness and channel structures that resemble the negative pattern of the bacteria on the stamp and their filaments, while SIPs synthesized via polymerization of Pickering emulsions reveal globular nanostructures accumulating in the imprints. AFM phase imaging and adhesion mapping using PF-QNM show that these globular structures are remainders of the imprinted E. coli cells, most likely lipopolysaccarides, which is not observable in imprints resulting from stamp imprinting.
Collapse
Affiliation(s)
- Martin Werner
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Matthias S Glück
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Birgit Bräuer
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Alexander Bismarck
- University of Vienna, Faculty for Chemistry, Department of Materials Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Tian B, Cheng J, Zhang T, Liu Y, Chen D. Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release and antibacterial mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Guo X, Mo W, Zhang D, Wang Y, Cao F, Zhai T, Rao W, Guan X, Xu L, Pan X. Design of a Controlled-Release Delivery Composite of Antibacterial Agent Gatifloxacin by Spherical Silica Nanocarrier. Front Chem 2022; 9:821040. [PMID: 35096778 PMCID: PMC8792944 DOI: 10.3389/fchem.2021.821040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, a spherical silica nanoparticle was explored as a gatifloxacin carrier synthesized by the chemical precipitation method. It was found that there was no new chemical bond formation during the loading process between gatifloxacin and silica, which implies that the binding was driven by physical interaction. In addition, the drug loading and encapsulation efficiency could be improved by appropriately increasing nano-silica content in the loading process. Meanwhile, the release rate of gatifloxacin after loading nano-silica was also improved, suggesting the successful design of a controlled-release delivery composite. The silica nanocarrier could significantly improve the antibacterial performance of Escherichia coli by 2.1 times, which was higher than the pure gatifloxacin. The 24 h bacteriostatic rate was higher than that of a simple mixture of silica nanoparticles and gatifloxacin. Strong reactive oxygen species (ROS) in GAT-SiO2 NPs suggests that ROS might be associated with bactericidal activity. The synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity, which can also be confirmed by the cell membrane damage observed under electron microscopy and DNA damage experiments. Collectively, our finding indicates that nano-silica microspheres could serve as a promising carrier for the sustained release of gatifloxacin, thereby providing a new carrier design scheme for the improvement of the antibacterial effect.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Mo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingyang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yurong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyun Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Rao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lei Xu, ; Xiaohong Pan,
| | - Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lei Xu, ; Xiaohong Pan,
| |
Collapse
|
13
|
Xue Q, Zhang K. The Preparation of High-Performance and Stable MXene Nanofiltration Membranes with MXene Embedded in the Organic Phase. MEMBRANES 2021; 12:2. [PMID: 35054527 PMCID: PMC8778054 DOI: 10.3390/membranes12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanomaterials embedded in nanofiltration membranes have become a promising modification technology to improve separation performance. As a novel representation of two-dimensional (2D) nanomaterials, MXene has nice features with a strong negative charge and excellent hydrophilicity. Our previous research showed that MXene nanosheets were added in the aqueous phase, which enhanced the permeselectivity of the membrane and achieved persistent desalination performance. Embedding the nanomaterials into the polyamide layer through the organic phase can locate the nanomaterials on the upper surface of the polyamide layer, and also prevent the water layer around the hydrophilic nanomaterials from hindering the interfacial polymerization reaction. We supposed that if MXene nanosheets were added in the organic phase, MXene nanosheets would have more negative contact sites on the membrane surface and the crosslinking degree would increase. In this study, MXene were dispersed in the organic phase with the help of ultrasound, then MXene nanocomposite nanofiltration membranes were achieved. The prepared MXene membranes obtained enhanced negative charge and lower effective pore size. In the 28-day persistent desalination test, the Na2SO4 rejection of MXene membrane could reach 98.6%, which showed higher rejection compared with MXene embedded in aqueous phase. The results of a long-time water immersion test showed that MXene membrane could still maintain a high salt rejection after being soaked in water for up to 105 days, which indicated MXene on the membrane surface was stable. Besides MXene membrane showed high rejection for high-concentration brine and good mono/divalent salt separation performance in mono/divalent mixed salt solutions. As a part of the study of MXene in nanofiltration membranes, we hoped this research could provide a theoretical guidance for future research in screening different addition methods and different properties.
Collapse
Affiliation(s)
- Qiang Xue
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| |
Collapse
|
14
|
Tian B, Liu Y, Chen D. Adhesion behavior of silica nanoparticles with bacteria: Spectroscopy measurements based on kinetics, and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Tian B, Wang J, Liu Q, Liu Y, Chen D. Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material. Int J Biol Macromol 2021; 191:288-298. [PMID: 34560145 DOI: 10.1016/j.ijbiomac.2021.09.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Hydrogel film composed of chitosan (CS) as raw material was prepared by free radical polymerization. Silicon was introduced into the hydrogel film in different ways (covalent/non-covalent) to improve the physical properties of the film, and β-acids were loaded to enhance the antibacterial activity of the film. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis were used to characterize the structure of films. The mechanical results indicated that when nano-silica (0.3%) was introduced into film (containing 0.2% β-acids) by non-covalently bond, the tensile strength increased to 8.59 MPa. Meanwhile silicon (0.3%) entered the film by covalent bonding, the tensile strength increased to 7.99 MPa. The films loaded with β-acids had well ability to blocks ultraviolet rays and exhibited inhibitory effect on E. coli and S. aureus. In the PBS (37 °C, pH = 7.4) simulant solution, the release mechanism of most films to release the β-acids followed non-Fick diffusion (n > 0.5). It could be concluded that the prepared hydrogel films loading with β-acids had broad application prospects in food packaging material with antibacterial property and controlled release.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Jie Wang
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Qiang Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| | - Dejun Chen
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
16
|
Vedhanayagam M, Kumar AS, Nair BU, Sreeram KJ. Dendrimer-Functionalized Metal Oxide Nanoparticle-Mediated Self-Assembled Collagen Scaffold for Skin Regenerative Application: Function of Metal in Metal Oxides. Appl Biochem Biotechnol 2021; 194:266-290. [PMID: 34817807 DOI: 10.1007/s12010-021-03764-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Functionalized metal oxide nanoparticles cross-linked collagen scaffolds are widely used in skin regenerative applications because of their enhanced physicochemical and biocompatibility properties. From the safety clinical trials point of view, there are no reports that have compared the effects of functionalized metal oxide nanoparticles mediated collagen scaffolds for in vivo skin regenerative applications. In this work, triethoxysilane-poly (amido amine) dendrimer generation 3 (TES-PAMAM-G3 or G3)-functionalized spherical shape metal oxide nanoparticles (MO NPs: ZnO, TiO2, Fe3O4, CeO2, and SiO2, size: 12-25 nm) cross-linked collagen scaffolds were prepared by using a self-assembly method. Triple helical conformation, pore size, mechanical strength, and in vitro cell viability of MO-TES-PAMAM-G3-collagen scaffolds were studied through different methods. The in vivo skin regenerative proficiency of MO-TES-PAMAM-G3-collagen scaffolds was analyzed by implanting the scaffold on wounds in Wistar albino rats. The results demonstrated that MO-TES-PAMAM-G3-collagen scaffold showed superior skin regeneration properties than other scaffolds. The skin regenerative efficiency of MO NPs followed the order ZnO > TiO2 > CeO2 > SiO2 > Fe3O4 NPs. This result can be attributed to higher mechanical strength, cell viability, and better antibacterial activity of ZnO-TES-PAMAM-G3-collagen scaffold that leads to accelerate the skin regenerative properties in comparison to other metal oxide based collagen scaffolds.
Collapse
Affiliation(s)
- Mohan Vedhanayagam
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Anandasadagopan Suresh Kumar
- Biochemistry and Biotechnology Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Balachandran Unni Nair
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | | |
Collapse
|
17
|
Effect of pepper extracts on the viability kinetics, topography and Quantitative NanoMechanics (QNM) of Campylobacter jejuni evaluated with AFM. Micron 2021; 152:103183. [PMID: 34801959 DOI: 10.1016/j.micron.2021.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Campylobacter jejuni is a pathogen bacterium that causes foodborne gastroenteritis in humans. However, phenolic compounds extracted from natural sources such as capsicum pepper plant (Capsicum annuum L. var. aviculare) could inhibit the growth of C. jejuni. Therefore, different extracts were prepared using ultrasonic extraction (USE), conventional extraction (CE) and thermosonic extraction (TSE). C. jejuni was then exposed to chili extracts to examine the antimicrobial effect and their growth/death bacterial kinetics were studied using different mathematical models. Atomic force microscopy was applied to investigate the microstructural and nanomechanical changes in the bacteria. Extracts obtained by TSE had the highest phenolic content (4.59 ± 0.03 mg/g of chili fresh weight [FW]) in comparison to USE (4.12 ± 0.05 mg/g of chili FW) and CE (4.28 ± 0.07 mg/g of chili FW). The inactivation of C. jejuni was more efficient when thermosonic extract was used. The Gompertz model was the most suitable mathematical model to describe the inactivation kinetics of C. jejuni. Roughness and nanomechanical analysis performed by atomic force microscopy (AFM) provided evidence that the chili extracts had significant effects on morphology, surface, and the reduced Young's modulus of C. jejuni. The novelty of this work was integrating growth/death bacterial kinetics of C. jejuni using different mathematical models and chili extracts, and its relationship with the morphological, topographic and nanomechanical changes estimated by AFM.
Collapse
|
18
|
Tian B, Xu D, Cheng J, Liu Y. Chitosan-silica with hops β-acids added films as prospective food packaging materials: Preparation, characterization, and properties. Carbohydr Polym 2021; 272:118457. [PMID: 34420717 DOI: 10.1016/j.carbpol.2021.118457] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
In this study, silica (SiO2) and β-acids were added to the chitosan films in order to improve the film's properties. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD) were used to explore the structure of film. The results of mechanical test indicated that the film containing SiO2 (0.3%) and β-acids (0.3%) could obtain a significant tensile strength (10.04 MPa). The complex films possessed a good inhibitory effect on three types of bacteria, and good antioxidant activity (>56%, DPPH). The release mechanism of β-acids from the films exhibited Fickian diffusion (n < 0.45). During the storage of soybean oil, the films could well control the changes of the peroxide value, acid value and thiobarbituric acid reactant content. Overall, the biofilms not only possess good physical and chemical properties, but also prolongs the time of food storage.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Dan Xu
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Jianhua Cheng
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
19
|
Pagnout C, Razafitianamaharavo A, Sohm B, Caillet C, Beaussart A, Delatour E, Bihannic I, Offroy M, Duval JFL. Osmotic stress and vesiculation as key mechanisms controlling bacterial sensitivity and resistance to TiO 2 nanoparticles. Commun Biol 2021; 4:678. [PMID: 34083706 PMCID: PMC8175758 DOI: 10.1038/s42003-021-02213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Toxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Delatour
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | - Marc Offroy
- Université de Lorraine, CNRS, LIEC, Nancy, France
| | | |
Collapse
|
20
|
Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules 2021; 26:1077. [PMID: 33670668 PMCID: PMC7922738 DOI: 10.3390/molecules26041077] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Zeinab A. Salem
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Giza P.O. 12613, Egypt;
- Faculty of Oral and Dental Medicine, Ahram Canadian University, 6 October City P.O. 12573, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St (former EL Tahrir St), Dokki, Giza P.O. 12622, Egypt;
| |
Collapse
|
21
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
22
|
Escamilla-García M, Ríos-Romo RA, Melgarejo-Mancilla A, Díaz-Ramírez M, Hernández-Hernández HM, Amaro-Reyes A, Pierro PD, Regalado-González C. Rheological and Antimicrobial Properties of Chitosan and Quinoa Protein Filmogenic Suspensions with Thyme and Rosemary Essential Oils. Foods 2020; 9:E1616. [PMID: 33172144 PMCID: PMC7694767 DOI: 10.3390/foods9111616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023] Open
Abstract
Food packaging faces the negative impact of synthetic materials on the environment, and edible coatings offer one alternative from filmogenic suspensions (FS). In this work, an active edible FS based on chitosan (C) and quinoa protein (QP) cross-linked with transglutaminase was produced. Thyme (T) and rosemary (R) essential oils (EOs) were incorporated as antimicrobial agents. Particle size, Z potential, and rheological parameters were evaluated. The antimicrobial activity against Micrococcus luteus (NCIB 8166) and Salmonella sp. (Lignieres 1900) was monitored using atomic force microscopy and image analysis. Results indicate that EOs incorporation into C:QP suspensions did not affect the Z potential, ranging from -46.69 ± 3.19 mV to -46.21 ± 3.83 mV. However, the polydispersity index increased from 0.51 ± 0.07 to 0.80 ± 0.04 in suspensions with EO. The minimum inhibitory concentration of active suspensions against Salmonella sp. was 0.5% (v/v) for thyme and 1% (v/v) for rosemary. Entropy and fractal dimension of the images were used to confirm the antimicrobial effect of EOs, which modified the surface roughness.
Collapse
Affiliation(s)
- Monserrat Escamilla-García
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico; (M.E.-G.); (R.A.R.-R.); (A.M.-M.); (A.A.-R.)
| | - Raquel A. Ríos-Romo
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico; (M.E.-G.); (R.A.R.-R.); (A.M.-M.); (A.A.-R.)
| | - Armando Melgarejo-Mancilla
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico; (M.E.-G.); (R.A.R.-R.); (A.M.-M.); (A.A.-R.)
| | - Mayra Díaz-Ramírez
- Department of Food Science, Division of Biological Sciences and Health, Autonomous Metropolitan University, Lerma Unit, Avenida de las Garzas N°. 10, El Panteón, Lerma de Villada 52005, Mexico;
| | - Hilda M. Hernández-Hernández
- CONACyT-Center for Research Technological Assistance and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas 800, Volinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Aldo Amaro-Reyes
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico; (M.E.-G.); (R.A.R.-R.); (A.M.-M.); (A.A.-R.)
| | - Prospero Di Pierro
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Carlos Regalado-González
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Querétaro, C.U., Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico; (M.E.-G.); (R.A.R.-R.); (A.M.-M.); (A.A.-R.)
| |
Collapse
|
23
|
Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection. NANOMATERIALS 2020; 10:nano10081443. [PMID: 32722023 PMCID: PMC7466518 DOI: 10.3390/nano10081443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022]
Abstract
Nanomaterials have unique properties and characteristics derived from their shape and small size that are not present in bulk materials. If size and shape are decisive, the synthesis method used, which determines the above parameters, is equally important. Among the different nanomaterial’s synthesis methods, we can find chemical methods (microemulsion, sol-gel, hydrothermal treatments, etc.), physical methods (evaporation-condensation, laser treatment, etc.) and biosynthesis. Among all of them, the use of laser ablation that allows obtaining non-toxic nanomaterials (absence of foreign compounds) with a controlled 3D size, has emerged in recent years as a simple and versatile alternative for the synthesis of a wide variety of nanomaterials with numerous applications. This manuscript reviews the latest advances in the use of laser ablation for the synthesis of silicon-based nanomaterials, highlighting its usefulness in the prevention of bacterial infection.
Collapse
|
24
|
Sharma N, Das GS, Yun K. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Appl Microbiol Biotechnol 2020; 104:7187-7200. [PMID: 32572575 DOI: 10.1007/s00253-020-10726-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023]
Abstract
We present a green synthesis of fluorescent carbon quantum dots (CQDs) by using red cabbage (rc) and a one-step hydrothermal approach. The rcCQDs were characterized by various techniques such as UV-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, Fourier-transform infrared spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy. The synthesized rcCQDs exhibited an average size of 3 nm, measured by TEM, blue fluorescence, and a quantum yield of 8.3%. The highest emission band was observed at approximately 402 nm when excited at 330 nm. The rcCQDs exhibited strong antioxidant activities by scavenging 61, 56, and 91% against 2, 2-diphenyl-1-picrylhydrazyl, hydroxyl, and potassium permanganate radicals, respectively. The scavenging activity of rcCQDs was comparable with that of standard antioxidant L-ascorbic acid. Cell Counting Kit (CCK)-8 assay depicted superior bio-compatibility and negligible cytotoxicity of rcCQDs on SH-SY5Y neuroblastoma cells. They were used as a fluorescent probe for bio-labeling of Escherichia coli and Staphylococcus aureus. The viabilities of the labeled bacterial cells were analyzed by AFM and UV-visible spectroscopy. Furthermore, the rcCQDs were utilized as a fluorescent ink, an alternative to pens, and maybe suitable for paints and varnish agents. This study provides detailed mechanistic insights into the antioxidant activity of as-synthesized rcCQDs, which suggest the practical applicability of CQDs for bio-medical applications. Key points • Carbon quantum dots were prepared from red cabbage using the hydrothermal method. • The scavenging activity of rcCQDs was evaluated for DPPH, OH, and KMnO4radicals. • The rcCQDs were used for the labeling of foodborne bacteria. • The rcCQDs could be utilized as fluorescent ink. Graphical abstract Schematic representation of CQDs prepared from red cabbage (rc) with multifunctional applications.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Gouri Sankar Das
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
25
|
Krce L, Šprung M, Rončević T, Maravić A, Čikeš Čulić V, Blažeka D, Krstulović N, Aviani I. Probing the Mode of Antibacterial Action of Silver Nanoparticles Synthesized by Laser Ablation in Water: What Fluorescence and AFM Data Tell Us. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1040. [PMID: 32485869 PMCID: PMC7352602 DOI: 10.3390/nano10061040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
We aim to elucidate the mode of antibacterial action of the laser-synthesized silver colloid against Escherichia coli. Membrane integrity was studied by flow cytometry, while the strain viability of the treated culture was determined by plating. The spectrofluorometry was used to obtain the time development of the reactive oxygen species (ROS) inside the nanoparticle-treated bacterial cells. An integrated atomic force and bright-field/fluorescence microscopy system enabled the study of the cell morphology, Young modulus, viability, and integrity before and during the treatment. Upon lethal treatment, not all bacterial cells were shown to be permeabilized and have mostly kept their morphology with an indication of cell lysis. Young modulus of untreated cells was shown to be distinctly bimodal, with randomly distributed softer parts, while treated cells exhibited exponential softening of the stiffer parts in time. Silver nanoparticles and bacteria have shown a masking effect on the raw fluorescence signal through absorbance and scattering. The contribution of cellular ROS in the total fluorescence signal was resolved and it was proven that the ROS level inside the lethally treated cells is not significant. It was found that the laser-synthesized silver nanoparticles mode of antibacterial action includes reduction of the cell's Young modulus in time and subsequently the cell leakage.
Collapse
Affiliation(s)
- Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia;
| | - Damjan Blažeka
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Nikša Krstulović
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| |
Collapse
|
26
|
Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 2020; 11:1789. [PMID: 32286264 PMCID: PMC7156740 DOI: 10.1038/s41467-020-15489-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of the cell envelope in Gram-negative bacteria are controlled by the peptidoglycan, the outer membrane, and the proteins interacting with both layers. In Escherichia coli, the lipoprotein Lpp provides the only covalent crosslink between the outer membrane and the peptidoglycan. Here, we use single-cell atomic force microscopy and genetically engineered strains to study the contribution of Lpp to cell envelope mechanics. We show that Lpp contributes to cell envelope stiffness in two ways: by covalently connecting the outer membrane to the peptidoglycan, and by controlling the width of the periplasmic space. Furthermore, mutations affecting Lpp function substantially increase bacterial susceptibility to the antibiotic vancomycin, indicating that Lpp-dependent effects can affect antibacterial drug efficacy. Lipoprotein Lpp provides a covalent crosslink between the outer membrane and the peptidoglycan in E. coli. Here, the authors use atomic force microscopy to show that Lpp contributes to cell envelope stiffness by covalently connecting the two layers and by controlling the width of the periplasmic space.
Collapse
|
27
|
Offroy M, Razafitianamaharavo A, Beaussart A, Pagnout C, Duval JFL. Fast automated processing of AFM PeakForce curves to evaluate spatially resolved Young modulus and stiffness of turgescent cells. RSC Adv 2020; 10:19258-19275. [PMID: 35515432 PMCID: PMC9054095 DOI: 10.1039/d0ra00669f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Atomic Force Microscopy (AFM) is a powerful technique for the measurement of mechanical properties of individual cells in two (x × y) or three (x × y × time) dimensions. The instrumental progress makes it currently possible to generate a large amount of data in a relatively short time, which is particularly true for AFM operating in so-called PeakForce tapping mode (Bruker corporation). The latter corresponds to an AFM probe that periodically hits the sample surface while the pico-newton level interaction force is recorded from cantilever deflection. The method provides unprecedented high-resolution (a few tens of nm) imaging of the mechanical features of soft biological samples (e.g. bacteria, yeasts) and of hard abiotic surfaces (e.g. minerals). The rapid conversion of up to several tens of thousands spatially resolved force curves typically collected in AFM PeakForce tapping mode over a given cell surface area into comprehensive nanomechanical information requires the development of robust data analysis methodologies and dedicated numerical tools. In this work, we report an automated algorithm for (i) a rapid and unambiguous detection of the indentation regimes corresponding to non-linear and linear deformations of bacterial surfaces upon compression by the AFM probe, (ii) the subsequent evaluation of the Young modulus and cell surface stiffness, and (iii) the generation of spatial mappings of relevant nanomechanical properties at the single cell level. The procedure involves consistent evaluation of the contact point between the AFM probe and sample biosurface and that of the threshold indentation value marking the transition between non-linear and linear deformation regimes. For comparison purposes, the former regime is here analyzed on the basis of Hertz and Sneddon models corrected or not for effects of finite sample thickness. Analysis of AFM measurements performed on a selected Escherichia coli strain is detailed to demonstrate the feasibility, rapidity and robustness of the here-proposed PeakForce data treatment process. The flexibility of the algorithm allows consideration of force curve parameterizations other than that detailed here, which may be desired for investigation of e.g. eukaryotes nanomechanics. The performance of the adopted Hertz-based and Sneddon-based contact mechanics formalisms in recovering experimental data and in identifying nanomechanical heterogeneities at the bacterium scale is further thoroughly discussed. A numerical method is proposed for the modeling of AFM PeakForce curves and the automated extraction of relevant spatially-resolved nanomechanical properties of turgescent cells.![]()
Collapse
Affiliation(s)
- Marc Offroy
- Université de Lorraine
- CNRS
- LIEC
- F-54000 Nancy
- France
| | | | | | | | | |
Collapse
|
28
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
29
|
Sipponen MH, Lange H, Crestini C, Henn A, Österberg M. Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges. CHEMSUSCHEM 2019; 12:2039-2054. [PMID: 30933420 PMCID: PMC6593669 DOI: 10.1002/cssc.201900480] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 05/19/2023]
Abstract
To liberate society from its dependence on fossil-based fuels and materials it is pivotal to explore components of renewable plant biomass in applications that benefit from their intrinsic biodegradability, safety, and sustainability. Lignin, a byproduct of the pulp and paper industry, is a plausible material for carrying various types of cargo in small- and large-scale applications. Herein, possibilities and constraints regarding the physical-chemical properties of the lignin source as well as modifications and processing required to render lignins suitable for the loading and release of pesticides, pharmaceuticals, and biological macromolecules is reviewed. In addition, the technical challenges, regulatory and toxicological aspects, and future research needed to realize some of the promises that nano- and microscaled lignin materials hold for a sustainable future are critically discussed.
Collapse
Affiliation(s)
- Mika Henrikki Sipponen
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| | - Heiko Lange
- Department of PharmacyUniversity of Naples 'Federico II'Via Domenico MontesanoNaples80131Italy
| | - Claudia Crestini
- Department of Molecular Sciences and NanosystemsUniversity of Venice Ca' FoscariVia Torino 15530170Venice MestreItaly
| | - Alexander Henn
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| | - Monika Österberg
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityVuorimiehentie 1Espoo02150Finland
| |
Collapse
|